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Abstract. We show that starting from finitely many points in Rm, and succes-
sively applying “pinches” on them, it is possible to arrive at any of the config-
urations that result from applying, to the original points, a homothety of factor
0 6 s 6 1 and center the centroid of the points. Here, a “pinch” consists in moving
two points towards their common centroid. For three points, four pinches suffice.
In general, the number of pinches is independent of the original configuration and
of m.

1. The problem

We start with a finite collection of points P1, P2, . . . , Pn in Rm. We allow ourselves
one specific “move” that alters their configuration: we can take any two points and
scale them towards their common centroid by any factor in [0, 1]. The goal is to scale
the whole collection of points by a prescribed factor 0 6 s 6 1 towards their centroid
in a finite number of moves.

The points have weights associated to them, which are used to determine the
centroid of any pair of points, and of the whole collection. Let wk > 0 be the weight
of Pk for k = 1, . . . , n. Applying the basic move of the problem to points Pi and Pj ,
with weights wi and wj , results in P ′i and P ′j , where P ′i and P ′j are obtained from Pi

and Pj by a homothety that has their centroid (wiPi + wjPj)/(wi + wj) as its center
and any number in [0, 1] as its scaling factor. We refer to this operation as a pinch.
The problem formulated above asks whether the configuration obtained by applying a
homothety to all the points, with a factor 0 6 s 6 1 and with center the centroid of the
points, is attainable via a finite series of pinches. We solve this problem affirmatively
in the coming sections (Theorem 9). The special case of the homothety with factor
s = 0 (that collapses all points to the centroid) has been remarked upon before,
assuming also equal weights; see [1, Theorem 1.2]. But allowing for an arbitrary
0 6 s 6 1, and the introduction of weights, do complicate matters considerably.

It is difficult to describe exactly which configurations of points are attainable from
a given initial configuration by repeated applications of pinches. It follows from
our main result, however, that the attainable configurations form a star shaped set
(Corollary 10). Since pinches do not change neither the centroid of the points, nor
the affine space that they generate, the attainable configurations must have the same
centroid as the initial one, and be contained in its affine span, but these are only two
of many limitations. In the case that the points have equal weights, the attainable
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configurations are majorized by the initial one, in the sense of [2]. This is, however,
not sufficient. We elaborate on the relation of the problem to majorization, and to
the closely related notion of chain majorization, in Section 3.

2. Formalization of the problem

Let Pn,m denote the vector space of n-tuples of points (P1, P2, . . . , Pn), with Pk ∈
Rm for all k. We write the n-tuple (P1, P2, . . . , Pn) as an n × m matrix with rows
P1, P2, . . . , Pn. Geometrically, we think of elements in Pn,m as collections of n labeled
points in Rm.

Let us fix weights w1, w2, . . . , wn, with wk > 0 for all k. We regard the k-th point
Pk of an n-tuple (P1, P2, . . . , Pn) in Pn,m as having weight wk, for all k.

Given two distinct indices 1 6 i, j 6 n and a real number s, we call a 2-homothety
with parameter s acting on Pi and Pj the linear transformation

(P1, P2, . . . , Pn) 7→ (P ′1, P
′
2, . . . , P

′
n),

from Pn,m to itself such that

P ′k =

{
sPk + (1− s)

wiPi+wjPj

wi+wj
if k = i, j,

Pk otherwise.

This transformation applies a homothety to Pi and Pj , with scaling factor s and center
the centroid of Pi and Pj , while leaving the other points unchanged. We denote by
TPiPj (s) the 2-homothety on Pi and Pj with scaling factor s. If 0 6 s 6 1, we call
such a 2-homothety a pinch.

We call an n-homothety, or total homothety, the transformation on Pn,m that
applies a homothety to all the points of an n-tuple with center the centroid of these
points. More specifically, the total homothety on Pn,m with scaling factor s is the
linear transformation

(P1, P2, . . . , Pn) 7→ (P ′1, P
′
2, . . . , P

′
n),

such that

P ′k = sPk + (1− s)
w1P1 + w2P2 + · · ·+ wnPn

w1 + w2 + · · ·+ wn
,

for all k. We denote the total homothety with factor s on Pn,m by H(s).
The problem from the introduction can now be restated as follows:

Problem 1. Is the total homothety with scaling factor 0 6 s 6 1 on the vector space
Pn,m expressible as a composition of pinches, i.e., of 2-homotheties with parameters
in [0, 1]?

