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Figures of Constant Width on a Chessboard

Janko Hernández and Leonel Robert

1. INTRODUCTION. Consider the following figure in a 5 × 5 chessboard:

Figure 1. Every row and column contains three occupied squares.

(By “figure” we mean the subset of all the occupied squares of the chessboard.) It has
the property that every row and column of the board that intersects the figure contains
exactly three occupied squares.

Now look at the following figure in a 4 × 4 chessboard:

Figure 2. Every row, column and diagonal contains two occupied squares.

Every row and column of the board has only two occupied squares. But if we also
consider the diagonals with slope +1 or −1, we see that each of them contains either
zero or two squares of the figure.

We say that Figure 1 has constant width three by rows and columns, and that Fig-
ure 2 has constant width two by rows, columns, and diagonals.

The first figure is easy to generalize in the sense that the figure formed by all the
squares of a w × w chessboard has constant width w by rows and columns. On the
other hand, if we also consider the two diagonal directions as in Figure 2, the problem
of finding figures of constant width higher than two becomes considerably harder. Is it
possible, for example, to find a nonempty figure on some n × n chessboard such that
every row, column, and diagonal intersects it in zero or three squares? This is a fun
problem to think about. We encourage the reader to try it before he or she continues
reading. As we will show here, the answer turns out to be yes, even for widths higher
than three. The impatient reader might want to take a look at Figures 6, 11, 12, and 13.

In order to state our main result in a precise form, we introduce some terminology.
We designate as a figure any set of squares in an n × n chessboard. A figure F has
constant width w if every row, column, or diagonal intersects it in 0 or w squares. To
be more exact, F is of type (n, k, w) if it has constant width w in a chessboard of
size n × n and has kw squares. Observe that k is also the number of nonempty rows
(or columns) in the chessboard.
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Notice that the constant width figures of type (n, n, 1) are the solutions of the
n-queens problem. These are the configurations of n queens in an n × n chessboard
such that none of them can attack any other. It is known that these configurations exist
when n ≥ 4 (see [1] and [4]).

In this article we prove the following theorem:

Theorem 1. For every w there are constant width figures of type (n, k, w) for all
pairs (n, k) with n ≥ k and k sufficiently large.

2. CONSTRUCTING NEW FIGURES FROM OLD ONES. We identify the
squares of an n × n chessboard with the elements of the set {0, 1, . . . , n − 1} ×
{0, 1, . . . , n − 1}, and figures with the subsets of this set.

In some of the following constructions we make use of figures of extended con-
stant width w. These are figures such that every row, column, diagonal, or extended
diagonal intersects it in 0 or w squares. An extended diagonal is a set of squares with
coordinates (i, j) such that either i + j ≡ d (mod n) or i − j ≡ d (mod n) for some
d in {0, 1, . . . , n − 1}. For example, Figure 2 is not of extended constant width, but
Figure 3 is. One of the extended diagonals is indicated as a dashed line.

Figure 3. Extended constant width figure of type (5, 4, 2) and extended diagonal.

Notice that the extended constant width figures of type (n, n, 1) are the toroidal so-
lutions of the n-queens problem. It is known that these figures exist when gcd(n, 6) = 1
(see [1, pp. 363–374] and [4]).

Composing figures. Let F1 be a figure in an n × n chessboard, and F2 a figure in an
m × m chessboard. We construct the composition F1 ◦ F2 of F1 and F2 by dividing an
nm × nm chessboard into squares of size n × n and placing a copy of F1 in each of
the squares belonging to F2 (see Figure 4). This construction has been used in papers
about the n-queens problem (see [1] and [4]).

Figure 4. Example of composition of two figures.

The composition of two constant width figures is not necessarily of constant width.
Nevertheless, we have the following lemma.
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Lemma 1. Let F1 and F2 be constant width figures of types (m, k, w1) and (n, l, w2),
respectively. Then the following statements are true:

(a) If F1 is of extended constant width, then F1 ◦ F2 is a constant width figure of
type (mn, kl, w1w2).

(b) If both F1 and F2 are of extended constant width, then F1 ◦ F2 is of extended
constant width.

