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Fiducial confidence intervals for proportions in finite
populations: One- and two-sample problems

Shanshan Lva and K. Krishnamoorthyb
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ABSTRACT
The problems of constructing confidence intervals (CIs) for the pro-
portions and functions of proportions in finite populations are con-
sidered. For estimating the proportion in a finite population, we
propose a CI based on the generalized fiducial method and compare
it with an exact CI and score CI. For the two-sample problems, we
consider interval estimating the difference between two proportions,
the ratio of two proportions and the ratio of odds. Our solutions for
the two-sample problems are based on the fiducial approach and
the method of variance estimate recovery. All the CIs are evaluated
on the basis of their exact coverage probabilities and expected
widths. The methods are illustrated using some practical examples.
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1. Introduction

A basic yet an important problem in statistical inference is setting confidence interval
for a proportion or for some summary indices of proportions. Such problems have been
well addressed for proportions in infinite populations on the basis of binomial models.
Other important two-sample problems such as the estimation of the difference or the
ratio of two proportions assuming binomial models are also well addressed and several
approximate solutions are proposed in the literature. See Agresti and Coull (1998),
Agresti (1999), Brown, Cai, and Gupta (2001), Krishnamoorthy and Lee (2010),
Fagerland and Newcombe (2013), and the references therein. Although there has been
continuous interest in developing inferential procedures for binomial distributions, only
limited results are available for estimating the proportion in a finite population; see
Burstein (1975), Krishnamoorthy and Thomson (2002) and Lee (2009) and Li, Zhou,
and Tian (2013). Indeed, to the best of our knowledge, the problems of estimating the
relative risk (ratio of proportions) or the ratio of odds from finite populations were
never addressed in the literature. Recall that in estimation of a proportion in an infinite
population, we deal with a binomial distribution, and in a finite population case we
deal with a hypergeometric distribution. Even though these two distributions are prac-
tically the same for large populations, results based on binomial distributions are not
applicable to hypergeometric distributions when the population sizes are not very large.
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For instance, in the one-sample case, Burstein (1975) noted that the difference between
the binomial-based on confidence intervals with finite population correction and the
ones based on the hypergeometric distributions are appreciable if the population size is
around 5,000 or less.
To describe our present problems formally, consider a hypergeometric distribution

with a lot size N and unknown number of defective items M. Let X be the number of
defective items in a sample of size n drawn from the lot without replacement. For con-
venience, we write X � Hðn,M,NÞ: The probability mass function (pmf) of X is given
by

PðX ¼ xjn,M,NÞ ¼ f ðxjn,M,NÞ ¼
M
x

� �
N �M
n� x

� �
N
n

� � , L � x � U, (1)

where L ¼ maxf0,M � N þ ng and U ¼ minfn,Mg:
Lee (2009) has considered the problem of estimating the proportion p ¼ M=N of

defective items in the lot, and proposed the CIs for p based on the Wald method,
Wilson’s score method and the Agresti and Coull (1998) method and recommended
Wilson’s score CI for applications as it is simple to compute and also has good coverage
property. Recently, Wang (2015) has derived some exact optimal CIs for proportion in
a finite population. The exact CI, like the Clopper and Pearson (1934) exact CI for the
binomial proportion, is too conservative, yielding CIs that are unnecessarily wide.
Interval estimates for other parameters such as the quantile and tolerance intervals for
hypergeometric distributions are proposed in Young (2015). As noted earlier, only very
limited results are available for two-sample problems involving hypergeometric distribu-
tions. Krishnamoorthy and Thomson (2002) have addressed the problem of testing the
equality of two proportions from finite populations and proposed a test that is satisfac-
tory even for small samples. However, the proposed two-sample test in Krishnamoorthy
and Thomson (2002) is difficult to invert to find a CI for the difference between two
proportions.
In this article, we first address the problem of interval estimating the proportion in a

finite population. We then address the problems of interval estimating the difference
between two proportions, the ratio of two proportions and the ratio of odds. Keeping
these problems in mind, the rest of the article is organized as follows. In the following
section, we describe the generalized fiducial method and the method of variance esti-
mate recovery (MOVER) that will be used to find CIs for the aforementioned problems.
In Section 3, we consider interval estimating the proportion and describe the score CI,
the exact CI by Wang (2015) and a CI based on the generalized fiducial approach by
Hannig (2013). In Section 4, we consider two-sample problems where we propose fidu-
cial CIs for the difference between two proportions, the ratio of proportions and for the
ratio of odds. Some closed-form approximate CIs are also proposed. In Section 5, the
merits of the proposed CIs are evaluated numerically in terms of coverage probabilities
and, where applicable, expected widths. All interval estimation methods are illustrated
using some examples in Section 6. Some concluding remarks are given in Section 7.
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2. Preliminaries

We shall now describe a few general methods that will be used in the sequel to find CIs
in one- and two-sample problems.