Let i, j be distinct indices between 1 and n. Let Ei,j denote the n×n row stochastic
matrix whose entries in the (i, i) and (j, i) positions equal wi

wi+wj
, whose entries in the

(i, j), and (j, j) positions equal to
wj

wi+wj
, and otherwise whose off diagonal entries are
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0 and diagonal entries are 1. For example, if n = 4, i = 1, and j = 2, then

E1,2 =


w1

w1+w2

w2
w1+w2

0 0

w1
w1+w2

w2
w1+w2

0 0

0 0 1 0

0 0 0 1

 .

Now let s ∈ R and define

T i,j
s = sIn + (1− s)Ei,j ,

where In is the n × n identity matrix. Let P = (P1, . . . , Pn) be an n-tuple in Pn,m.

A straightfoward calculation then shows that T i,j
s P is the result of applying the 2-

homothety on Pi, Pj to the n-tuple P , i.e,

TPiPj (s)(P ) = T i,j
s P.

If 0 6 s 6 1, then we call T i,j
s a pinching matrix. (Note: This differs from the

terminology found in [2] and in other instances in the literature, where pinching
matrices have parameter −1 6 s 6 1.)

Let E be the n × n matrix whose (i, j) entry is equal to
wj

w for all 1 6 i, j 6 n,
where w =

∑n
k=1 wk. Now let s ∈ R and define

Hs = sIn + (1− s)E.

Again, a striaghtforward calculation shows that HsP is the result of applying the
total homothety with parameter s on P , i.e., H(s)(P ) = HsP .

Problem 1 can be restated as asking whether for any P ∈ Pn,m and 0 6 s 6 1 there
exist n× n pinching matrices T1, . . . , TN such that

TNTN−1 · · ·T1P = HsP.

If we let m = n, and we choose our n-tuple of points P ∈ Pn,n so that P = In, then
we are asking to show that

TNTN−1 · · ·T1 = Hs.

Clearly, proving this formula is equivalent to solving the original problem for all n and
m. Consequently, we can reformulate the problem as asking whether the matrices of
the form Hs, with 0 6 s 6 1, are expressible as products of pinching matrices.

3. Relation to multivariate majorization.

Let us briefly discuss the problem of characterizing which n-tuples in Pn,m are at-
tainable from a starting n-tuple via pinches. For simplicity, we assume equal weights,
i.e., w1 = w2 = · · · = wn.

Let P and Q be in Pn,m. In light of our discussion in Section 2, Q is attainable
from P via pinches if and only if

Q = (TNTN−1 · · ·T1)P,

where the Tis are n × n pinching matrices. From the equal weights assumption, we

also have that every pinching matrix T i,j
s , with 0 6 s 6 1, is doubly stochastic, i.e., it
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has nonnegative entries and both its rows and columns add up to 1. Since the product
of doubly stochastic matrices is again doubly stochastic, it follows that a necessary
condition for Q to be attainable from P via pinches is that Q = DP , where D is an
n × n doubly stochastic matrix. The relation Q = DP for a doubly stochastic D is
called multivariate majorization (see [2, Chapter 15]).

It is in general not sufficient that P majorizes Q for Q to be attainable from P
via pinches. Let us consider n-tuples in Pn,1, i.e., vectors in Rn. In this case the
situation is well understood. A classical result in the theory of majorization states
that a vector P ∈ Rn majorizes another one Q ∈ Rn if and only if Q is attainable
from P via 2-homotheties with parameter −1 6 s 6 1 (these are also called tranfers
or T-transforms in the literature; see [2, Chapter 2, Lemma B.1]). It is not difficult
to deduce from this that if Q is majorized by P , then either Q or a permutation of
the points in Q is attainable from P through pinches (2-homotheties with parameter
0 6 s 6 1). The question of exactly which vectors Q ∈ Rn are attainable via pinches
from a given P is more nuanced, but has also been solved by Zylka in [3].