Proof. The composition of two figures admits the following arithmetic description.
Let (x, y) belong to {0, . . . , mn − 1} × {0, . . . , mn − 1} and write x = i1 + mi2 and
y = j1 + mj2, with i1 and j1 in {0, . . . , m − 1} and i2 and j2 in {0, . . . , n − 1}. Then

(x, y) ∈ F1 ◦ F2 ⇔ (i1, j1) ∈ F1, (i2, j2) ∈ F2.

It is clear that F = F1 ◦ F2 occupies (kw1)(lw2) squares on a chessboard of size
mn × mn. We need to prove that F has constant width w1w2.

Consider the width of F by columns. Let c belong to {0, . . . , mn − 1} and write
c = c1 + mc2. We have

x = c, (x, y) ∈ F ⇔
{

i1 = c1, (i1, j1) ∈ F1; (1)
i2 = c2, (i2, j2) ∈ F2. (2)

Equations (1) and (2) have 0 or w1 and 0 or w2 solutions, respectively. Thus the
number of solutions of x = c with x in F is 0 or w1w2; that is, F has constant
width w1w2 by columns. The same argument applies to rows.

For the diagonal directions we need to consider parts (a) and (b) separately. For (a)
look at the diagonals of slope +1. For d in {−mn + 1, . . . , mn − 1} we have

x − y = d, (x, y) ∈ F ⇔



i1 − j1 ≡ d (mod m), (i1, j1) ∈ F1; (3)

i2 − j2 = d − (i1 − j1)

m
, (i2, j2) ∈ F2. (4)

Since F1 is an extended constant width figure, equation (3) has 0 or w1 solutions. For
each of these solutions equation (4) has 0 or w2 solutions. Thus F has constant width
w1w2 by diagonals of slope +1. The proof for the diagonals of slope −1 is analogous.

Turning to (b), consider the extended diagonals of slope +1. For d in {0, . . . ,

mn − 1} we have

x − y ≡ d (mod mn),

(x, y) ∈ F ⇔



i1 − j1 ≡ d (mod m), (i1, j1) ∈ F1;

i2 − j2 ≡ d − (i1 − j1)

m
(mod n), (i2, j2) ∈ F2,

and the reasoning follows as before. The proof for the extended diagonals of slope −1
is analogous.

As a consequence of Lemma 1, we obtain a simple way of constructing a figure of
constant width four. Composing the extended constant width figure of type (5, 4, 2)

shown in Figure 3 with the constant width figure of type (4, 4, 2) shown in Figure 2,
we obtain a constant width figure of type (20, 16, 4).
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Transversals. A figure T is a transversal of a figure F if T is a subset of F and
every row, column, or diagonal that intersects F intersects T in exactly one square.
For example, Figure 5 shows two transversals of Figure 2. If a constant width figure F
of type (n, k, w) can be decomposed into transversals (i.e., F is the disjoint union of
w transversals), then we can delete w − w′ of those transversals to obtain a constant
width figure of type (n, k, w′).

Figure 5. Two disjoint transversals of the constant width figure of type (4, 4, 2).

It is a corollary of Lemma 1 that if T1 and T2 are transversals of F1 and F2, respec-
tively, then T1 ◦ T2 is a transversal of F1 ◦ F2. Hence, if F1 and F2 are decomposable
into transversals, so is F1 ◦ F2.

Now we can construct a figure of constant width three. Since both Figures 2 and 3
are decomposable into two transversals, the constant width figure of type (20, 16, 4)

that we constructed earlier can be decomposed into four transversals. Deleting one of
them, we obtain the constant width figure of type (20, 16, 3) shown in Figure 6.

Figure 6. Constant width figure of type (20, 16, 3) obtained by deleting a transversal from a constant width
figure of type (20, 16, 4).

By the way, not every figure of constant width w can be decomposed into w

transversals (see, for example, Figure 11). This is because we are considering diago-
nals in the definition of constant width figure. If we consider only rows and columns,
König’s theorem [3, p. 188] guarantees that there is always such a decomposition.

