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Abstract. In this paper we revisit once again, see [ShSu], a family of expanding circle endomorphisms.
We consider a family {Bθ} of Blaschke products acting on the unit circle, T, in the complex plane obtained
by composing a given Blashke product B with the rotations about zero given by mulitplication by θ ∈ T.
While the initial map B may have a fixed sink on T there is always an open set of θ for which Bθ is an
expanding map. We prove a lower bound for the average measure theoretic entropy of this family of maps
in terms of

R
ln|B′(z)|dz .

1. Introduction

Several papers have suggested the possibility of giving lower bounds for the average entropy or Lyapunov
exponents in a rich enough family of dynamical systems [BuPuShWi], [LSSW]. A particular consequence
would establish the existence of positive entropy for a positive measure set of parameters in terms of com-
paratively easily computable quantities. A linear algebra analogue is proven in [DeSh]. In this paper we
accomplish the task for families of (finite) Blaschke products. In these families it is fairly easy to establish
the existence of positive measure sets of parameters which define expanding maps of the circle. Here we
give a lower bound for the average entropy of these expanding maps with respect to the natural invariant
measures which are absolutely continuous with respect to Lebesgue measure.

A (finite) Blaschke product is a map of the form

B(z) = θ0

n∏

i=1

z − ai

1− zai

where n ≥ 2, ai ∈ C, |ai| < 1 , i = 1 . . . n and θ0 ∈ C with |θ0| = 1. B is a rational mapping of C, it is an
analytic function in a neighborhood of the the unit disc D, and B maps the unit circle T to itself. In this
paper we consider the family of Blaschke products,

{Bθ}{θ∈T} = {θB}{θ∈T}.
Theorem 1.1. Given a family of Blaschke products {Bθ}{θ∈T}, one of the next two options holds for

any θ ∈ T :
(1) Bθ is an expanding map, i.e.: there are n = n(θ), and λ = λ(θ) > 1 such that

|Bn
θ
′(x)| > λ;

(2) Bθ has a unique attracting or indifferent fixed point in T.
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Moreover, the set of θ ∈ T satisfying the first option is a nonempty open set.

In the next theorem, we relate the previous options to the statistical behaviour of Bθ. Let λ be Lebesgue
measure on T normalized to be a probability measure, λ(T) = 1.

Theorem 1.2. Given a family of Blaschke products {Bθ}{θ∈T} follows that for all θ, the push forwards
of Lebesgue measure Bn

θ?(λ), converge to a measure µθ which is:
(1) absolutely continuous with respect to Lebesgue if Bθ satisfies condition 1 of theorem 1.1, or
(2) a Dirac delta measure supported on an attracting or indifferent fixed point of Bθ on T.

As a consequences of theorem 1.2 it follows that for any θ we can define the metric entropy, hθ, of Bθ

with respect to µθ and it satisfies

hθ =
∫

T
ln|B′(z)|dµθ

when it is positive.
In the next theorem we give a lower bound for the average measure theoretic entropy of this family of

maps in terms of
∫

ln|B′(z)|dz.

Theorem 1.3. Given a family of Blaschke products {Bθ}{θ∈T} it follows that:
A) ∫

hθdθ ≥
∫

T
ln|B′(z)|dz

with equality if and only if |B′(z)| ≥ 1 for all z ∈ T.
B) More precisely, ∫

hθdθ =
∫

T
ln+|B′(z)|dz +

∫

T
|B′(z)|ln−|B′(z)|dz.

Here ln+ equals ln when it is positive and zero otherwise while ln− equals ln when it is negative and
zero otherwise. When hθ is positive it equals the Lyapunov exponent of Bθ with respect to µθ; i.e.: for
almost every point with respect to Lebesgue measure

hθ = lim
n→+∞

1
n

ln|Bn′(z)|.
So we could equally well state our results with respect to Lyapunov exponents.

Most of the proof of the previous theorems could be assembled from results already in the literature.
We give an alternate largely self contained proof in the next sections. The proof consists of three parts:

1) For all θ, theorem 1.1 or 1.2 holds.
2)

∫
Bn

θ?(λ)dθ = λ for all n.
3) Let φ : T→ R be continuous.

