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Abstract

This paper discusses Sobolev orthogonal polynomials for a class of
scalar products that contains the sequentially dominated products intro-
duced by G. L. Lagomasino and H. Pijeira. We prove asymptotics for
Markov type functions associated to the Sobolev scalar product and an
extension of Widom’s Theorem on the location of the zeroes of the orthog-
onal polynomials. In the case of measures supported in the real line, we
obtain results related to the determinacy of the Sobolev moment problem
and the completeness of the polynomials in a suitably defined weighted
Sobolev space.

Keywords: Sobolev inner product, orthogonal polynomials, asymptotics, lo-
cation of zeroes, Favard’s Theorem, determinacy, completeness.

0 Introduction.

This paper discusses several properties of the sequence of orthonormal polyno-
mials with respect to a Sobolev scalar product of the form

〈p, q〉S =

∫
Ω0

p(z)q(z)dµ0 +

∫
Ω1

p′(z)q′(z)dµ1. (1)

where µ0 and µ1 are positive Borel measures in the complex plane with supports
Ω0 and Ω1 respectively.

The analysis is restricted to the class of scalar products that satisfy the
condition (5) stated in Section 1. This class includes the sequentially dominated
products introduced in [8].

We associate to the sequence of orthonormal polynomials a closed operator D
analogous to the Jacobi operator in the case of the standard orthogonality in the
real line. Then from the properties of the scalar product we obtain information
about the spectrum of D. This is done in Section 1.

In Section 2 we prove asymptotics and zero location for the orthonormal
polynomials (Theorems 4 and 5). These results are derived from the convergence
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of the finite sections method applied to the operatorD. Here we apply the results
proven in [10] on Hessenberg matrices.

Section 3 discusses the case when the measures µ0 and µ1 are supported in
the real line. We relate the concept of determinate Hessenberg matrix intro-
duced in [10] to the Sobolev moment problem. We also prove the density of the
polynomials in the weighted Sobolev space associated to the scalar product (1).

Besides [10], [9], our references were [8], [6]. In many ways, this paper
continues the work of [8], improving some of its results.

1 Preliminaries.

Let 〈·, ·〉 : C[z]× C[z]→ C be a scalar product in the linear space C[z] of poly-
nomials with complex coefficients. Applying the Gram-Schmidt process to the
basis {zn}∞n=0 we can find a sequence {pn(z)}∞n=0 of orthonormal polynomials
with respect to this scalar product. Since these polynomials form a basis of
C[z], zpn(z) can be written as a linear combination of pi(z), i = 0, . . . , n + 1,
for every n . Thus we have a recurrence relation

zpn(z) =

n+1∑
i=0

dn,ipi(z).

Define the infinite matrix D = (di,j)
∞
i,j=0. This recurrence relation can be

written like
Dp = zp, (2)

where p = (p0, p1, . . . )
t. Notice that D is a lower Hessenberg matrix; that is,

di,j = 0 for j > i+ 1.
Let l2 denote the Hilbert space of infinite column vectors with square summable

entries and C0 ⊂ l2 the subspace of vectors with a finite number of nonzero
entries. Associated to the matrix D, we define the operator D with domain
domain(D) = {x ∈ l2 : Dx ∈ l2} and such that Dx = Dx. It is proven in
[10] that D is a closed operator. We denote by σ(D), ρ(D), and R(z,D), the
spectrum, the resolvent set, and the resolvent function of D, respectively. We
use caligraphic fonts to denote the operator associated to a Hessenberg matrix.

Define the set

Γ̃(D) = {〈Dx, x〉 : ‖x‖ = 1, x ∈ C0}.

For a vector x ∈ C0, x = (x0, x1, . . . )
t, we write px(z) =

∑
i xipi(z). In

this notation the orthonormal basis {pn(z)}∞n=0 is implicitly assumed, but this
will not lead to confusion. From the definition of D we get that 〈Den, em〉 =
〈zpm, pn〉. Taking linear combinations this yields

〈Dy, x〉 = 〈zpx, py〉 x, y ∈ C0. (3)

Thus, one sees that the set Γ̃(D) is just the numerical range of the operator
Tz : C[z]→ C[z], Tzp = zp, of multiplication by z.
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Example 1. Consider the scalar product

〈p, q〉 =

∫
Ω

p(z)q(z)dµ,

where µ is a positive measure supported in Ω ⊂ C, with infinite support and
finite moments. We have

Γ̃(D) = {λ ∈ C : λ = 〈zp, p〉, with ‖p‖ = 1}. (4)

Let a ∈ (Co(Ω))c where Co(Ω) is the closed convex hull of Ω. Choose ω ∈ C
such that |ω| = 1 and <(ω(z − a)) > ε > 0 for every z ∈ Ω and let ‖p‖ = 1.
Then

|〈zp, p〉 − a| = |〈(z − a)p, p〉| =

∣∣∣∣∫
Ω

(z − a)|p(z)|2dµ
∣∣∣∣ =

=

∣∣∣∣∫
Ω

ω(z − a)|p(z)|2dµ
∣∣∣∣ > ε‖p‖2 = ε > 0.

This proves that Γ̃(D) ⊂ Co(Ω).

1.1 Sobolev products.

Let µ0, µ1 be positive measures in the complex plane with finite moments, and
such that at least one of the sets Ω0 = suppµ0, Ω1 = suppµ1 is infinite. With
these conditions the equation (1) defines a scalar product in C[z]. We will
consider additionally that

∫
dµ0 = 1, so that one has 〈1, 1〉S = 1. For the rest

of this section {pn}∞n=0 denotes the sequence of orthonormal polynomials with
respect to 〈·, ·〉S and D denotes the Hessenberg matrix associated to it. We
denote by ‖ · ‖S the norm in C[z] induced by (1); we write ‖ · ‖S,µ0,µ1

when we
want to make explicit reference to the measures µ0, µ1.

G. Lagomasino and H. Pijeira introduce in [8] the concept of sequentially
dominated measures, this being the case when

i) µ1 is absolutely continuous with respect to µ0.
ii) dµ1/dµ0 ∈ L∞(µ0).
They base many of their results in this concept, in particular they show

that D is bounded whenever µ0, µ1 are sequentially dominated and Ω0, Ω1 are
compact subsets of the complex plane.