Adding figures. Let F1 be an extended constant width figure of type (n1, n1, w)

and F2 a constant width figure of type (n2, n2, w), where n1 > n2. We construct the
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addition F of F1 and F2 by placing four copies of F1 and one copy of F2 on a
(4n1 + n2) × (4n1 + n2) chessboard, as shown in Figure 7. Under some conditions,
this construction gives a constant width figure of type (4n1 + n2, 4n1 + n2, w). It is
clear that F has width w by rows and columns. Since F1 is an extended constant
width figure, F also has width w in the diagonals of slope +1 and in the diagonals of
slope −1 outside the shaded area. Hence, F will have constant width w if the shaded
area does not contain squares from the copies of F1.

F

F

F

F

F

1

1

1

2

1

F =

Figure 7. F is the addition of F1 and F2.

3. CONSTRUCTION OF CONSTANT WIDTH FIGURES OF TYPE (n, k, w).
We now take up the proof of Theorem 1. If k < n, every constant width figure of type
(k, k, w) can be embedded into an n × n chessboard, say, in the upper left corner. In
this way we get a constant width figure of type (n, k, w). Thus, it is enough to prove
that there are constant width figures of type (n, n, w) for n sufficiently large.

The basic idea for finding figures of constant width w is the one that we used to
construct the figure of constant width three. But that construction had the shortcoming
that k < n. To overcome this difficulty, we need extended constant width figures with
n = k as our building blocks.

Lemma 2. There exist extended constant width figures of types (13, 13, 2) and
(17, 17, 2) that are decomposable into two transversals.

Proof. The reader can verify that the figures shown in Figure 8 satisfy all the stated
requirements. In each case, the two transversals are indicated in different gray tones.

Let A1 be the figure of type (13, 13, 2) shown in Figure 8, and define An = An−1 ◦
A1 for n ≥ 2. Then An is an extended constant width figure of type (13n, 13n, 2n) and
can be decomposed into 2n transversals. Let n0 be the least number such that 2n0 ≥ w.
Deleting 2n0 − w transversals from An0 , we get an extended constant width figure A
of type (a, a, w), where a = 13n0 . In the same way, using the figure of type (17, 17, 2)

shown in Figure 8, we obtain an extended constant width figure B of type (b, b, w),
with b = 17n0 .

Let Tx be an extended constant width figure of type (x, x, 1) and Fy a constant
width figure of type (y, y, 1). Under certain conditions we can add F1 = Tx ◦ A and
F2 = B ◦ Fy to obtain a constant width figure of type (4xa + yb, 4xa + yb, w). It is
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Figure 8. Extended constant width figures of types (13, 13, 2) and (17, 17, 2).

then an exercise in number theory to prove that any sufficiently large n can be written
in the form 4xa + yb, and with this the proof will be complete. In what follows we
formalize these ideas.

As we mentioned before, Tx and Fy exist when gcd(x, 6) = 1 and y ≥ 4. Since Tx

is an extended constant width figure, Lemma 1 ensures that F1 is an extended constant
width figure of type (ax, ax, w). By the same lemma, F2 is a constant width figure of
type (by, by, w) (but not necessarily an extended constant width figure).

If we also have x > yb, then the necessary conditions to add F1 and F2 are met.
To see this, notice first that the four corners of A are empty squares, so the four x × x
blocks in the corners of F1 = Tx ◦ A are empty. Thus, the shaded area in Figure 7 does
not contain squares of the copies of F1. Figure 9 illustrates the argument.

F2}yb

{yb x}

1F

1F

1F

1F

Figure 9. x > yb.

Notice that the a and b defined earlier satisfy gcd(24a, b) = 1. Hence the following
lemma completes the proof of Theorem 1.
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Lemma 3. If gcd(24a, b) = 1, then there exists N such that any n greater than N can
be written in the form n = 4xa + yb with gcd(x, 6) = 1, y ≥ 4, and x > yb.

Proof. Since gcd(24a, b) = 1, for every n′ satisfying n′ > 24ab − 24a − b we can
find nonnegative integers x ′ and y′ such that n′ = 24ax ′ + by′. Moreover, replacing y′
with its remainder modulo 24a, we can assume that y′ < 24a.