2.1. Fiducial distribution for Mx

2.1.1. Generalized fiducial distribution
Using the general idea of Hannig (2013), Krishnamoorthy and Lv (2020) obtained a
fiducial distribution of M from the hypergeometric random variate generator, which
can be described as follows. Recall that x is a pseudo random number from the
Hðn,M,NÞ distribution if

PðX � x � 1jn,M,NÞ < U � PðX � xjn,M,NÞ, (2)

where U is a uniform(0,1) random variable (e.g., see Casella and Berger (2002), page 249).
For a given (x, n, N), the support of the fiducial distribution of M is ½x,N � ðn� xÞ�: A
sample from the fiducial distribution of M can be obtained by generating U1, :::,UN and
then finding the values of M that satisfy the inequality (2) for each Ui, i ¼ , :::,N: For a
given ðx, n,N,UÞ, more than one M satisfy the inequality (2). As suggested by Hannig
et al. (2016), a randomly selected value from the values of M that satisfy the inequality can
be regarded as a fiducial variate. Thus, a sample from the fiducial distribution of M can be
obtained as follows. For a generated uniform(0, 1) random number Ui, select one element
from the set

fMx : PðX � x � 1jn,Mx,NÞ < Ui � PðX � xjn,Mx,NÞg, (3)

at random and refer to the selected element as M�
x, i: Then the fiducial sample is given by

fM�
x, 1, :::,M

�
x,Ng: (4)

Fiducial inference can be made on the basis of the fiducial sample. For example, the
lower and the upper 5th percentiles of the fiducial sample form a 90% CI for M. The
following algorithm can be used to generate fiducial samples Mx, i’s. The R code based
on the algorithm is given in the Appendix.

Algorithm 1
For a given x, n and N,

1. Let S ¼ x, xþ 1, :::, xþ Nx � nxf g, the support of the fiducial distribution
of Mx.

2. Compute the probabilities

P0i ¼ PðXi � x� 1jn, SðiÞ,NÞ, and P1i ¼ PðXi � xjn, SðiÞ,NÞ, i ¼ 1, :::,Nx � nx þ 1,

where Xi is the hypergeometric random variable with the sample size n, number of
defective items S(i) and the lot size N, and S(i) is the ith element of S.

3. Generate a u � uniform(0,1).
4. Find the set S� ¼ fSðiÞ : P0i < u � P1i, i ¼ 1, :::,Nx � nx þ 1g:
5. Select one element at random from S� and deliver it as a variate of Mx.
6. Repeat steps 3–5 until the desired number of fiducial variates generated.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 3



2.1.2. An approximate Z-fiducial distribution
An approximate fiducial distribution for Mx can be found along the lines of Li, Zhou,
and Tian (2013) who obtained a generalized pivotal quantity for the binomial parameter.
The generalized pivotal quantity is the same as the fiducial quantity which can be found
on the basis of the functional-model approach by Dawid and Stone (1982). Toward
that, we use the asymptotic distributional result (Wald 1943) that, for large n,

p̂ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þp ¼ p̂ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rpð1� pÞ=np ¼d Z, (5)

where p̂ ¼ ðx=nÞ, p ¼ M=N,R ¼ ðN � nÞ=ðN � 1Þ is the finite population correction,
and Z is the standard normal random variable. Solving the above equation for p, and

then using the fact that �Z¼d Z, we find an approximate fiducial distribution for p
determined by

Qp ¼
p̂ þ Z2R

2n

1þ Z2R
n

 !
þ

Z
ffiffiffi
R

pffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ þ Z2R=ð4nÞp

1þ Z2R
n

: (6)

The above fiducial quantity with R removed is the same as the one given for the bino-
mial parameter in Eqn (3.1) of Li, Zhou, and Tian (2013).