Instead of those assumptions, we will consider here the following condition
on µ0 and µ1 (∫

Ω1

|p(z)|2dµ1

)1/2

= ‖p‖µ1 ≤M‖p‖S (5)

for every polynomial p ∈ C[z] and some positive constant M .
This condition is equivalent to

‖p‖S,µ0,µ1
≤ ‖p‖S,µ0+µ1,µ1

≤ (M2 + 1)1/2‖p‖S,µ0,µ1
.
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Thus, (5) can be restated saying that the norms ‖·‖S,µ0,µ1 and ‖·‖S,µ0+µ1,µ1

are equivalent. Notice that the measures µ0+µ1, µ1 are sequentially dominated.
Sequentially dominated measures satisfy (5), but they are far from being all,

as the following example shows.
Example 2. Let dµ1 = ωdx be a positive measure, absolutely continuous

with respect to the Lebesgue measure, supported in [−1, 1] and such that 1/ω ∈
L1([−1, 1], dx). Let µ0 be an arbitrary measure such that µ0([−1, 1]) 6= 0. Let
us prove that these measures satisfy condition (5).

Let p(z) ∈ C[z] with ‖p‖S = 1. Since
∫
|p|2dµ0 ≤ 1, there exists x0 ∈ [−1, 1]

such that |p(x0)| ≤ (µ0([−1, 1]))−1/2. For every x ∈ [−1, 1], we have

p(x) = p(x0) +

∫ x

x0

p′(t)dt,

and∣∣∣∣∫ x

x0

p′(t)dt

∣∣∣∣ ≤ ∫ 1

−1

|p′(t)|dt =

∫ 1

−1

|p′(t)| 1

ω(t)
dµ1

≤
(∫ 1

−1

|p′(t)|2dµ1

)1/2(∫ 1

−1

1

ω(t)2
dµ1

)1/2

≤
(∫ 1

−1

1

ω(t)
dt

)1/2

.

Thus, |p(x)| ≤ (µ0([−1, 1]))−1/2 +(
∫ 1

−1
(ω(t))−1dt)1/2, and (5) clearly follows

from this.
The next theorem gives a description of the set Γ̃(D) in terms of Ω0 and Ω1.

Theorem 1. Let µ0, µ1 satisfy condition (5). Then we have

i) Γ̃(D) ⊂ {z : d(z, Co(Ω0 ∪ Ω1)) ≤M}.
ii) D − zI is surjective for z ∈ (Ω0 ∪ Ω1)c.
iii) If Ω0 and Ω1 are bounded sets of the complex plane then D is a bounded

operator.

Proof. Let us write

〈p, q〉0 =

∫
Ω0

pqdµ0, 〈p, q〉1 =

∫
Ω1

pqdµ1.

Taking into account (4), we need to estimate 〈zp, p〉S assuming that ‖p‖S =
1.

〈zp, p〉S = 〈zp, p〉0 + 〈zp′, p′〉1 +

∫
Ω1

pp′dµ1

= 〈p, p〉0
(
〈zp, p〉0
〈p, p〉0

)
+ 〈p′, p′〉1

(
〈zp′, p′〉1
〈p′, p′〉1

)
+

∫
Ω1

pp′dµ1.

Since 〈p, p〉0 + 〈p′, p′〉1 = 1 the first two summands of the last equality form

a convex combination of elements in Γ̃(〈·, ·〉0) and Γ̃(〈·, ·〉1). Using (5), the last
summand admits the estimate∣∣∣∣∫

Ω1

p′pdµ1

∣∣∣∣2 ≤ ∫
Ω1

|p|2dµ1

∫
Ω1

|p′|2dµ1 ≤M2.
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We know from Example 1 that Γ̃(〈·, ·〉0) ⊂ Co(Ω0) and Γ̃(〈·, ·〉1) ⊂ Co(Ω1).
This completes the proof of i).

ii) Let z ∈ (Ω0 ∪ Ω1)c and consider the infinite matrix

X(z) =

(〈
pi(t)

z − t
, pj(t)

〉
t

)
i,j

.

This matrix satisfies the identity (zI −D)X(z) = I. Thus, it is enough to
prove that X(z) is a matrix representing a bounded operator of l2 and ii) will
follow from this.

Let x, y ∈ C0 such that ‖x‖ = ‖y‖ = 1. We have

|〈X(z)x, y〉| =

∣∣∣∣〈px(t)

z − t
, py(t)

〉
t

∣∣∣∣
=

∣∣∣∣∫
Ω0

px(t)

z − t
py(t)dµ0(t) +

∫
Ω1

(
p′x(t)

z − t
+

px(t)

(z − t)2

)
p′y(t)dµ1(t)

∣∣∣∣
≤ C

∫
Ω0

|pxpy|dµ0 + C

∫
Ω1

|p′xp′y|dµ1 + C2

∫
Ω1

|pxp′y|dµ1

≤ 2C + C2M.

iii) If Ω0 and Ω1 are bounded then Γ̃(D) is bounded and by lemma 1 of
Section 2, D is a bounded operator.

In paper [2] it is proven that if Dk is bounded for some k > 0, then Ω0 and
Ω1 are bounded sets. This in particular implies that the converse of Theorem 1
iii) is also true.

2 Asymptotics and location of the zeroes.

During the last decade several asymptotics for Sobolev orthonormal polynomi-
als were proven. In [8] and [6] the n-th root asymptotics are obtained under
the hypothesis of sequentially dominated measures and the regularity of both
measures µ0, µ1. In these papers the location of the zeroes of the orthogonal
polynomials was an important step in the obtention of asymptotics. They also
consider Sobolev products involving derivatives of higher order.

In [10], asymptotics for orthogonal polynomials with respect to an arbitrary
scalar product were proven exploiting the relation of the polynomials with Hes-
senberg matrices. More precisely, these asymptotics were obtained based on the
applicability of the finite sections method to Hessenberg matrices (Theorems 2
and 3 below). We use the same approach here.

2.1 Finite sections method for Hessenberg matrices.

In this subsection we review some facts about general Hessenberg matrices.
We refer to [10] for the proofs of the theorems stated here and for further
development.
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Let D = (di,j)
∞
i,j=0 be an infinite lower Hessenberg matrix; that is, di,j = 0

for j > i+1 and di,i+1 6= 0 for i ≥ 0. We associate to D the sequence of polyno-
mials defined by p0 = 1 and the recurrence relation (2). These polynomials form
a basis of C[z], thus there is a unique scalar product 〈·, ·〉D : C[z] × C[z] → C
defined by 〈pn, pm〉D = δn,m.