For m > 1, the limitations on which Q majorized by P can be attained via pinches
are even stricter, and no general characterization is known. We illustrate this with a
well known example (see [2, Chapter 15, Example A.3]). Consider a nondegenerate
triangle P = (A,B,C) in P3,2 (i.e., three non-collinear points on the plane) and the
triangle formed by the midpoints of its sides Q = (A′, B′, C ′). See Figure 1. In this
case, Q is majorized by P , but any non-trivial pinch on P produces a triangle that
does not contain Q. Hence, neither Q nor a permutation of its points is attainable
from P via pinches.

Figure 1. On the left: the triangle P = (A,B,C) and, in gray, the
triangle Q = (A′, B′, C ′) formed by the midpoints of its sides. On the
right: the triangle resulting from a pinch performed on one of P ’s
sides.

The relation “Q is attainable from P via 2-homotheties with parameter in [−1, 1]”,
termed chain majorization in [2], is also in general difficult to understand. Zylka’s
above mentioned result in [3] shows that, already for m = 1, chain majorization is a
strictly weaker relation than the relation that occupies us here, i.e, attainability via
pinches.
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4. The case of three points.

In this section, we solve Problem 1 for three points in Rm.
Let us denote the three points on which we operate by A,B,C, and their weights

by wA, wB, wC , respectively. We denote a generic triple in the vector space P3,m by
(A,B,C). Accordingly, we denote by TAB(x), TBC(x) and TAC(x) the 2-homotheties
(with parameter x) between these points.

Let x ∈ R. Define numbers s, y, z ∈ R by the formulas

s =
x(wx− wC)

w − wCx
, y =

(wAx + wB)(wx− wC)

(wBx + wA)(w − wCx)
, z =

(wBx + wA)(wx− wC)

(wAx + wB)(w − wCx)
.(4.1)

Here, w = wA + wB + wC and we assume that x /∈ { w
wC

,−wB
wA

,−wA
wB
}.

Lemma 2. We have that

H(s) = TBC(z)TAB(x)TAC(y)TAB(x),

where the left hand side is the total homothety on P3,m, the right hand side is a product
of 2-homotheties in P3,m, and s, y, and z are expressed in terms of x according to
the formulas (4.1).

Proof. As discussed in Section 2, we can represent 2-homotheties and total homoth-
eties by matrix multiplications. The lemma then boils down to proving the identity

(4.2) Hs = TBC
z TAB

x TAC
y TAB

x ,

where TAB
x , TAC

y , TBC
z , and Hs are the matrices associated to TAB(x), TAC(y),

TBC(z), and H(s), respectively. We have that

TAB
x = xI3 + (1− x)EAB =


wBx+wA
wA+wB

wB(1−x)
wA+wB

0

wB(1−x)
wA+wB

wAx+wB
wA+wB

0

0 0 1

 ,

and similarly

TAC
y =


wCy+wA
wA+wC

0 wC(1−y)
wA+wC

0 1 0

wC(1−y)
wA+wC

0 wAy+wC
wA+wC

 , TBC
z =


1 0 0

0 wCz+wB
wB+wC

wC(1−z)
wB+wC

0 wC(1−z)
wB+wC

wBz+wC
wB+wC

 ,

Hs = sI3 + (1− s)


wA
w

wB
w

wC
w

wA
w

wB
w

wC
w

wA
w

wB
w

wC
w

 .

Checking (4.2) is a straightforward, though lengthy calculation that can be carried
out using a symbolic calculations software (we used Python with SymPy). �
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Lemma 3. Let 0 6 s 6 1. There then exists a unique wC
w 6 x 6 1 solving the

equation

s =
x(wx− wC)

w − wCx
.

Moreover, in this case the numbers y and z given by the formulas (4.1) end up in the
interval [0, 1].