2.2. The method of variance estimate recovery

The method of variance estimate recovery (MOVER), introduced by Zou and Donner
(2008) and Zou, Taleban, and Huo (2009), is a method to find a CI for a linear combin-
ation of parameters based on individual CIs of the parameters. Consider a linear com-

bination
Pk

i¼1 cihi of parameters h1, ::::, hg , where ci’s are known constants. Let ĥi be an

unbiased estimate of hi, i ¼ 1, :::, k: Assume that ĥ1, :::, ĥg are independent.
Furthermore, let (li, ui) denote the 1� a confidence interval for hi, i ¼ 1, :::, k: The 1�
a MOVER confidence interval (L, U) for

Pk
i¼1 cihi can be expressed as

L ¼
Xg
i¼1

ciĥi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXg
ci>0

c2i ĥi � li
� �2 þXg

ci<0

c2i ĥi � ui
� �2vuut , (7)

and

U ¼
Xg
i¼1

ciĥi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXg
ci>0

c2i ĥi � ui
� �2 þXg

ci<0

c2i ĥi � li
� �2vuut : (8)

2.2.1. MOVER CI for the ratio of two parameters
To describe the MOVER CI for the ratio g ¼ h1=h2 of two parameters, where both

parameters h1 and h2 are positive, let ĥi be an estimator of hi, i¼ 1, 2. Assume that ĥ1
and ĥ2 are independent. Furthermore, let (li, ui) denote the 100ð1� aÞ% confidence
interval for hi, i¼ 1, 2. The MOVER confidence limits for the ratio can be obtained
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from the MOVER confidence limits for h1 � gh2 using Fieller’s (1940) theorem. To be

more specific, let L�ðg, ĥ1, ĥ2Þ denote the left endpoint of the 1� a MOVER CI for
h1 � gh2 based on Equation (7). Then the lower limit of MOVER CI for the ratio h1=h2
is the root (with respect to g) of the equation L�ðg; ĥ1, ĥ2Þ ¼ 0: The left endpoint of the
CI for the ratio is given by

Lg ¼
ĥ1ĥ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ
2
1ĥ

2
2 � ĥ

2
2 � ðu2 � ĥ2Þ2

h i
ĥ
2
1 � ðl1 � ĥ1Þ2

h ir

ĥ
2
2 � ðu2 � ĥ2Þ2

: (9)

Similarly, if U�ðg, ĥ1, ĥ2Þ denote the right endpoint of the 1� a MOVER CI for h1 �
gh2 based on Equation (8), then the upper limit of MOVER CI for the ratio h1=h2 is

the root of the equation U�ðg; ĥ1, ĥ2Þ ¼ 0, and is given by

Ug ¼
ĥ1ĥ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ
2
1ĥ

2
2 � ĥ

2
1 � ðu1 � ĥ1Þ2

h i
ĥ
2
2 � ðl2 � ĥ2Þ2

h ir

ĥ
2
2 � ðĥ2 � l2Þ2

: (10)

Donner and Zou (2012) first derived the above CI from the one for h1 � gh2: Although
the above expressions for Lg and Ug are different from those given in Donner and Zou
(2012), it can be verified that they are the same. Krishnamoorthy, Peng, and Zhang
(2016) have obtained the same CI for the ratio of Poisson means by inverting the one-
sided tests for h1 � gh2:

3. Confidence intervals for M

For a given x, n and N, we shall describe the score CI, an exact CI and fiducial CIs in
the sequel.

3.1. Score confidence interval

Score CI for Mx is based on the approximate distributional result in Equation (5).
Letting qa ¼ z1�a=2 to denote the 1� a=2 quantile of the standard normal distribution,
the 1� a score CI for p can be expressed as

ðp̂L, p̂UÞ ¼
p̂ þ q2aR

2n

1þ q2aR
n

0
@

1
A7

qa
ffiffiffi
R

pffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ þ q2aR=ð4nÞ

p
1þ q2aR

n

, (11)

The CI for M on the basis of the above CI is given by

ML,MU½ � ¼ dNp̂Le, bNp̂Uc
� �

, (12)

where dxe is the ceiling function and bxc is the floor function.

Remark. It should be noted that the above score CI is the same as the one based on the
approximate Z-fiducial quantity Qp in Equation (6). Specifically, let Qp;a denote the
100a percentile of Qp when x is fixed. Then the 1� a fiducial CI is ðQp;a=2,Qp;1�a=2Þ
which is the same the one in Equation (11).
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3.2. Exact confidence intervals for M

Let x be an observed value of X � Hðn,M,NÞ, and consider testing H0 : M ¼ M0 vs.
Ha : M > M0 at a level of significance a. The test that rejects the null hypothesis if the
p-value PðX � xjn,M0,NÞ � a is a uniformly most powerful (UMP) test, because
the family of hypergeometric distributions has monotone likelihood ratio property. So
the one-sided confidence interval that is obtained by inverting this UMP test is uni-
formly most accurate (see Section 9.3.2 of Casella and Berger (2002)). Let ML be the
smallest integer such that