Then
∫
T φdλ =

∫
(
∫
T φdµθ(z))dθ.

The proof is completed by applying 3) to ln|B′(z)| applying 1) and 2) and changing variables for those
θ for which µθ is supported on a contracting or indifferent fixed point. This proves B) and A) follows. The
proof is carried out in detail in the next sections.

2. The fixed points of B.

For any Blaschke product B as above the equation z = B(z) has at most n + 1 zeros in the complex
plane, C. So B : C→ C has at most n + 1 fixed points in C. The map B : T → T has degree n. By the
Lefschetz formula B has -(n-1) fixed points counted with index on T. Thus B has at least (n-1) expanding
fixed points on T and at most (n+1) fixed points in all.
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Proposition 2.1. One of the following three mutually exclusive cases holds:
(a) B has all its fixed points on T. There is exactly one of them z0 that is a sink and the other n are

expanding.
(b) B has n− 1 fixed points on T, all expanding. It has one fixed point inside the disc which is a sink,

and one outside. These two fixed points are related by the formula z0 → 1
z0

(hence, they lie on the same ray
passing through the origin).

(c) B has all its fixed points on T. There is one that is an indifferent saddle node fixed point, B(z0) = z0

and B′(z0) = 1.
In all three cases there is an open set of points in the disc which tend to z0 under iteration of B.

Proof. If B′(z) 6= 1 for all fixed points of B on the circle, by the Lefschetz formula we can have n
expanding fixed points and one sink on the circle or n − 1 expanding points on the circle. In the first case
we are in situation (a). In the second case, since B(z)B(z−1) = 1 for all z ∈ C, we must be in case (b).
The fact that the fixed point in the interior of the disc is attracting follows from direct calculation or the
Schwarz lemma. Case (c) represents the remaining cases.

¤

Iterates of B. The sequence B(n)(z) is uniformly bounded in the unit disc (i.e., it is a normal family).
Let z0 be the attracting or indifferent fixed point in Proposition 2.1. Observe that a sink or an indifferent
fixed point of a rational mapping of C always attracts an open set of points. Therefore there is an open set of
points in which {B(n)(z)}n converges uniformly to z0. Thus, by Vitali’s convergence Theorem the sequence
{B(n)(z)}n converges uniformly on compact sets of the open unit disc to z0. Thus Bn(z) → z0 for any z in
the open unit disc.

Incidentally, this proves that the fixed point z0 described in Proposition 2.1 is unique in the closed unit
disc as an attracting or indifferent fixed point.

B composed with rotations. We now consider the one parameter family of functions Bθ = θB. Our
main interest will be when θ goes around the circle, but we will also consider c taking values in the disc, D.

For every θ consider the set of fixed points of Bθ. As θ goes around the circle the fixed points of Bθ

will be in situations (a), (b) or (c) described before. Case (c) will happen at most a finite number of times.
For every θ ∈ T we define α(θ) as the unique sink of B if we are in situations (a) or (b). In case (c) α(θ) is
the unique indifferent fixed point of Bθ(but in fact this case is irrelevant for our ultimate discussion because
it is measure zero in the parameter). For all z0 ∈ T such that |B′(z0)| ≤ 1 there is one value of θ (namely
θ = z0/B(z0)), such that z0 is a fixed sink or indifferent point of Bθ. Thus, all these values belong to the
range of α. Finally, if |c| < 1 we define α(c) as the unique fixed point of Bc inside the unit disc.

Proposition 2.2. The function α is analytic in the open unit disc and continuous in the closed unit
disc.

Proof. By the implicit function theorem the attracting fixed points of Bθ vary analytically with θ in
the closed disc minus the finite set of θ for which Bθ has an indifferent fixed point in T, the values of which
provide a continuous extension of the function.

¤

The next corollary is an obvious extension of our discussion of iterates to Bc for |c| ∈ D

Corollary 2.3. Let z0 be inside the open unit disc and c in the closed disc. Then B
(n)
c (z0) converges

to α(c).
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3. Expanding maps and proof of theorem 1.1.

Proposition 3.1. If θ0 ∈ T and α(θ0) is in the open unit disc, then there is an n > 0 such that
|Bn′

θ0
(z)| > 1 for all z ∈ T. That is, Bθ0 is expanding.