For example, if J is a real Jacobi matrix, then we know by Favard’s Theorem
that this scalar product has the form

〈p, q〉J =

∫ ∞
−∞

p(t)q(t)dµ(t),

where µ is a positive measure with finite moments and infinite support.
It is known that Stieltjes’ Theorem on the convergence of the Padé approx-

imants to the Markov function of µ, is equivalent to the strong convergence of
R(z, Jn) to R(z,J ) in z ∈ C\R. Here Jn are the truncated matrices of the Ja-
cobi matrix J . Theorem 2 below, extends this theorem to Hessenberg matrices.
Since Stieltjes’ theorem only holds when J is determinate, we need a suitable
generalization of this concept.

Let D be Hessenberg matrix and define the sequence of associated polyno-
mials of k-th kind (also called shifted polynomials) by

pkn−k(z) =

〈
pn(z)− pn(t)

z − t
, pk−1(t)

〉
D,t

.

In the case of a scalar product in the real line this definition agrees with the
standard definition of associated polynomials of k-th kind.

We say that the matrix D is determinate if

∞∑
n,k=0

|pkn−k(z)|2 =∞ (6)

for at least one z ∈ C. Again it can be proven that this definition agrees with the
standard one for complex Jacobi matrices and a theorem of invariabilty holds
(see [13] for the definition of determinate complex Jacobi matrix). In particular,
if (6) holds for some z0 ∈ C, then it holds for every z ∈ C. Since pn0 (z) = d−1

n−1,n,

we have that if D is bounded, or more generally if
∑
n |dn−1,n|−2 =∞, then D

is determinate.
Denote by Dn = (di,j)

n−1
i,j=0 the truncated matrix of size n×n and define the

sets

ΘΛ(D) = {z : lim sup
n∈Λ

‖R(z,Dn)‖ <∞},

ZΛ(D) = {z : z ∈ σ(Dn), n ∈ Λ},
Z∞Λ (D) = {z : ∃{znk

}, znk
∈ σ(Dnk

), znk
→ z, nk ∈ Λ},

where Λ ⊂ {1, 2, . . . } is an infinite sequence of indices. If Λ = {1, 2, . . . } we om-
mit the index and write simply Θ(D), Z(D), Z∞(D). The following inclusions
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are not hard to proof

Z(D) ⊂ Γ̃(D), (Γ̃(D))c ⊂ Θ(D).

If J is a Jacobi matrix we have seen in Section 1 that Γ̃(J) ⊂ Co(supp (µ)) ⊂
R, hence, C\R ⊂ Θ(J).

Now we can state the generalization of Stieltjes’ Theorem.

Theorem 2. Suppose D is determinate, then

(Γ̃(D))c ⊂ Θ(D) = {z : R(z,Dn)∗ → R(z,D)∗} ⊂ ρ(D)\Z∞(D). (7)

For all x ∈ l2 we have

lim
n∈Λ

R(z,Dn)∗x = R(z,D)∗x

uniformly in compact subsets of ΘΛ(D).

If D is bounded, or more generally, if dn−1,n is a bounded sequence, we can
improve Theorem 2.

Let ρ∞(D) be the union of the connected components of ρ(D) which have

nonempty intersection with (Γ̃(D))c. Notice that since the set Γ̃(D) is convex,
its complement has at most two connected components. We denote by v(Dn,K)
the number of eigenvalues of Dn in K ⊂ C.

Theorem 3. Suppose that Γ̃(D) 6= C and that the sequence {dn−1,n}n∈Λ is
bounded. We have

i) For every compact set K ⊂ ρ∞(D) there is an infinite subsequence Λ′ ⊂ Λ
such that K\ΘΛ′(D) is at most finite.

ii) ρ∞(D)\Z∞Λ (D) ⊂ ΘΛ(D).
iii) For every K ⊂ ρ∞(D), the sequence {v(Dn,K)}n∈Λ is uniformly bounded.

Thus, this theorem implies that if D is bounded and ρ(D) is connected, then
Θ(D) = ρ(D)\Z∞(D).

The next lemma lists some conditions equivalent to the boundedness of D.

Lemma 1. Let D be a Hessenberg matrix with associated scalar product 〈·, ·〉D :
C[z]× C[z]→ C. The following statements are equivalent:

i) | 〈zp, q〉D | ≤ C 〈p, p〉
1
2

D 〈q, q〉
1
2

D for some constant C and every p, q ∈ C[z].
ii) | 〈zp, p〉D | ≤ C ′ 〈p, p〉D for some constant C ′ and every p ∈ C[z].

iii) Γ̃(D) is bounded.
iv) D is a bounded operator of l2.

Proof. The implication i)⇒ii) is trivial. We have noticed in Section 1 that Γ̃(D)
is the numerical range of the operator of multiplication by z in C[z], thus ii)⇔iii).
It is a known fact that the boundedness of the numerical range of an operator
implies its boundedness, thus ii) implies that the operator of multiplication by
z is bounded in C[z] with respect to the norm induced by the scalar product.
Taking into account (3), the rest of the implications follow.
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2.2 Asymptotics.

For the rest of the section 〈·, ·〉S is a Sobolev product as in (1) that satisfies
(5). We denote by {pn(z)}∞n=0 the orthonormal polynomials and by D the
Hessenberg matrix associated to it.

Let us write Ω∞ for the union of the connected components of (Ω0 ∪ Ω1)c

with nonempty intersection with (Co(Ω0 ∪ Ω1))c (there can be at most two
connected components).

Proposition 1. We have
i)

{z : d(z, Co(Ω0 ∪ Ω1)) > M)} ⊂ Θ(D).

ii) If D is determinate then Ω∞ ⊂ ρ∞(D).
iii) If Ω0,Ω1 are bounded or more generally dn−1,n is bounded then

Ω∞\Z∞(D) ⊂ Θ(D) ⊂ (Ω0 ∪ Ω1)c\Z∞(D).

Proof. i) This follows from the inclusion (Γ̃(D))c ⊂ Θ(D) and Theorem 1 i) of
Section 1.

ii) Suppose that D is determinate. By Theorem 2 (Γ̃(D))c ⊂ ρ(D). Hence,
Ω∞ is a connected open set with nonempty intersection with ρ(D) and where
zI − D is surjective (Theorem 1 ii)). It follows that Ω∞ ⊂ ρ(D) and from this
that Ω∞ ⊂ ρ∞(D).

iii) This follows at once from Theorem 3 ii).