PðX � xjn,ML,NÞ � a:

For any M0 � ML, the p-value for testing the right-sided hypothesis is greater than a,
and so the ML is a 100ð1� aÞ% lower confidence limit for M. Similarly, by inverting
the test for H0 : M ¼ M0 vs. Ha : M < M0, it can be seen that an upper confidence
limit MU for M is the largest integer such that

PðX � xjn,MU ,NÞ � a:

Wang (2015) has shown that, for any 1� a lower confidence limit M�
L with nondecreas-

ing in x, ML � M�
L: Similarly, for any M�

U with nondecreasing in x, MU � M�
U :

Even though the one-sided confidence limits are uniformly most accurate (UMA),
the 1� 2a two-sided confidence interval ML,MU½ �, formed by these one-sided limits, is
not UMA. Wang (2015) has proposed an iterative algorithm to find an exact admissible
two-sided CI MeL,MeU½ � from ML,MU½ �: Calculation of the admissible two-sided CI is
numerically quite involved; the R program provided by Wang is a function of even n, N
and 1� a, and returns ðnþ 1Þ CIs for x 2 f0, 1, :::, ng: In the sequel, we shall refer to
Wang’s admissible two-sided CI as the exact CI.

3.3. Fiducial CI for M

Given x, n and N, the fiducial CI is obtained by the percentiles of the sample in
Equation (4) generated from the fiducial distribution of M. Specifically, let ½Lf ,Uf �
denote the [lower, upper] 100a percentile of the sample in Equation (4). Then, ½Lf ,Uf �
is a 1� 2a fiducial CI for M.

4. Confidence intervals for two-sample problems

Let X � Hðnx,Mx,NxÞ independently of Y � Hðny,My,NyÞ: Let px ¼ Mx=Nx and py ¼
My=Ny: We shall now see a few methods of finding CIs for the difference between pro-
portions, ratio of proportions and for the ratio of odds.

4.1. Confidence intervals for the difference px2py

4.1.1. Fiducial CI
A fiducial CI for the ratio can be obtained on the basis of independent fiducial samples.
For a given ðx, nx,NxÞ, let M�

x, 1, :::,M
�
x,N denote the fiducial sample, which can be gen-

erated using the R-code in the Appendix. Similarly, find the fiducial sample
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M�
y, 1, :::,M

�
y,N for a given ðy, ny,NyÞ: Let

Di ¼ ðM�
x, i=NxÞ � ðM�

y, i=NyÞ, i ¼ 1, :::,N:

The lower and upper 100a percentiles of the Di’s is a 1� 2a fiducial CI for px � py:

4.1.2. Z-fiducial CI
Let p̂x ¼ ðx=nÞ, px ¼ Mx=Nx,Rx ¼ ðNx � nxÞ=ðNx � 1Þ and let Zx denote the standard
normal random variable. Following Equation (6), define the fiducial variable

QpxðZx; p̂x, nx,RxÞ ¼
p̂x þ Z2

xRx

2n

1þ Z2
xRx

nx

0
@

1
Aþ

Zx
ffiffiffiffi
Rx

pffiffi
n

p
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂xð1� p̂xÞ þ Z2

xRx=ð4nxÞ
p

1þ Z2
xRx

nx

: (13)

Similarly, define QpyðZy; p̂y, ny,RyÞ on the basis of ðy, ny,NyÞ: Then the fiducial quantity

for the difference px � py is given by

D� ¼ QpxðZx; p̂x, nx,RxÞ � QpyðZy; p̂y, ny,RyÞ: (14)

The lower and upper 100a percentiles of the D�’s is a 1� 2a fiducial CI for px � py:
For a given x and y, the percentiles of D� can be estimated by generating independent
standard normal random variables Zx and Zy.