Proof. Suppose z0 is a fixed point of Bθ0 inside the disc. Let Cr be a disk of radius r, r < 1 and
center 0 that contains z0. Since Bn

θ0
converges uniformly to z0 there is some n such that B

(n)
θ0

(Cr) ⊂ Cr.
This implies that θBn

θ0
has a fixed point in Cr for all θ ∈ T. This means that Bn

θ0
never has an attracting or

indifferent fixed point on the unit circle ; hence, the set {z ∈ T : |Bn′
θ0

(z)| ≤ 1} is empty. ¤

Observe that this finishes the first part of theorem 1.1. In fact, if the attracting fixed point of Bθ is in
the open unit disc then the map is expanding; if not, it has a unique fixed point in the circle which is either
attracting or an indifferent saddle-node point. Now we proceed to finish the proof of theorem 1.1.

Proof. By proposition 3.1 it is enough to show that that there exists θ0 such that α(θ0) is in the open
unit disc. Let us assume that there is x0 such that |B′(x0)| = 1 (otherwise, the thesis of the theorem holds
for every θ ∈ T). Therefore, there exists θ0 such that Bθ0(x0) = x0 and so x0 is an indifferent saddle-node.
This implies that there is ε0 > 0 and an open interval J0 in T containing x0 such that either for every
θ ∈ (θ0, θ0 + ε0) Bθ does not have a fixed point in J0 and for every θ ∈ (θ0− ε0, θ0) Bθ has a sink in J0, or for
every θ ∈ (θ0−ε0, θ0), Bθ does not have a fixed point in J0 and for every θ ∈ (θ0, θ0 +ε0) Bθ has a sink in J0.
Let us assume that the first option hold. To conclude the theorem, it is enough to show that there exists ε1
such that for every θ ∈ (θ0, θ0 + ε1) Bθ does not have a sink or an indifferent fixed point in the complement
of J0. If not, there is a sequence θn → θ0 such that Bθn has a sink or indifferent fixed point contained in Jc

0 .
But then so does Bθ0 which contradicts the uniqueness of the fixed point x0 among indifferent or attracting
fixed points of Bθ0

¤

4. Push forwards of Lebesgue measure. Proof of theorem 1.2 and 1.3.

If B has a fixed point z0 on the circle then the Dirac measure, µz0 , corresponding to that point is left
invariant by B. Given a point z0 in the interior of the unit disc we let µz0 denote the absolutely continuous
measure on the circle T defined in any of three equivalent ways:

• Let h : T→ C be continuous and h̃ its harmonic extension to the disc. Then
∫
T hdµz0 = h̃(z0).

• Let
∫
T hdµz0 =

∫
T hPz0dλ where Pz0 is the Poisson kernel and λ is Lebesgue measure.

• Let Az0 be a fractional linear transformation mapping 0 to z0. Then µz0 = Az0?(λ).

Proposition 4.1. Let B be a Blaschke product. Then B?(µz0) = µB(z0). Thus if B has a fixed point z0

inside the disc then the absolutely continuous measure given by µz0 is left invariant by B.

Proof. Let h : T → C be continuous and h̃ its harmonic extension to the disc. Then
∫
T hdB?(µz0) =∫

T h ◦ Bd(µz0)dλ = h̃ ◦B(z0). Since B is analytic h̃ ◦ B is harmonic, thus h̃ ◦B(z0) = h̃ ◦ B(z0) =∫
T(C)

hdµB(z0). ¤

For every c ∈ D we write νc = µα(c). Then |α(c)| < 1 if and only if νc is absolutely continuous with
respect to Lebesgue measure on T and for θ ∈ T follows that |α(θ)| < 1 if and only if Bθ is expanding. If
|α(θ)| = 1 then νθ is the Dirac measure supported on α(θ).