Lemma 2. Let x, y, z ∈ ρ(D)\(Ω0 ∪ Ω1). We have〈
pi
z − t

, pj

〉
= 〈R(z,D)ej , ei〉〈

1

x− t
,

1

y − t

〉
= 〈R(x,D)R(y,D)∗e0, e0〉 .

Let x, y, z ∈ ρ(Dn) then

1

pn(z)

〈
pn(z)− pn(t)

z − t
pi, pj

〉
= 〈R(z,Dn)ej , ei〉〈

pn(x)− pn(t)

x− t
,
pn(y)− pn(t)

y − t

〉
= 〈R(x,Dn)R(y,Dn)∗e0, e0〉 .

These formulas are part of a more general formalism that relates Hessenberg
matrices and their finite sections to quadrature formulas, two-variable Padé
approximants, and infinite dimensional continued fractions ([9]).

Proof. Recall that the matrix X(z) defined in the proof of Theorem 1 ii) is a
bounded right inverse of zI − D. Since now z ∈ ρ(D), we must have X(z) =
R(z,D). This implies the first formula. Define the infinite matrix (Y (x, y))i,j =
〈 pix−t ,

pj
y−t 〉. Analogously as we did for X(z), it can be checked that Y (x, y) is the
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matrix of a bounded operator (use condition 5) and satisfies the matrix identity
(xI −D)Y (x, y)(yI −D)t = I. An analysis of the operators associated to the
matrices contained in this identity yields Y (x, y) = R(x,D)R(y,D)∗, thus we
get the second formula.

In order to prove the formulas in the second part of the lemma let us define
the n × n matrices Xn(z) and Yn(x, y), whose entries are the left side of these
formulas. After some straightforward computations involving the orthogonality
relations of the polynomials, one checks that they satisfy (zIn −Dn)Xn(z) = I
and (xIn − Dn)Yn(x, y)(yIn −Dn)t = In. The last two formulas follow from
this.

The following lemma fills the gap in the proof of the formula for Y (x, y) in
lemma 2.

Lemma 3. Let D1, D2 be Hessenberg matrices such that D1,D2 have bounded

inverse and Y is the matrix of a bounded operator Y. Suppose that D1Y D
t

2 = I.
Then Y = D−1

1 (D−1
2 )∗.

Proof. Denote by D−1
i , i = 1, 2, the matrices of the bounded operators D−1

i .
Recall that taking the adjoint of a bounded operator corresponds to taking
the conjugate transpose of its matrix. Let x ∈ C0, then (D2)tx ∈ C0 and

y = Y D
t

2x is well defined since Y is bounded. We have y ∈ l2 and D1y = x,

thus y ∈ domain(D1) and y = D−1
1 x. That is, Y D

t

2x = D−1
1 x, for every x ∈ C0.

This implies that Y D
t

2 = D−1
1 . Taking conjugate transpose and repeating the

same analysis we get Y
t

= D−1
1

t
D−1

2 .

Theorem 4. Let 〈·, ·〉S be a Sobolev scalar product with determinate Hessenberg
matrix. We have

1

pn(z)

∫
pn(z)− pn(t)

z − t
dµ0 →

∫
1

z − t
dµ0,

1

pn(z)

∫ (
pn(z)− pn(t)

z − t

)′
dµ1 → −

∫
1

(z − t)2
dµ1

uniformly in compact subsets of Θ(D) and

1

pn(x)pn(y)

∫ (
pn(x)− pn(t)

x− t

)′(
pn(y)− pn(t)

y − t

)′
dµ1→

∫
1

(x− t)2(y − t)2
dµ1

uniformly in compact subsets of Θ(D)×Θ(D).
Under the conditions stated in Theorem 3, the same is true for subsequences

of indices.

Proof. The first two limits in the statement of the theorem follow taking i =
0, j = 0, 1 in the formulas of lemma 2 and applying Theorem 2. The third limit
follows readily from lemma 2 and Theorem 2.
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2.3 Location of zeroes.

Just like in the case of orthogonal polynomials in the real line, it can be checked
that we have (see [8] for a proof):

σ(Dn) = {z ∈ C : pn(z) = 0}. (8)

We see from this formula that the boundedness of D implies the boundedness
of the zeroes of pn(z), because ‖Dn‖ ≤ ‖D‖ and the eigenvalues of Dn are
contained in the disk of radius ‖Dn‖ centered in the origin. Alternatively, we
can argue that if pn(z) = (z − a)q(z), then

〈(z − a)q, q〉 = 0⇒ 〈zq, q〉 = a〈q, q〉

and from Lemma 1 ii) we get |a| < C ′.
The boundedness of the zeroes of the orthonormal polynomials does not

imply the boundedness of D. We will discuss this phenomenon in Section 3.
By (8), the sets ZΛ(D), Z∞Λ (D) defined in 2.1 can be reinterpreted in terms

of the zeroes of the orthogonal polynomials. Theorem 1 together with the fact
that Z(D) ⊂ Γ̃(D) implies that

Z(D) ⊂ {z : d(z, Co(Ω0 ∪ Ω1)) ≤M}.

The following theorem generalizes a well known theorem by H. Widom on
the behaviour of the zeroes of orthonormal polynomials.

Theorem 5. Let 〈·, ·〉S be a Sobolev scalar product satisfying condition (5).
Suppose that Co(Ω0∪Ω1) 6= C and {dn−1,n}n∈Λ is bounded for some subsequence
Λ ⊂ {0, 1, . . . }. Then for every compact K ⊂ Ω∞ the sequence {v(K, pn)}n∈Λ

is bounded. In particular this is true when Ω0,Ω1 are bounded and Ω∞ is the
unbounded connected component of (Ω0 ∪ Ω1)c. In this case Λ can be taken to
be {0, 1, 2, . . . }.

Taking µ1 = 0 condition (5) is automatically statisfied and we get an exten-
sion of Widom’s Theorem to measures of unbounded support.

Proof. Since {dn−1,n}Λ is bounded D is determinate. By Theorem 1 i), if

Co(Ω0 ∪ Ω1) 6= C then Γ̃(D) 6= C. Combining Theorem 1 ii) and Theorem
3 iii) we get the first part of the theorem. If Ω0 and Ω1 are bounded then D is
bounded, thus {dn−1,n}∞n=0 is bounded.