Proof. Let us regard s, y, z as functions of x through the formulas (4.1). For x = wC
w

we have s, y, z = 0, and for x = 1 we have s, y, z = 1. To complete the proof of the
lemma, it will suffice to show that s, y, z are strictly increasing functions of x on the
interval wC

w < x < 1. This can be done by taking logarithmic derivatives of their
formulas with respect to x, and checking that these are greater than zero.

s′

s
=

1

x
+

w

wx− wC
+

wC

w − wCx
,

y′

y
=

wA

wAx + wB
+

w

wx− wC
+

wC

w − wCx
− wB

wBx + wA
.

We omit the logarithmic derivative of z, as the cases of z and y are the same by

symmetry. It is clear from the above formula that s′

s > 0 for wC
w < x < 1. For y′

y we

notice first that w
wx−wC

> wB
wBx+wA

, from which we again deduce that y′

y > 0. �

Theorem 4. For every 0 6 s 6 1, the total homothety H(s) on P3,m is a product of
four pinches.

Proof. By Lemma 2, H(s) is a product of four 2-homotheties, which by Lemma 3 are
pinches. �

Let us explicitly describe a sequence of steps that solve the problem from the

introduction. Let 0 6 s 6 1. Let x be the unique solution of s = x(wx−wC)
w−wCx such that

wC
w 6 x 6 1. To construct the total homothety on A,B,C with parameter s, we may

proceed as follows:

(1) pinch A and B by a factor of x,
(2) pinch A and C by a factor of

y =
wAx + wB

wBx + wA
· s
x
,

(3) pinch A and B by a factor of x again,
(4) pinch B and C by a factor of

z =
wBx + wA

wAx + wB
· s
x
.

As demonstrated in Lemma 3, these steps are indeed pinches, i.e., the scaling factors
x, y, z are all in the interval [0, 1]. Further, by Lemma 2, after these four pinches,
A,B,C are situated in their target positions, i.e., the triangle A,B,C has been scaled
towards its centroid (determined using the weights wA, wB, wC) by a factor of s. The
process is illustrated in Figure 2.
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Figure 2. Four pinches applied to A,B,C to obtain a homothety
(with the center denoted by a hollow circle). The target triangle is
pictured in gray, and the original triangle and its medians are pictured
with gray, dashed lines. All points are given equal weights for simpli-
fication.

The following observation plays a crucial role in the solution of the general case:
Applying the first three steps of the procedure above has the effect that both A and
the centroid of B and C are already in their target positions, since the last step—a
pinch on B and C—does not change the centroid of B,C. Thus, these three steps
have the same effect on A and the centroid of B and C, call it M , as a pinch on A
and M with parameter s, where the weight of M is wB + wC .

Let us express this observation more formally. Denote an arbitrary pair in P2,m

by (A,M). Associate to the pairs in this space the weights (wA, wM ), where wM =
wA + wB. Denote the 2-homothety on P2,m with parameter s by TAM (s).

Define Φ: P3,m → P2,m as

Φ(A,B,C) =
(
A,

wB

wM
B +

wC

wM
C
)
.

That is, Φ sends a triple of points (A,B,C) to the pair consisting of A and the
centroid of B and C. Observe that, according to the way that we have defined the
weights in P2,m, the centroids of (A,B,C) and Φ(A,B,C) agree.

Let K : P3,m → P3,m denote the transformation defined by

(4.3) K = TAB(x)TAC(y)TAB(x),
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where s, x, y are related by the formulas (4.1). That is, K consists of the first three
2-homotheties in the formula from Lemma 2.

Lemma 5. We have that TAM (s)Φ = ΦK.

Proof. By Lemma 2, we have that H(s) = TBC(z)K. Composing both sides by Φ we
get ΦH(s) = ΦTBCK. We readily verify that ΦH(s) = TAM (s)Φ. On the other hand,
ΦTBC(z) = Φ, since a 2-homothety between B and C does not change their centroid.
Hence, TAM (s)Φ = ΦK, as desired. �

Yet another observation that we will need below is contained in the following
lemma:

Lemma 6. Let (A0, B0, C0) ∈ P3,m and let (A1, B1, C1) = K(A0, B0, C0), where K
is the map defined in (4.3). Then,

B1 − C1 =
x(wAx + wB)

wBx + wA
(B0 − C0).