4.1.3. A closed-form approximate fiducial CI
A closed-form approximate fiducial CI can be obtained by approximating the percen-
tiles of D� in Equation (14). To find an approximation to a percentile of D�, we shall
use the modified normal-based approximation described in Krishnamoorthy (2016).
Notice that, for a given ðx, nx,Nx, y, ny,NyÞ, QpxðZx; p̂x, nx,RxÞ and QpyðZy; p̂y, ny,RyÞ are

independent with the

med QpxðZx; p̂x, nx,RxÞ
� � ¼ Qpxðz:5; p̂x, nx,RxÞ ¼ p̂x,

where z:5 ¼ 0 is the median of the standard normal distribution. Similarly, we see that
the median of QpyðZy; p̂y, ny,RyÞ is p̂y: Let

lx ¼ Qpxðza; p̂x, nx,RxÞ and ux ¼ Qpxðz1�a; p̂x, nx,RxÞ,
where za denote the a quantile of the standard normal distribution. Similarly, define
ly ¼ Qpyðza; p̂y, ny,RyÞ and uy ¼ Qpyðz1�a; p̂y, ny,RyÞ: Then an approximate 100a percent-

ile of D� is given by

L ¼ p̂x � p̂y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂x � lx
� �2 þ p̂y � uy

	 
2r
, (15)

and an approximate 100 ð1� aÞ percentile is given by

U ¼ p̂x � p̂y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂x � ux
� �2 þ p̂y � ly

	 
2r
: (16)

The interval (L, U) is an approximate 1� 2a CI for the difference px � py:

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



4.2. Confidence intervals for the ratio px=py

4.2.1. Fiducial CI
A fiducial CI for the ratio can be obtained along the lines for the one for the difference.
Let M�

x, 1, :::,M
�
x,N denote the fiducial sample based on ðx, nx,NxÞ, let M�

y, 1, :::,M
�
y,N

denote the fiducial sample based on ðy, ny,NyÞ: Let

Ri ¼
M�

x, i=Nx

M�
y, i=Ny

, i ¼ 1, :::,N:

The lower and upper 100a percentiles of the Ri’s is 1� 2a fiducial CI for px=py:

4.2.2. Z-fiducial CI
For a given ðx, nx,NxÞ, define the fiducial variable QpxðZx; p̂x, nx,RxÞ as in Equation
(13). Similarly, define QpyðZy; p̂y, ny,RyÞ on the basis of ðy, ny,NyÞ: Then a fiducial quan-

tity for the ratio px=py is given by

R� ¼ QpxðZx; p̂x, nx,RxÞ
QpyðZy; p̂y, ny,RyÞ (17)

The lower and upper 100a percentiles of the R� is a 1� 2a fiducial CI for px=py:

4.2.3. MOVER confidence interval
Let us describe the MOVER CI for the ratio based on the individual exact CIs for px
and py that can be obtained using Wang’s (2015) algorithm. Let (lx, ux) and (ly, uy)
denote the 1� a exact CIs for px and py, respectively. Furthermore, let ~px and ~py denote

the centers of the CIs (lx, ux) and (ly, uy), respectively. Following Equations (9) and
(10), the MOVER CI (L, U) for the ratio can be expressed as

L ¼
~px~py �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~px~pyÞ2 � ~p2y � ðuy � ~pyÞ2

h i
~p2x � ðlx � ~pxÞ2
h ir

~p2y � ðuy � ~pyÞ2
,

and

U ¼
~px~py þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2y~p

2
x � ~p2x � ð~px � uxÞ2

h i
~p2y � ð~py � lyÞ2
h ir

~p2y � ð~py � lyÞ2
:

4.3. Confidence intervals for the odds ratio

4.3.1. Fiducial CI
Let M�

x, 1, :::,M
�
x,N and M�

y, 1, :::,M
�
y,N be fiducial samples as defined in Section 4.1.

Define

8 S. LV AND K. KRISHNAMOORTHY



Oi ¼
M�

x, i=ðNx �M�
x, iÞ

� �
M�

y, i=ðNy �M�
y, iÞ

h i , i ¼ 1, :::,N:

The lower and upper 100a percentiles of the Oi’s is 1� 2a fiducial CI for the ratio of
odds ½px=ð1� pxÞ�=½py=ð1� pyÞ�:

4.3.2. Z-fiducial CI
The Z-fiducial CI is obtained using the Z-fiducial quantities defined in the preceding
section. Specifically, the Z-fiducial variable for the odds ratio is obtained by substitution
as

Oxy ¼
QpxðZx; p̂x, nx,RxÞ= 1� QpxðZx; p̂x, nx,RxÞ

� �
QpyðZy; p̂y, ny,RyÞ= 1� QpyðZy; p̂y, ny,RyÞ

h i :
The lower and upper 100a percentile of Oxy form a 1� 2a CI for the ratio of odds, and
the percentiles can be estimated using Monte Carlo simulation.

