Proof. Let $z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ be a vector of formal variables. For $v \in \mathbb{N}^{m}$ (the natural numbers start in zero) we write $z^{v}=z^{v_{1}} z^{v_{2}} \ldots z^{v_{m}}$. For a subset $S \subset \mathbb{N}^{m}$ we write $S(z)=\sum_{i \in S} z^{i}$ and call $S(z)$ the formal series of the set S. The proof rests on the following marvelous theorem.
Theorem 1. Let Φ be an $m \times m$ matrix with integer coefficients. Let us denote by S the set of solutions of the system $\Phi x=0$ such that $x \in \mathbb{N}^{m}$. The formal series $S(z)$ is a rational function. Its denominator has the form $\Pi_{i}\left(1-z^{\alpha_{i}}\right)$.

By some elementary analysis, we can extend the previous theorem to sets not necessarily described by a system of homogeneous diophantine equations. We can add to the system $\Phi x=0$ inequalities of the form $a x \leq 0$. The resulting system is transformed into a homogeneous system of equalities introducing slack variables. The generating function of the original set is obtained setting to 1 the formal variables corresponding to the slack variables. Thus, the formal series of the new set will still be rational. We can also add inequations to the system since $\{x \in S: a x \neq 0\}=S \backslash\{x \in S: a x=0\}$. Finally, by the principle of inclusions and exclusions, we can take unions of sets defined by homogeneous systems of equations, inequalities and inequations. Thus, if the set S is described by a combination of equalities, inequalities and inequations concatenated by $\vee \mathrm{s}$ (ORs) and $\wedge \mathrm{s}$ (ANDs) then $S(z)$ is rational.

Let us identify the $n \times n$ chessboard with the set $[0, n-1]^{2}$. Let $F=$ $\left\{\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, k w\right\}$ be a figure of type (n, k, w). The fact that there are exactly w squares on the same row as $\left(\alpha_{1}, \beta_{1}\right)$ can be expressed by the system

$$
\bigvee_{P_{1, w}}\left(\alpha_{1}=\alpha_{s} \wedge \alpha_{1} \neq \alpha_{s^{\prime}}, \forall s \in P_{1, w}, \forall s^{\prime} \notin P_{1, w}\right),
$$

where $P_{1, w}$ runs through all subsets of $\{2, \ldots, k w\}$ with exactly $w-1$ elements. We add similar equations for the columns and diagonals passing through $\left(\alpha_{1}, \beta_{1}\right)$ and similarly for every other square of the figure. To account for the fact that the figure is contained in a finite chessboard of size n we add an extra variable γ and the inequalities

$$
\alpha_{i} \leq \gamma, \beta_{i} \leq \gamma, \quad i=1, \ldots, k w
$$

Let S be the set of vectors $\left(\alpha_{1}, \beta_{1}, \ldots, \alpha_{k w}, \beta_{k w}, \gamma\right) \in \mathbb{N}^{2 k w+1}$ satisfying the preceding system. By Theorem 1 and the remark below it the formal series $S(z)$ is a rational function. Setting the formal variables corresponding to $\left\{\left(\alpha_{i}, \beta_{i}\right), i=\right.$ $1, \ldots, k w\}$ equal to 1 we get that

$$
\sum_{n=0}^{\infty} W(n, k, w) z_{\gamma}^{n-1}
$$

is also a rational function.