Proof. Let us first assume that x > wC
w , so that z > 0. Set

(A2, B2, C2) = H(s)(A0, B0, C0).

Then, B2 − C2 = s(B0 − C0). On the other hand, since

TBC(z)(A1, B1, C1) = (A2, B2, C2),

we have that B2 − C2 = z(B1 − C1). Hence,

B1 − C1 =
s

z
(B0 − C0) =

x(wAx + wB)

wBx + wA
(B0 − C0).

The case x = wC
w now follows by the continuity of B1 and C1 with respect to x. �

5. The general case.

In this section we solve Problem 1 from the introduction for the general case of n
points in Rm with weights w1, w2, . . . , wn. We first derive a formula that expresses
the total homothety on Pn,m as a product of 2-homotheties. Then, we address the
question of turning these 2-homotheties into pinches (i.e., with a scaling factor in the
range [0, 1]).

We will obtain the solution for n points recursively, starting with the solution for
three points, and working our way up to n points. Throughout this section we assume
that n > 3.

Let us introduce the function

(5.1) F (s, t) =
t(1− s) +

√
t2(1− s2) + 4s

2
,

where s > 0 and t > 0. Observe that x = F (s, t) is the unique positive solution of
the equation

s =
x(x− t)

1− tx
.

(Thus, the number x from Lemma 3 is simply x = F (s, wC
w ).)
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Let us now produce recursive formulas for numbers

xk,i, with 1 6 i < k 6 n− 1,

yk,i, with 1 6 i < k 6 n,

as follows: Define y2,1 = s, and then letting k range through 2, 3, . . . , n− 1, define

(5.2)

xk,i = F
(
yk,i,

wk+1 + · · ·+ wn

wi + wk + wk+1 + · · ·+ wn

)
yk+1,i =

wixk,i + wk

wkxk,i + wi
·
yk,i
xk,i

 for i = 1, 2 . . . , k − 1,

yk+1,k =
s

k−1∏
i=1

xk,i ·
wixk,i+wk

wkxk,i+wi

.

Theorem 7. Let 0 6 s 6 1. The total homothety H(s) on Pn,m is equal to the
product of (n − 1)2 2-homotheties obtained as follows: For each i = 1, 2, . . . , n − 2,
form the product

Si =
( n−1∏

j=i+1

TPn+i−jPi(xn+i−j,i)
)
· TPnPi(yn,i) ·

( n−1∏
j=i+1

TPjPi(xj,i)
)
,

and set Sn−1 = TPnPn−1(yn,n−1). Then

H(s) = Sn−1Sn−2 · · ·S1.

The above formula for H(s) can be understood by arranging the numbers xk,i, for
1 6 i < k 6 n− 1, and yi,n, for i = 1, 2 . . . , n− 1, in a triangular array as follows:

P1 P2 . . . Pn−2 Pn−1

P2 x2,1

P3 x3,1 x3,2

...
...

...
...

Pn−1 xn−1,1 . . . . . . xn−1,n−2

Pn yn,1 . . . . . . yn,n−2 yn,n−1

The parameter at the crossing of any two points is the parameter of their 2-homothety.
Furthermore, starting with the first column, by scanning each column down and back
up, we add to the product each 2-homothety, where the factor xk,i is used on a 2-
homothety between Pk and Pi, and similarly, the factor yn,i is used on a 2-homothety
between Pn and Pi. Moreover, the first column lists the factors used in S1, the
second column the factors in S2, and so on. Theorem 7 states that the result of this
composition of 2-homotheties agrees with the total homothety H(s).

Proof of Theorem 7. We proceed by induction on n. For n = 3, the formula is the
same as the one obtained in Lemma 2. Let us assume, then, that n > 3, and that
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the formula is true in the space of (n − 1)-tuples Pn−1,m, for any collection of n − 1
weights associated to this space.