4.3.3. The MOVER CI
To construct a MOVER CI for the odds ratio, we first find CIs for the odds px=ð1� pxÞ
and py=ð1� pyÞ: Let (lx, ux) and (ly, uy) denote the 1� a exact CIs for px and py,
respectively. On the basis of the exact CIs, we see that ðlox, uoxÞ ¼ ðlx=ð1� lxÞ, ux=ð1�
uxÞÞ is a 1� a CI for odds px=ð1� pxÞ and ðloy, uoyÞ ¼ ðly=ð1� lyÞ, uy=ð1� uyÞÞ is a

1� a CI for the odds py=ð1� pyÞ: Let Ôx and Ôy denote the midpoints of the CIs
ðlox, uoxÞ and ðloy, uoyÞ, respectively. Substituting ðlox, uoxÞ for (l1, u1), ðloy, uoyÞ for (l2,

u2), ĥ1 ¼ Ôx and ĥ2 ¼ Ôy in Equations (9) and (10), we can find a MOVER CI for the
ratio of odds.

5. Coverage and expected widths of CIs for M

Let lðx, n,N; aÞ, uðx, n,N; aÞ½ � be a 1� a CI for M. For an assumed value of (n, M, N),
the exact coverage probabilities of lðx, n,N; aÞ, uðx, n,N; aÞ½ � can be evaluated using the
hypergeometric pmf f ðxjn,M,NÞ as

XU
x¼L

f ðxjn,M,NÞI lðx, n,N;aÞ, uðx, n,N;aÞ½ �ðMÞ, (18)

where L and U are as defined in Equation (1) and IAðxÞ is the indicator function. For a
satisfactory CI, the coverage probabilities should be close to the nominal level 1� a for
all values of (n, M, N). The expected width of a CI is evaluated using the above expres-
sion with the indicator function replaced by the width uðx, n,N; aÞ � lðx, n,N; aÞ:
The coverage probabilities along with expected widths are plotted as a function of

p ¼ M=N in Figure 1 for various values of (n, M, N). We observe from the six plots of
the coverage probabilities that the exact CI is overly conservative for all the cases con-
sidered. The score CI and the fiducial CI are liberal for some parameter values, but
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Figure 1. Coverage probabilities and expected widths 95% confidence intervals of Mx as functions of
proportion of defective; x� axis¼ proportion M/N, y� axis¼ coverage probability.
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Figure 1. (Continued)
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their coverage probabilities are seldom as low as 0.90 when the confidence coefficient is
0.95. These two CIs perform very similar in most cases; however, when the sample sizes
are large in relation to the values of N, the coverage probabilities of the fiducial CI are
more close to the nominal level than those of the score CI. See the plots for ðn,NÞ ¼
ð100, 500Þ and ð60, 300Þ: The expected widths of different CIs reflect the coverage prop-
erties. Specifically, the exact CI is too conservative and so its expected width is larger
than those of other two CIs in most cases. The score CI is shorter than other two CIs
when p is in the middle of the interval (0, 1). This higher precision of the score CI
could be due to the fact that the coverage probabilities are slightly smaller than the
nominal level when p is around 0.5.

5.1. Coverage probabilities for two-sample problems

To judge the interval estimates of the difference between two proportions, we evaluated
the exact coverage probabilities using the expression

XUx

x¼Lx

XUy

x¼Ly

f ðxjnx,Mx,NxÞf ðyjny,My,NyÞI Ld ,Udð Þðpx � pyÞ, (19)

where (Ld, Ud) is a CI for the difference px � py:
Summary statistics of coverage probabilities and expected widths of the fiducial CI,

Z-fiducial CI and approximate fiducial CI for the difference px � py are reported in
Table 1 for some assumed values of ðnx,Nx, ny,NyÞ: For each set of assumed values of
ðnx,Nx, ny,NyÞ, the summary statistics are based on 1000 coverage probabilities calcu-
lated at 1000 pairs of (px, py) generated randomly from uniform ð:001, :999Þ distribu-
tion. Examination of summary statistics in Table 1 clearly indicates that all three CIs

Table 1. Coverage probabilities of 95% CIs for the difference between proportions.
Nx ¼ 200,Ny ¼ 200

Cov Prob
ðnx , nyÞ ¼ ð14, 12Þ ðnx , nyÞ ¼ ð20, 24Þ ðnx , nyÞ ¼ ð30, 40Þ

Fiducial Z-Fid A-Fid Fiducial Z-Fid A-Fid Fiducial Z-Fid A-Fid

min .897 .895 .897 .895 .895 .906 .915 .924 .924
5th .934 .935 .934 .938 .940 .939 .942 .945 .944
med .948 .950 .951 .949 .950 .950 .949 .950 .950
95th .966 .978 .981 .961 .967 .973 .957 .963 .966