3 Sobolev products in the real line.

In this section we assume that the measures µ0 and µ1 are supported in the real
line. Now the scalar product is

〈p, q〉S =

∫ ∞
−∞

p(t)q(t)dµ0(t) +

∫ ∞
−∞

p′(t)q′(t)dµ1(t). (9)

10



3.1 Formal properties.

The restriction Ω0,Ω1 ⊂ R induces some formal properties in the scalar product.
Let us see how.

Let us associate to every Hermitian bilinear form {·, ·} : C[z]× C[z]→ C, a
linear functional Λ : C[x, y]→ C by

Λ(p(x)q(y)) = {p, q}. (10)

If the bilinear form in the right side of (10) is of the form

{p, q} =

∫
R
p(t)q(t)dµ(t), (11)

with µ a complex measure with finite moments (i.e. zn ∈ L1(|µ|)), then Λ
satisfies Λ((x − y)(·)) = 0. Conversely, it is proven in [12] that if Λ satisfies
Λ((x − y)(·)) = 0 then it can be represented by a complex measure µ like in
(11). For bilinear forms like (9), we have the next theorem.

Theorem 6. Let {·, ·}S be a Hermitian bilinear form and Λ its associated linear
functional defined as in (10). Then Λ((x− y)3p(x, y)) = 0 if and only if {·, ·}S
has the form (9) with µ0, µ1 complex measures with finite moments.

Proof. Suppose that {·, ·} is like (9). Then

Λ(p(x, y)) =

∫
Ω0

p(t, t)dµ0 +

∫
Ω1

∂2p

∂x∂y
(t, t)dµ1, (12)

and thus Λ((x− y)3p(x, y)) = 0. It also follows that

Λ((x− y)2p(x, y)) = −2

∫
Ω1

p(t, t)dµ1.

Conversely if Λ anhilates at the multiples of (x− y)3 then it can be checked
that the linear functionals

Λ1(p(x, y)) = −1

2
Λ((x− y)2p(x, y)), (13)

Λ0(p(x, y)) = Λ(p(x, y))− Λ1

(
∂2p(x, y)

∂x∂y

)
, (14)

both anhilate at multiples of (x−y). Thus, they have an integral representation
of the form (11), with µ0, µ1 complex measures of finite moments. Therefore, a
representation like (12) holds.

Define the matrix of moments of the bilinear form {·, ·} (or of the functional
Λ) as (M)i,j = {zi, zj} = Λ(xiyj). Then,

Λ((x−y)3p(x, y)) = 0 ⇐⇒ (S∗)3M −3(S∗)2MS+3S∗MS2−MS3 = 0, (15)

11



where the right side is understood as an identity of infinite matrices and (S)i,j =
δi+1,j is the infinite shift matrix. Hence, (15) characterizes the moment matrices
of bilinear forms of the form (9) with µ0, µ1 complex measures.

When {·, ·} is a scalar product, we have seen in Section 1 how to associate
a Hessenberg matrix to it. It can be proven that the matrix D is related to the
functional Λ through the identity (see [9]):

Λ(p(x, y)pi(x)pj(y)) = 〈P (D,D
t
)ei, ej〉. (16)

Using this equality we get that (15) is equivalent to

D3 − 3D2D
t

+ 3D(D
t
)2 − (D

t
)3 = 0. (17)

Notice that the entries of D are the coefficients of a recurrence relation for
the orthonormal polynomials. So the last identity can be understood like a
Favard’s theorem for Sobolev products, since it characterizes the Hessenberg
matrix of scalar products of the form (9). Notice that in the scalar products of
the form (9) we do not assume that µ0 and µ1 are positive meaures; we only
require that they induce a positive scalar product.

The operators associated to infinite matrices M satisfying (15) have been
studied in papers such as [3], where they are called Hankel operators of third
order. The decomposition of Λ in the sum of Λ0 and Λ1 can be translated in
terms of moment matrices. Notice that the moment matrices of Λ0, Λ1 will be
standard Hankel matrices. This decomposition is proven in [1] and it is used to
study the moment problem of Sobolev scalar products.

3.2 The condition (5).

In the sequel we assume that 〈p, q〉S is a Sobolev product of the form (9) with
µ0, µ1 positive measures supported in the real line. As before, we denote by
{pn}∞n=0 the sequence of orthonormal polynomials and D the associated Hessen-
berg matrix. Notice that since 〈p, q〉S ∈ R for every p, q ∈ R[z], the coefficients
of pn(z) and the entries of D are real numbers.

For an arbitrary Sobolev product the condition (5) can be understood in
terms of the moments of the functionals

∫
·dµ0 and

∫
·dµ1. But for Sobolev

products in the real line, (5) can be put in terms of the moments of the scalar
product itself. The next theorem shows equivalent formulations of (5) that hold
in this case.

Theorem 7. The following statements are equivalent:
i) 〈·, ·〉S satisfies (5).
ii) If we write D = Dr +Di with Dr = Dt

r and Di = −Dt
i then Di and DDi

are both matrices of a bounded operator.
iii) D2 − 2DDt + (Dt)2 is the matrix of a bounded operator.

This theorem shows how restrictive (5) is, still it doesn’t exclude cases where
D is unbounded.

12



Proof. i)⇒ii).
Since Di = 1

2 (D −Dt), we have

(Di)n,m =
1

2
(〈zpn, pm〉 − 〈pn, zpm〉) =

1

2

∫
Ω1

(pnp
′
m − p′npm)dµ1,

and thus for pu =
∑
i uipi, pv =

∑
i vipi, with u, v ∈ C0

〈Diu, v〉 =
1

2

∫
Ω1

(pup
′
v − p′upv)dµ1. (18)

Using (5) in the right side of (18) we see that Di is bounded. Taking pv(z) =
zpu(z) we get

〈DDiu, u〉 = 〈Diu,D
tu〉 =

1

2

∫
p2
udµ1,

and again by (5) DDi represents a bounded operator too.
ii)⇒iii).
D2− 2DDt + (Dt)2 = 2(DDi−DiD

t). DDi is bounded by assumption and
DiD

t = −(DDi)
t, so DiD

t is bounded too.
iii)⇒i).
Let us put pu(z) =

∑
i uipi(z). It follows from (13) and (16) that∫

p2
udµ1 = Λ((x− y)2pu(x)pu(y))

= 〈(D2 − 2DDt + (Dt)2)u, u〉 ≤M‖u‖2 = M〈pu, pu〉.