Fix a collection of n weights (w1, w2, . . . , wn), and consider the space of n-tuples
Pn,m with these weights associated to them.

To the space of (n− 1)-tuples Pn−1,m, let us associate the weights

w1, w2, . . . , wn−2, wM ,

where wM = wn−1 + wn. Let us denote a generic (n − 1)-tuple in Pn−1,m by
(P1, P2, . . . , Pn−2,M). Finally, let Hn−1(s) denote the total homothety in this space.
By the induction hypothesis, Hn−1(s) is a product of (n− 2)2 2-homotheties. Exam-
ination of the recursive formulas for the factors of these 2-homotheties reveals that
they are obtained as follows: We first form the triangular array

P1 P2 . . . Pn−3 Pn−2

P2 x2,1

P3 x3,1 x3,2

...
...

...
...

Pn−2 xn−2,1 . . . . . . xn−2,n−3

Pn−1 yn−1,1 . . . . . . yn−1,n−3 yn−1,n−2,

where the xk,is and yk,is are the same factors as before in the recursive formulas (5.2).
Observe, however, that the last row consists of the factors yn−1,i, which are defined
through (5.2), but which do not appear in the formula that we wish to prove for the
total homothety on Pn,m. Now, define

S′i =
( n−2∏

j=i+1

TPn+i−jPi(xn+i−j,i)
)
· TMPi(yn−1,i) ·

( n−2∏
j=i+1

TPjPi(xj,i)
)

for i = 1, 2, . . . , n − 3, and S′n−2 = TMPn−2(yn−1,n−2). The parameters in the 2-
homotheties of the product S′i are obtained by scanning down and back up along the
i-th column of the triangular array above. Then, by the induction hypothesis,

Hn−1(s) = S′n−2 · · ·S′1.
We now construct a product of 2-homotheties in Pn,m as follows: Scanning through

the array for Hn−1(s), the 2-homotheties between points Pi and Pj with i, j 6 n− 2
are left unchanged, although now taken in the space Pn,m. Each factor TMPi(yn−1,i),
on the other hand, is replaced with the product of the first three 2-homotheties in
the formula (2) from the solution of the n = 3 case, applied to the triangle A = Pi,
B = Pn−1, C = Pn, and for the total homothety on that triangle with factor yn−1,i.
By the way that we have defined the recursive formulas (5.2), this product is

(5.3) Ki = TPn−1Pi(xn−1,i)TPnPi(yn,i)TPn−1Pi(xn−1,i).

The substitution of TMPi(yn−1,i) by Ki in S′i results in the product Si from the
statement of the theorem. Thus, the new product of 2-homotheties obtained by this
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procedure consists precisely of the first (n − 1)2 − 1 terms of the formula for H(s)
that we wish to prove. Let us call this product K. That is, K = Sn−2Sn−1 · · ·S1,
where Si is as in the statement of the theorem.

Fix an n-tuple P (0) = (P
(0)
1 , P

(0)
2 , . . . , P

(0)
n ) in Pn,m. Let us examine the effect of

applying K to P (0). Set P (1) = K(P (0)) and P (2) = H(s)(P (0)). We claim that

(1) P
(1)
i = P

(2)
i for i = 1, 2 . . . , n− 2, and

(2) the centroids of P
(1)
n−1, P

(1)
n and P

(2)
n−1, P

(2)
n agree.

Indeed, by Lemma 5, after substituting TPiM (yn−1,i) by Ki we indirectly apply a
2-homothety with parameter yn−1,i on Pi and the centroid of Pn−1 and Pn. Thus, the
product of 2-homotheties that we have built has the same effect on the n − 1-tuple

(P
(0)
1 , P

(0)
2 , . . . , P

(0)
n−2,M

(0)) as directly applying the solution of the n−1 case to these
points. More formally, let Φ: Pn,m → Pn−1,m denote the transformation such that

(P1, . . . , Pn)
Φ7→ (P1, . . . , Pn−2,

wn−1Pn−1 + wnPn

wn−1 + wn
).