Nx ¼ 400,Ny ¼ 500

ðnx , nyÞ ¼ ð14, 12Þ ðnx , nyÞ ¼ ð20, 24Þ ðnx , nyÞ ¼ ð30, 40Þ
min .896 .905 .905 .913 .924 .913 .912 .901 .882
5th .932 .935 .932 .939 .940 .939 .942 .945 .945
med .948 .952 .952 .949 .950 .950 .949 .950 .950
95th .966 .979 .984 .960 .967 .971 .958 .965 .967

Nx ¼ 1000,Ny ¼ 1100

ðnx , nyÞ ¼ ð14, 12Þ ðnx , nyÞ ¼ ð20, 24Þ ðnx , nyÞ ¼ ð30, 40Þ
min .899 .917 .904 .907 .922 .905 .933 .940 .924
5th .932 .936 .933 .939 .941 .939 .943 .945 .944
med .948 .952 .952 .948 .951 .951 .950 .950 .949
95th .964 .979 .984 .959 .971 .976 .957 .963 .967
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are quite comparable in terms of coverage probabilities. The minimum coverage proba-
bilities of all three methods are close to 0.90 and the median is close to 0.95 when the
nominal level is 0.95. Comparison of the median and 95th percentiles of coverage prob-
abilities indicate that the Z-fiducial CI and the approximate fiducial CI are slightly
more conservative than the fiducial CI. As the expected widths of all three CIs are very
similar they are not reported in Table 1. On the basis of simplicity, the Z-fiducial and
the approximate fiducial CIs may be recommended for practical use.
The summary statistics of coverage probabilities of fiducial CI, Z-fiducial CI and the

MOVER CI for the ratio of proportions are reported in Table 2. The fifth percentiles of
the coverage probabilities indicate that all CIs are satisfactory, and they rarely under-
cover the true ratio. The MOVER CI is mostly conservative, guaranteeing coverage
probability for most cases. The fiducial and Z-fiducial CIs perform very similarly in
most cases. However, it should be noted that the Z-fiducial CI is easy to calculate com-
pared to the fiducial CI. The MOVER CI appears to be more conservative than the
other two CIs.
The results on coverage probabilities of CIs for the odds ratio are reported in Table 3.

The summary statistics of the coverage probabilities were calculated as in the preceding
paragraphs. At first we see that the MOVER CI is conservative in most cases, even though
its coverage probability falls below the nominal level in some cases. This MOVER CI could
be overly conservative for small sample sizes. Comparison of the coverage probabilities of
the fiducial and Z-fiducial CIs indicate that the later one is slightly more conservative than
the former one; otherwise, these CIs perform similar with respect to coverage probability.
Overall, we see that the Z-fiducial approach is conceptually simple and produces sat-

isfactory results for interval estimating the difference, ratio and the ratio of odds.

6. Examples

Example 1. To illustrate the different methods of interval estimation in the preceding
sections, we shall adapt the example in Krishnamoorthy and Thomson (2002). This

Table 2. Percentiles of overage probabilities of 95% CIs for the ratio of proportions.
Nx ¼ 200,Ny ¼ 200 Nx ¼ 150,Ny ¼ 500

(nx, ny)

Cov Prob
(14,12) (20,24) (30,40) (14,12) (20,24) (30,40)

Fid Z-fid MOV Fid Z-fid MOV Fid Z-fid MOV Fid Z-fid MOV Fid Z-fid MOV Fid Z-fid MOV

min .889 .855 .913 .900 .875 .880 .879 .882 .870 .888 .858 .903 .867 .867 .867 .801 .800 .800
5th .928 .939 .949 .934 .943 .945 .933 .942 .946 .924 .939 .948 .935 .943 .950 .935 .943 .947
med .949 .953 .969 .949 .951 .964 .949 .948 .959 .947 .952 .968 .949 .952 .965 .949 .949 .960
95th .977 .974 .995 .976 .971 .986 .972 .967 .977 .975 .973 .995 .976 .969 .985 .970 .968 .979

Nx ¼ 400,Ny ¼ 500 Nx ¼ 1000,Ny ¼ 1100

(nx, ny)