Theorem 8. D is bounded if and only if the measures µ0 and µ1 have bounded
support and satisfy (5).

This theorem was first proven by J. M. Rodŕıguez in [11] under the assump-
tion that Ω0, Ω1 are bounded sets. This assumption was removed in paper [2].
Papers [2] and [11] consider Sobolev products involving derivatives of arbitrary
order; in [2] the measures are supported in subsets of the complex plane. The
proof given below is independent of these results.

Proof. Theorem 1 iii) is one of the implications. Suppose that D is bounded.
By Theorem 7 iii) the measures µ0, µ1 satisfy (5). Since D is bounded D is
determinate, thus by lemma 2 we have

〈R(z,D)e0, e0〉 =

∫
1

z − t
dµ0(t)

〈R(z,D)e0, e1〉 =

〈
1

z − t
, p1(t)

〉
S

=

∫
p1(t)

z − t
dµ0 −

1

d0,1

∫
1

(z − t)2
dµ1.

This implies that the Cauchy transforms of µ0 and µ1 are both analytic in
a neighborhood of ∞ and therefore, they have bounded support (use Stieltjes’
inversion formula).
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We will not discuss the asymptotics for Sobolev orthogonal polynomials in
the real line satisfying (5). They are obtained as corollaries of the ones discussed
in the previous section. Notice that now we have

Γ̃(D) ⊂ {z ∈ C : |=z| ≤M},

and if D is determinate C\R ⊂ ρ(D). Therefore, all of the asymptotics apply
for {z ∈ C : |=z| > M} whenever D is determinate (even though it could be
unbounded). We also have Ω∞ = (Ω0 ∪ Ω1)c, so if Ω0 and Ω1 are bounded, or
more generally if dn−1,n is bounded, then the same asymptotics hold outside
the set Ω0 ∪ Ω1 ∪ Z∞(D).

3.3 Location of zeroes.

For a standard scalar product in the real line like (11), it is well known that the
boundedness of the set Z(J) of zeroes of the orthonormal polynomials implies
the boundedness of the Jacobi operator J . As we mentioned in Section 2, this
is not true for general scalar products. For Sobolev products in the real line one
can prove the following theorem, which answers a question posed in [7].

Theorem 9. If a Sobolev product like (9) satisfies (5), then the boundedness of
ZΛ(D) for some infinite sequence of indices Λ is equivalent to the boundedness
of D.

Proof. The implication “D bounded” ⇒ “ZΛ(D) bounded” has been discussed
already. In order to prove the converse we use the following proposition (see
Corollary 6.3.4, [5]).

Proposition 2. Let A, ∆ be n×n matrices with A normal and ‖∆‖ = δ. Then
the spectrum of A + ∆ lies in ∪ni=1Bδ(λi), where λi are the eigenvalues of A
and Bδ(λi) are open balls centered at λi of radius δ. If these balls are disjoint,
there is at least one eigenvalue of A+ ∆ in each one of them.

If the Sobolev scalar product 〈·, ·〉S satisfies (5), then by Theorem 7 the
matrices Dn are perturbations of selfadjoint matrices (Dr)n by a sequence of
matrices of uniformly bounded norm (Di)n. Proposition 2 yields the implica-
tion ZΛ(D) bounded ⇒ Z(Dr) bounded (prove the contrapositive). But since
(Dr)n is selfadjoint, its norm is equal to its spectral radius, thus, the sequence
{‖(Dr)n‖}n∈Λ is uniformly bounded. This in turn implies that Dr is the matrix
of a bounded operator, and in virtue of Theorem 7 ii), the same is true for
D.

What happens if we drop condition (5)? Then Theorem 9 no longer holds.
Example 3. Let

〈p, q〉 = p(a)q(a) +

∫ 1

−1

p′(t)q′(t)dt,
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where dt denotes the Lebesgue measure. The orthonormal polynomials with
respect to this product are obviously l̂n+1(z) =

∫ z
a
ln(t)dt where ln(t) are the

Legendre polynomials. We choose a /∈ [−1, 1] in order to violate (5) (recall

Example 2 of Section 1). The set of zeroes of the polynomials {l̂n(z)}∞n=0 is
bounded. This is a consequence of the following theorem, proven in [8].

Theorem 10. Suppose that Co(Ω0) and Co(Ω1) are disjoint. Then the zeroes
of p′n are simple and contained in Co(Ω0∪Ω1) and the zeroes of pn lie in the disk
centered at the extreme point of Co(Ω1) furthest away from Ω0, and of radius
equal to twice the diameter of Co(Ω0 ∪ Ω1).

Some calculations show that

|etnDn|2 = 〈zl̂n, zl̂n〉 =

∫ 1

−1

t2l2n−1(t)dt+ l̂n(1)2 + l̂n(−1)2.

Since the right side of this equality is unbounded it follows that D cannot
be bounded.

3.4 Determinacy and completeness.

In [1] a Sobolev scalar product is said to be determinate if there is a unique
pair of positive measures µ0, µ1 such that (1) holds. The authors notice that,
since the functionals Λ0 and Λ1 in (13) can be put in terms of Λ (and the same
for their respective moment matrices), determinacy holds if and only if both
Λ0 and Λ1 are determinate. On the other hand, the definition of determinate
Hessenberg matrix has been given in Section 2.

Theorem 11. Suppose a Sobolev scalar product in the real line satisfies (5).
Consider the following propositions:

i) The scalar product is determinate (as defined in [1]).
ii)
∑∞
n=0 |pn(z0)|2 =∞ for some z0 ∈ C\R.

iii) The associated Hessenberg matrix is determinate (as defined in Section
2).

iv)
∞∑
n=0

|dn−1,n|−2 =∞ or

∞∑
n=0

| dn,n
dn−1,ndn,n+1

|2 =∞.

We have
iv)⇒ iii)⇔ ii)⇒ i).