Then, by Lemma 5,

TPiM (yn−1,i)Φ = ΦTPjPn−1(xn−1,i)TPiPn(yn,i)TPiPn−1(xn−1,i),

for all i = 1, . . . , n − 2. From this we deduce that ΦK = Hn−1(s)Φ. The claims (1)
and (2) made above readily follow.

Observe now that the transformation Ki, defined as in (5.3), has the effect of
multiplying Pn − Pn−1 by the scalar

xn,i ·
wixn,i + wn

wnxn,i + wi

(by Lemma 6). It follows that

P (1)
n − P

(1)
n−1 = z(P (0)

n − P
(0)
n−1),

where

z =

n−2∏
i=1

xn,i
wixn,i + wn

wnxn,i + wi
.

From the recursive formulas (5.2) that define the xk,is and yk,is, we readily see that

yn,n−1 = s
z . Thus, after applying TPnPn−1(yn,n−1) to P (1), we obtain an n-tuple

(P
(2)
1 , . . . , P

(2)
n−2, P

′
n−1, P

′
n)

such that P ′n−1 − P ′n = P
(2)
n−1 − P

(2)
n , and the centroids of P ′n−1, P

′
n and P

(2)
n−1, P

(2)
n

agree. This readily implies that P ′n−1 = P
(2)
n−1 and P ′n = P

(2)
n . Hence,

TPnPn−1(yn,n−1)K(P (0)) = P (2) = H(s)(P (0)).

Since P (0) can be varied arbitrarily, this shows that TPnPn−1(yn,n−1)K = H(s), which
completes the induction. �
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It remains to be shown that the 2-homotheties in Theorem 7 are in fact all pinches.
We conjecture that this is indeed always true, although a proof has elluded us. How-
ever, for a complete solution of Problem 1, the following theorem is sufficient:

Theorem 8. There exists an ε > 0 such that for s ∈ [0, ε] and s ∈ [1 − ε, 1], the
factors xk,i and yn,i in the formula for H(s) of Theorem 7 are all in the interval
[0, 1]. Consequently, for this range of values of s the total homothety H(s) on Pn,m
is a product of (n− 1)2 pinches.

Proof. Since F (s, t) > 0 for s, t > 0, it is clear from (5.2) that the xk,is and yk,is are
all non-negative for s ∈ [0, 1]. Next, we focus on bounding these numbers by 1 from
above.

Let us first deal with s close to 0. We regard the xk,is and yk,is as functions of
s. As such, they are clearly continuous. Notice then that setting s = 0 in (5.2), and
using that F (0, t) = t, we obtain at once that xk,i = tk,i and yk,i = 0 for all k, i. Since
tk,i < 1, it follows from the continuity of the xk,is and yk,is with respect to s that, for
s close enough to 0, they are all less than 1.

Next, let us deal with s close to 1. We continue to regard the xk,is and yk,is as
functions of s. Setting s = 1 in (5.2), and using that F (1, t) = 1, we obtain at once
that xk,i(1) = yk,i(1) = 1 for all k, i. To fulfill our goal, it is sufficient to show that
d
dsxk,i|s=1 > 0 and d

dsyk,i|s=1 > 0. We prove this next.
Set

ak,i =
d

ds
xk,i

∣∣∣
s=1

, for 1 6 i < k 6 n− 1,

bk,i =
d

ds
yk,i

∣∣∣
s=1

, for 1 6 i < k 6 n.

We shall derive recursive formulas for these numbers.
From the initial condition y2,1 = s we deduce at once that

(5.4) b2,1 =
d

ds
y2,1

∣∣∣
s=1

= 1.

Recall that
xk,i = F (yk,i, tk,i).

where

tk,i =
wk+1 + . . . + wn

wi + wk + wk+1 + . . . + wn
.

Taking the derivative of both sides with respect to s, we get

d

ds
xk,i =

d

ds
F (yk,i, tk,i) ·

d

ds
yk,i.