Cov Prob (14,12) (20,24) (30,40) (14,12) (20,24) (30,40)

min .906 .893 .924 .904 .891 .902 .903 .886 .931 .889 .888 .929 .905 .890 .924 .909 .931 .899
5th .932 .940 .952 .939 .942 .952 .941 .944 .949 .928 .937 .952 .939 .943 .951 .940 .951 .945
med .948 .953 .971 .950 .952 .966 .950 .950 .962 .948 .952 .971 .955 .952 .966 .950 .963 .951
95th .974 .974 .994 .975 .970 .987 .960 .965 .980 .975 .973 .993 .976 .969 .987 .972 .980 .966
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example involves the problem of estimating the the number of unacceptable cans pro-
duced by a canning machine. A can is determined to be unacceptable (for sale) if the
content of the can weighs less than 95% of the labeled weight. Inspection of a sample of
nx ¼ 20 cans from a lot of Nx ¼ 200 cans revealed x¼ 2 unacceptable cans.
The computed 95% CIs based on various methods are as follows: Score CI is [6, 57];

fiducial CI based on a fiducial sample of size 10,000 is [5, 55]; the exact CI is [4, 61].
As the exact CI is, in general, conservative, it is wider than the other two CIs.

Example 2. This example is also taken from Krishnamoorthy and Thomson (2002)
which involves comparing proportions of nonacceptable cans produced by two different
canning machines. Denote p1 as the proportion of nonacceptable cans for the first
machine and p2 as the proportion for the second machine. Two pallets produced from
each machine, each containing N1 ¼ N2 ¼ 250 cans, are arbitrarily selected. Inspection
of sample of 110 cans from machine 1 revealed 8 nonacceptable cans, and a sample of
110 cans from machine 2 revealed 3 nonacceptable cans. Thus, we have we N1 ¼ N2 ¼
250, n1 ¼ n2 ¼ 110, x1 ¼ 8 and x2 ¼ 3:
We calculated 95% CIs for p1 � p2 based on various methods as follows: The fiducial

CI is (.004, .092), the Z-fiducial CI is (.002, .093) and the approximate fiducial CI is
(.001, .093). All three CIs indicate that the proportion of unacceptable cans produced by
machine 1 is greater than that of unacceptable cans produced by machine 2. The 95%
CIs for the ratio p1=p2 are as follows: The fiducial CI is (1.06, 7.00), the Z-fiducial CI is
(1.03, 6.93) and the MOVER CI based on the exact CIs for p1 and p2 is (.95, 6.96).
Notice that the fiducial and Z-fiducial CIs indicate that p1 > p2 while the MOVER CI,
being conservative in most cases, does not indicate p1 > p2: The 95% CIs for the ratio
of odds are as follows: The fiducial CI is (1.05, 7.52), the Z-fiducial CI is (1.04, 7.54),
and the MOVER CI on the basis of individual exact CIs for p1 and p2 is (.95, 7.64). We
once again see that both fiducial CIs indicate that odds are significantly different while
the MOVER CI indicates they are not.

7. Conclusions

In 1930s, Fisher (1930, 1935) introduced the concept of fiducial inference and described
a method of obtaining fiducial distributions for parameters by inverting hypothesis tests.
In general, fiducial distribution for a parameter is not unique and a few different meth-
ods are available to find a fiducial distribution. In this article, we used Hannig’s (2013)
generalized fiducial approach to find a fiducial distribution for M, the number of defect-
ive items in a hypergeometric distribution. We also obtained another fiducial distribu-
tion for M/N on the basis of the approximate distribution of Z-score statistic. The
proposed method of generating fiducial samples on M or the Z-fiducial samples is con-
ceptually simple and is easy to use to find CIs for various problem involving propor-
tions in finite populations. We showed that the generalized fiducial approach and the Z
fiducial approach produced results that are comparable to or better than the results
based on other methods for some problems. Our extensive coverage studies for all the
problems considered show that the fiducial solutions and the approximate Z fiducial
solutions are satisfactory when the sample sizes are not too small.
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Appendix

The following R code can be used to generate a sample from the fiducial distribution of Mx

described in Section 2.

R code
Mx¼c()
sq seq(x,x Nx-nx,1) # support of the fiducial distribu-
tion of Mx
ps0 phyper(x-1, sq, Nx-sq, nx); ps1 phyper(x, sq, Nx-sq,
nx)
u runif(N) # N number of uniform variates
for(j in 1:N){
ind which(ps0 u[j] & u[j] ps1)
if(length(ind) 1){
Mx[j] sq[ind]}
else{
Mx[j] sample(sq[ind],1)}}

The sample Mx½1�, :::,Mx½N� is a simulated sample from the fiducial distribution of Mx.
Fiducial inference on Mx can be obtained using the fiducial sample.
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