Proof. iv)⇒iii). Because pn0 (z) = d−1
n−1,n and pn1 (z) =

z−dn,n

dn−1,ndn,n+1
.

iii)⇒ii). When D is determinate we have already noticed that σ(D) ⊂
(Ω0 ∪ Ω1) ⊂ R. In particular, the point spectrum of D is contained in R.

ii)⇒iii). If D is indeterminate then∑
n,k

|pkn−k(z)|2 <∞,
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for every z ∈ C. Since p0
n(z) = pn(z), the implication follows.

iii)⇒i). If D is determinate then the asymptotics of Theorem 4 hold in the
set {z ∈ C : =z ≥M}. Thus, the Cauchy transforms of µ0 and µ1 are uniquely
determined by the moments of the scalar product and so are both measures.

Let us define L
(1)
2 (µ0, µ1) = {f ∈ C1(R) : f ∈ L2(µ0), f ′ ∈ L2(µ1)}. For

every f, g ∈ L(1)
2 (µ0, µ1), the scalar product 〈f, g〉S given by (9) is well defined.

Let W 1
2 (µ0, µ1) be the completion of L

(1)
2 (µ0, µ1) with respect to the norm ‖·‖S .

If µ1 = 0 we put W 1
2 (µ0, 0) = L2(µ0).

Proposition 3. The linear subspace C[x] ⊕ span{ 1
x−a : a ∈ C\R} is dense in

W 1
2 (µ0, µ1).

Proof. Let us denote by H the closure of C[x] ⊕ span{ 1
x−a : a ∈ C\R} in

W 1
2 (µ0, µ1).
For every a ∈ C\R, k ∈ N, there are ai ∈ C\R distinct, but close enough to

a, such that∣∣∣∣ 1

(x− a)k
− 1

Πk
i=1(x− ai)

∣∣∣∣ < ε,

∣∣∣∣∣
(

1

(x− a)k

)′
−
(

1

Πk
i=1(x− ai)

)′∣∣∣∣∣ < ε

for every x ∈ R. Taking linear combinations, we see that H contains all rational
functions with poles off the real line.

Before continuing with the proof of Proposition 3 we need the following
lemma.

Lemma 4. Let f ∈ C1(R) that satisfies

1. lim|x|→∞ xf(x) = 0.

2. lim|x|→∞ x3f ′(x) = 0.

For every ε > 0, there is a rational function r(x) with poles off the real line
such that such that |f(x)− r(x)| < ε(1 + |x|) and |f ′(x)− r′(x)| < ε(1 + |x|) for
all x ∈ R.

Proof. The proof follows the idea of Theorem II.4.2 in [4].
Let f ∈ C1(R) be as in the statement of the lemma and suppose additionally

that
3. f(x) = 0 for −1 ≤ x ≤ 1.
4. f(x) = f(−x).
By 4., there is g ∈ C1(0, 1) such that f(x) = g( 1

x2+1 ). Conditions 1-3 imply

that g ∈ C1[0, 1] (this can be checked after some straightforward computations).
Choose a polynomial p(x) such that |g(x)−p(x)| < ε/2 and |g′(x)−p′(x)| < ε/2
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for all x ∈ [0, 1] (e.g. use Bernstein polynomials). We have∣∣∣∣f(x)− p
(

1

x2 + 1

)∣∣∣∣ < ε/2, (19)∣∣∣∣∣f ′(x)−
(
p

(
1

x2 + 1

))′∣∣∣∣∣ =

∣∣∣∣ 2x

(x2 + 1)2

∣∣∣∣ ∣∣∣∣g′( 1

x2 + 1

)
− p′

(
1

x2 + 1

)∣∣∣∣ (20)

<
ε

2
.

Taking r(x) = p(1/(x2 + 1)) proves the lemma for f ∈ C1(R) that satisfies
conditions 1-4.

Let f ∈ C1(R) satisfy 1-3. Write f(x) = f1(x)+xf2(x) with f1(x) = (f(x)+
f(−x))/2 and f2(x) = (f(x) − f(−x))/(2x). Functions f1 and f2 both satisfy
conditions 1-4 (this can be checked after some straightforward computations),
so we can approximate f1 and f2 with rational functions r1, r2 like in (19) and
(20). Taking r(x) = r1(x) + xr2(x) we prove the lemma for f ∈ C1(R) that
satisfies conditions 1-3.

Let f be as in the statement of the lemma. Using a partition of unity we
can write f = f1 + f2 with f1, f2 ∈ C1(R) such that supp f1 ⊂ [1,∞) and
supp f2 ⊂ (−∞, 2]. Functions f1 and f2(−x+ 3) satisfy conditions 1-3, thus the
lemma is true for each of them. This in turn implies that the lemma holds for
f1 and f2 and, therefore, the lemma holds for f too.

Now we continue with the proof of Proposition 3.

Let f ∈ L(1)
2 (µ0, µ1) such that f(x) = O(xn), f ′(x) = O(xn) for some n ≥ 0.

Then f(x)/(x2n+4+1) satisfies properties 1. and 2. of the last lemma. Applying
the lemma to f(x)/(x2n+4 + 1) we conclude that f ∈ H.

Let f ∈ L(1)
2 (µ0, µ1). Using a partition of unity we can write f = f1 + f2

with f1, f2 ∈ L(1)
2 (µ0, µ1) such that supp f1 ⊂ [0,∞) and supp f2 ⊂ (−∞, 1]. It

is enough to prove that f1, f2 ∈ H.
In what follows we assume that supp f ⊂ [0,∞), the analysis for the case

supp f ⊂ (−∞, 1] is analogous. We have two possibilities, either
i) ∃{an}∞n=0 such that limn→∞ an =∞ and limn→∞ |f(an)| = l <∞,

or
ii) ∃{an}∞n=0 such that limn→+∞ an =∞ and |f(x)| ≥ |f(an)| for x ≥ an.

Let εn > 0 such that |f(x)| < |f(an)| + 1 for x ∈ [an, an + εn]. Take
hn ∈ C∞(R) such that 0 ≤ hn ≤ 1, hn(x) = 1 for x ∈ [0, an], hn(x) = 0 for
x ∈ [−εn, an + εn]c and h′n(x) ≤ 0 for x ≥ 0. We approximate f in the Sobolev
norm by the function gn(x) =

∫ x
0
f ′(t)hn(t)dt.

By integration by parts we have

gn(x) =

∫ x

0

f ′(t)hn(t)dt = f(x)hn(x)−
∫ x

0

f(t)h′n(t)dt.