Setting s = 1, and using that d
dsF (s, t)|s=1 = 1−t

2 , we deduce that

(5.5) ak,i =
(1− tk,i)

2
· bk,i,

for all 1 6 i < k 6 n− 1.
Recall that

yk+1,i =
wixk,i + wk

wi + wkxk,i
·
yk,i
xk,i

.
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Taking the logarithmic derivative on both sides we get

d
dsyk+1,i

yk+1,i
=

wi
d
dsxk,i

wixk,i + wk
+

d
dsyk,i

yk,i
−

wk
d
dsxk,i

wixk,i + wk
−

d
dsxk,i

xk,i
.

Setting s = 1, we get

bk+1,i =
wiak,i
wi + wk

+ bk,i −
wkak,i
wi + wk

− ak,i.

Let us use that ak,i =
(1−tk,i)

2 · bk,i to express the right hand side in terms of bk,i and
the weights only. After a quick algebraic manipulation, we get

(5.6) bk+1,i =
wi + wk+1 + . . . + wn

wi + wk + . . . + wn
· bk,i.

Finally, recall that

yk+1,k =
s

k−1∏
i=1

xk,i ·
wixk,i+wk

wi+wkxk,i

.

Taking the logarithmic derivative, we get

d
dsyk+1,k

yk+1,k
=

1

s
−

k−1∑
i=1

( d
dsxk,i

xk,i
+

wi
d
dsxk,i

wixk,i + wk
−

wk
d
dsxk,i

wixk,i + wk

)
Now, setting s = 1, we get

bk+1,k = 1−
k−1∑
i=1

(
ak,i +

wiak,i
wi + wk

−
wkak,i
wi + wk

)
.

Let us use that ak,i =
(1−tk,i)

2 · bk,i on the right hand side. After a quick algebraic
manipulation, we get

(5.7) bk+1,k = 1−
k−1∑
i=1

wi

wi + wk + . . . + wn
bk,i.

The equations (5.4), (5.6), and (5.7) define the bk,is recursively, while (5.5) expresses
ak,i in terms of bk,i. Using the recursive formulas for the bk,is, we can derive by a
straightforward proof by induction that

bk,i =
wi + wk + wk+1 + . . . + wn

w
,

for all 1 6 i < k 6 n. Then, keeping in mind the definition of the tk,is, (5.5) yields
that

ak,i =
wi + wk

2w
.

Since the weights are positive, it is evident that ak,i > 0 and bk,i > 0 for all k, i, as
desired. �

Theorem 9. Let n ∈ N. There exists N ∈ N such that for all 0 ≤ s ≤ 1 and all
m ∈ N the total homothety H(s) on Pn,m (with arbitrary weights associated to it) is
a product of at most N pinches.
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Proof. Let 0 < ε < 1 be as in Theorem 8. Choose M ∈ N large enough so that

ε
1
M > 1 − ε. Now, if ε 6 s 6 1 then 1 − ε < s

1
M , and so H(s

1
M ) is expressible as

a product of (n − 1)2 pinches, by the previous theorem. Since H(s) = (H(s
1
M ))M ,

it follows that H(s) is expressible as a product of M(n − 1)2 pinches. On the other
hand, if 0 6 s < ε then H(s) is expressible as product of (n − 1)2 pinches, by the
previous theorem. Therefore, N = M(n− 1)2 is as required. �

Corollary 10. The set of all Q ∈ Pn,m attainable from a given P ∈ Pn,m by repeated
applications of pinches is star shaped, with center the constant n-tuple (G, . . . , G),
where G is the centroid of P .

Proof. Since Q is attainable from P through pinches, it has the same centroid as P .
Hence H(0)Q = (G, . . . , G). Thus, for all 0 6 s 6 1,

H(s)Q = sQ + (1− s)(G, . . . , G).

By Theorem 9, the left hand side is attainable from Q, whence also from P , through
repeated applications of pinches. �

We do not know the answer to the following question, though, as mentioned above,
we believe it to be affirmative:

Question 11. Given any n > 4 and any 0 6 s 6 1, are the numbers xk,i and yk,i
defined in (5.2) all in the interval [0, 1]?
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