We are now ready to prove theorem 1.2:

Proof. By corollary 2.3 B
(n)
θ (0) converges to α(θ). It follows that Bn

θ?(λ) converges to the measure
νθ defined above. When Bθ is expanding then, νθ is absolutely continuous with respect to Lebesgue, and
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hθ =
∫
T ln|B′

θ(z)|dνθ =
∫
T ln|B′(z)|dνθ (see [L]). In the case that Bθ has an attracting or indifferent fixed

point, follows that the push forward converge to a Dirac measure supported on this point.
¤

Remark 4.2. Theorem 1.2 has a version for C2 dynamical systems which we could have used here with
a little work (see [M]).

Now we prove item 2) of the introduction.

Proposition 4.3.
∫
TBn

θ?(λ)dθ = λ for all n.

Proof. For any continuous function h : T → R ,
∫ ∫

T hdBn
θ?(λ)dθ =

∫
h̃(Bn

θ (0))dθ and since the map
c → Bn

c (0) is an analytic function of c in the unit disc and at c = 0, Bn
c (0) = 0 follows that

∫
h̃(Bn

θ (0))dθ =
h̃ ◦Bn(0) = h̃(0).

¤

Remark 4.4. Propositon 4.3 can also be proved also proven by Fourier series as was done in 4.11 and
4.12 of [LSSW].

Finally we finish the proof theorem 1.3.

Proposition 4.5. Let φ : T→ R be continuous. Then
∫
T φdλ =

∫
(
∫
T φdνθ(z))dθ.

Proof. By the Lebesgue dominated convergence theorem
∫

(
∫
T φdνθ(z))dθ = lim

∫
(
∫
T φdBn

θ?(λ))dθ =∫
T φdλ ¤

Now we proceed to give the proof of theorem 1.3.

Proof. We consider the set Tl = {θ ∈ T|νθis absolutely continuous} and Td = {θ ∈ T|νθis Dirac}.
Te = {θ ∈ T|Bθis expanding} and Ta = {z ∈ T||B′(z)| ≤ 1}.

∫

T
ln|B′(z)|dλ =

∫

Tl

ln|B′(z)|dνθdθ +
∫

Td

ln|B′(α(θ))|dθ =
∫

Te

hθdθ +
∫

Ta

(1− |B′(z)|)ln|B′(z)|dλ

where this last equality follows from the fact that dθ = (1− |B′(z)|)dλ. Finally, subtract the last term
on the right from the term on the left to prove the theorem.

¤

5. Remarks, Questions and Conclusions

We have given lower bound and exact integral estimates for the average entropy of a family of Blaschke
products with respect to the SRB measures determined by iterates of members of the family. In [LSSW]
similar estimates for a family of diffeomorphishms of the sphere were discussed, but nothing positive was
proven for deterministic products as were considered here. The success with Blaschke products suggests
other families of examples.

1) What about the family θf where f is an immersion of the circle of finite smoothness, or even a Cr

topological covering with a cubic singularity?
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2) What about similar estimates for the quadratic family of maps of the unit interval, normalized to
have the unit interval as the image? Is there a meaningful measure on the space of parameters
which is absolutely continuous with respect to Lebesgue and for which positive estimates of the
mean entropy can be relatively easily proven?

3) Let A1, A2 and A3 be fractional linear tranformations of the unit disc. Let (θ, ψ) ∈ T × T and
consider the family of diffeomorphism of the two torus T× T defined by

Bθ,ψ(w, z) = (θA1(w)A2(w)ψA3(z), θA2(w)ψA3(z)).

Then these diffeomorphisma are all isotopic to the usual linear Anosov diffeomorphism of the two
torus, which is usually written additively (in the Anosov case, A1(w) = A2(w) = w and A3(z) = z).
Can one estimate the average entropy of SRB measures associated to this family of diffeomorphism?
Is the set of (θ, ψ) for which Bθ,ψ is Anosov non-empty? Is the set of (θ, ψ) for which Bθ,ψ has an
SRB measure of positive entropy of positive measure?

4) Our theorem involves a probability measure µ on a space of parameters P of dynamical systems
of a manifold M with a probability measure ν. What can be said about the existence of measures
satisfying: For almost all p ∈ P , lim 1

n

∑
f j

p?(ν) converges to a measure νp and lim 1
n

∑ ∫
f j

p?(ν)dµ =
ν? or even as in item 2) of the introduction that

∫
fn

p?(ν)dµ = ν for all n?
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