We now take n = n′ + 4(a + b), x = 6x ′ + 1, and y = y′ + 4. We then have n =
4ax + by, gcd(x, 6) = 1, and 4 ≤ y ≤ 24a + 4. Such x and y exist whenever n >

24ab − 20a + 3b.
Finally, let N = 4ab(24a + 4) + b(24a + 4) and consider any n greater than N .

Since n > 24ab − 20a + 3b, we can choose x and y as before. Then

n = 4ax + by > 4ab(24a + 4) + b(24a + 4)

together with y ≤ 24a + 4 implies that x > b(24a + 4) > by. We have thereby ex-
hibited x and y with the properties required in the lemma.

We conclude this section with some remarks on the size of the figures of constant
width that we have constructed. The figure A is an extended constant width figure of
type (a, a, w) with the property that it can be decomposed into w transversals. An
estimate for a is a = 13n0 = O(wlog2 13) = O(w3.70...). Also, we found in Lemma 3 a
number N such that there are constant width figures of type (n, k, w) whenever n ≥
k ≥ N . This number satisfies N = O(a2b), hence, N = O(wlog2 13217) = O(w11.48...).

4. COMPUTATIONAL RESULTS. In section 2 we were able to construct a figure
of constant width three in a 20 × 20 chessboard. Also, the simple composition shown
in Figure 10 gives a constant width figure of type (81, 27, 3). But what if we want
smaller figures?

Figure 10. Constant width figure of type (81, 27, 3).

The authors have created a computer program that allows one to find smaller solu-
tions, such as the one shown in Figure 11.

Figure 11. Constant width figure of type (11, 10, 3).

48 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112



Integre Technical Publishing Co., Inc. American Mathematical Monthly 112:1 September 16, 2004 2:49 p.m. hernandez-robert.tex page 49

Finding figures of constant width with the computer is an interesting problem in
its own right. The n-queens problem is usually solved using some refinement of the
backtrack algorithm. Our case seems to be more complex, and finding all the solutions
for a given (n, k, w) is too ambitious. Backtracking does not give good results even if
one wants only a single solution.

To address the problem, we used a simulated annealing optimization. This is a class
of stochastic algorithms commonly applied to solve combinatorial optimization prob-
lems, such as the Traveling Salesman Problem (see [2]). This approach has the draw-
back that the computer might not find a solution even when it exists.

In order to use the simulated annealing method we transformed the search for a
figure of constant width into an optimization problem. We chose to minimize the ob-
jective function

E(F) =
∑

L

∣∣#(L ∩ F) − w
∣∣,

where L runs through all rows, columns, and diagonals on the chessboard that intersect
F and #(L ∩ F) signifies the number of squares of F in L . Notice that E(F) ≥ 0 and
E(F) = 0 if and only if F is a constant width figure.

Figures 12 and 13 show other solutions found with the computer. We have also
found constant width figures of types (14, 14, 4) and (17, 17, 5).

Figure 12. Constant width figures of type (11, 11, 3).

Figure 13. Constant width figures of type (12, 10, 3).

The difficulty in finding constant width figures of type (n, k, w) seems to grow
significantly faster with the increase of w than with the increase of n. Our experiences
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with both backtracking and annealing searches back this conclusion. For example,
finding figures of constant width two or three is relatively easy, but we were not able
to find a figure of width six with the computer.

We conclude with some conjectures suggested by our computations. Let W (n, k, w)

be the number of constant width figures of type (n, k, w). Then we conjecture the
following:

1. W (n, k, 3) = 0 if either (i) k < 10 or (ii) n < 11.

2. W (11, 10, 3) = 8.

3. W (n, k, 4) = 0 if either (i) n < 14 or (ii) n = 14, k < 14.

4. If W (n, n, w) > 0 for some n and w, then W (m, m, w) > 0 whenever m ≥ n.

We have been unable to check 1(ii), 2, or 3, because the algorithm that we have used
hitherto does not do exhaustive searches. Conjecture 1(i) is of a stronger nature, since
it says that there are no constant width figures of type (n, k, 3) if k < 10, independent
of n. Thus, in principle it cannot be checked by a computer search. Conjecture 2 asserts
that the only constant width figures of type (11, 10, 13) are Figure 11 and its rotations
and reflections.
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