Let us write rn(x) =
∫ x

0
f(t)h′n(t)dt. We have that f(x)h′n(x) = 0 for
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x ∈ [an, an + εn]c; thus we get that rn(x) = 0 for x ≤ an and

|rn(x)| ≤ −
∫ an+εn

an

|f(t)|h′n(t)dt ≤ sup
(an,an+εn)

|f | < |f(an)|+ 1, for x ≥ an,

hence rn(x) = O(1).
Since rn(x) = O(1), r′n(x) = O(1), and f(x)hn(x) has compact support, we

conclude that gn ∈ H. We also have

f(x)− gn(x) = f(x)(1− hn(x)) + rn(x),

f ′(x)− g′n(x) = f ′(x)(1− hn(x)).

By Lebesgue’s dominated convergence theorem f(x)(1−hn(x)) and f ′(x)(1−
hn(x)) tend to zero in L2(µ0) and L2(µ1) respectively when n → ∞. It only
remains to prove that rn(x) tends to zero in L2(µ0) when n→∞.

If i) holds, then∫ ∞
−∞
|rn(x)|2dµ0 =

∫ ∞
an

|rn(x)|2dµ0 < (|f(an)|+ 1)2µ0([an,∞))→ 0

when n→∞.
If ii) holds, then∫ ∞

−∞
|rn(x)|2dµ0 =

∫ ∞
an

|rn(x)|2dµ0 <

∫ ∞
an

(|f(an)|+ 1)2dµ0

≤
∫ ∞
an

(|f(x)|+ 1)2dµ0 → 0

when n→∞. This completes the proof of Proposition 3.

Theorem 12. Suppose a Sobolev scalar product in the real line satisfies (5) and
has determinate Hessenberg matrix. Then the system {pn(z)}∞n=0 of orthonor-
mal polynomials is complete in W 1

2 (µ0, µ1).

The determinacy of D is not necessary. Even in the case of real Jacobi
matrices (i.e. µ1 = 0), completeness of the polynomials is known to hold for the
Von Neumann solutions of the moment problem.

Proof. Let us denote by H the closure of C[x] in W 1
2 (µ0, µ1). We have proven

in lemma 2 of Section 2 that∥∥∥∥ 1

x− a

∥∥∥∥2

S

= ‖R(x,D)e0‖2 =

∞∑
i=0

|〈R(x,D)e0, ei〉|2 =

∞∑
i=0

∣∣∣∣〈 1

x− a
, pi

〉∣∣∣∣2
for a ∈ (Ω0 ∪Ω1)c. This is Parseval’s equality, thus 1

x−a ∈ H for a ∈ C\R. Now
the theorem follows from Propostion 3.
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We end this section discussing an embedding of W 1
2 (µ0, µ1) in a space of

functions.
Let us write µ = µ0 + µ1, and define the operator T : C[z] → L2(µ),

T p = p. Then, condition (5) just says that T is bounded. If we assume that the
Hessenberg matrix of the Sobolev product is determinate, by the completeness
of the polynomials, the operator T is uniquely extended to a bounded operator
in W 1

2 (µ0, µ1).
When is T : W 1

2 (µ0, µ1) → L2(µ) injective? Assume that T x = 0, x 6= 0.
Then there is a sequence of polynomials qn → x in W 1

2 (µ0, µ1) and ‖qn‖2,µ →
0. Since {qn}∞n=0 is convergent in W 1

2 (µ0, µ1), {q′n}∞n=0 is a Cauchy sequence
in L2(µ1), hence it is convergent to some f ∈ L2(µ1). We have ‖f‖2,µ1

=
lim ‖q′n‖2,µ1 = lim ‖qn‖S = ‖x‖S , thus f 6= 0.

We have obtained that qn → 0 in L2(µ) and q′n → f 6= 0 in L2(µ1). This
means that the operator d

dt : L2(µ)→ L2(µ1) with domain C[x] is not closable.

Suppose that d
dt : L2(µ) → L2(µ1) with domain C[x] is not closable. Then,

there is a sequence of polynomials {qn}∞n=0 such that qn → 0 in L2(µ) and
q′n → f 6= 0 in L2(µ1). {qn} and {q′n} are Cauchy sequences in L2(µ0) and
L2(µ1) respectively. Hence, {qn} converges to some x ∈ W 1

2 (µ0, µ1) in the
Sobolev norm and ‖x‖S = ‖f‖2,µ1 6= 0. We have obtained the following:

Proposition 4. The operator T : W 1
2 (µ0, µ1) → L2(µ) is injective if and only

if d
dt : L2(µ)→ L2(µ1) is closable.

4 Conclusions.

This paper exemplifies a procedure to study scalar products in the linear space of
polynomials. This approach is particularly useful for less “standard” products
other than in the real line or the circle. The specific properties of a scalar
product are used to derive spectral information about the Hessenberg matrix
associated to it. In that process, we focus on the computation of sets like Γ̃(D),
ρ(D) or less amenable sets like Θ(D), Z∞(D). Then we use the relation between
the polynomials and the Hessenberg matrix to write operator-theoretic results
in terms of questions in rational approximation.

We have discussed here some asymptotics and location of the zeroes of the or-
thonormal polynomials. The same approach can be used to study less standard
objects, like the quadrature formulas or the two-variable Padé approximants
associated to a scalar product.

One can consider Sobolev products involving derivatives up to the k-th order.
The Sobolev product takes the form:

〈p, q〉 =

k∑
i=0

p(k)q(k)dµk

Many of the results proven here have a straightforward generalization to this
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case. For example, (15) and (17) become

k∑
i=0

(
n

i

)(
St
)i
MSk−i = 0,

k∑
i=0

(
n

i

)
Di
(
D
t
)k−i

= 0.

However, other questions like the discussion of Sobolev spaces deserve a
careful examination. The theorems of [10] on the convergence of the finite
sections method are also true for block Hessenberg matrices. Thus, in principle,
the approach used here can also be applied to matrix orthogonal polynomials.

The theorems of the last section suggest that, once condition (5) is assumed,
the Sobolev scalar product in the real line behaves similarly to a product ob-
tained from a positive linear functional. Two directions of work can be followed.
One is to refine the results proven here under (5). In particular, it is desirable
to have a description of the set Z∞(D). For instance, under what conditions
Z∞(D) ⊂ R? On the other hand, we can drop (5). A result in this direction is
Theorem 10, proven in [6].
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