Math 270-005: Calculus I
 Prof. Arturo Magidin

Homework 1

Solutions
§2.2
5. See the book for the graph.
(a) From the graph, $f(1)=-1$.
(b) On the other hand, the graph suggests that $\lim _{x \rightarrow 1} f(x)=1$, since the values of $f(x)$ approach 1 as x approaches 1 .
(c) The graph indicates that $f(0)=2$.
(d) Here, we also have $\lim _{x \rightarrow 0} f(x)=2$, as the values of $f(x)$ are also approaching 2 as x approaches 0.
15. Please see the book for the graph.
(a) From the graph, $f(1)=0$.
(b) The limit of $f(x)$ as x approaches 1 from the left is $1, \lim _{x \rightarrow 1^{-}} f(x)=1$, as seen in the graph.
(c) The limit from the right is 0, though: $\lim _{x \rightarrow 1^{+}} f(x)=0$.
(d) Because the one-sided limits do not agree, we conclude that $\lim _{x \rightarrow 1} f(x)$ does not exist.
17. Please see the book for the graph.
(a) $f(1)=3$, the dot on the graph above $x=1$.
(b) $\lim _{x \rightarrow 1^{-}} f(x)=2$.
(c) $\lim _{x \rightarrow 1^{+}} f(x)=2$.
(d) $\lim _{x \rightarrow 1} f(x)=2$.
(e) $f(3)=2$.
(f) $\lim _{x \rightarrow 3^{-}} f(x)=4$.
(g) $\lim _{x \rightarrow 3^{+}} f(x)=1$.
(h) $\lim _{x \rightarrow 3} f(x)$ does not exist.
(i) $f(2)=3$.
(j) $\lim _{x \rightarrow 2^{-}} f(x)=3$.
(k) $\lim _{x \rightarrow 2^{+}} f(x)=3$.
(l) $\lim _{x \rightarrow 2} f(x)=3$.
19. The graph of

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x \leq-1 \\ 3 & \text { if } x>-1\end{cases}
$$

looks like the graph of $f(x)=x^{2}+1$ (the standard parabola $y=x^{2}$ raised by one unit) up to $x=-1$, and then is just a horizontal line at height $x=3$.

At $a=-1$, we see that $f(a)=f(-1)=(-1)^{2}+1=2$. On the other hand, $\lim _{x \rightarrow-1^{-}} f(x)=2$, and $\lim _{x \rightarrow-1^{+}} f(x)=3$. It is also evident from the graph that $\lim _{x \rightarrow-1} f(x)$ does not exist.

§2.3

7. We are assuming that $\lim _{x \rightarrow 1} f(x)=8$, so

$$
\lim _{x \rightarrow 1}(4 f(x))=4 \lim _{x \rightarrow 1} f(x)=4(8)=32
$$

11. Here, in addition to $\lim _{x \rightarrow 1} f(x)=8$, we also assume $\lim _{x \rightarrow 1} g(x)=3$ and $\lim _{x \rightarrow 1} h(x)=2$. We note that

$$
\lim _{x \rightarrow 1}(g(x)-h(x))=\lim _{x \rightarrow 1} g(x)-\lim _{x \rightarrow 1} h(x)=3-2=1 \neq 0,
$$

so we have

$$
\lim _{x \rightarrow 1} \frac{f(x)}{g(x)-h(x)}=\frac{\lim _{x \rightarrow 1} f(x)}{\lim _{x \rightarrow 1}(g(x)-h(x))}=\frac{8}{1}=8
$$

15. If

$$
g(x)= \begin{cases}2 x+1 & \text { if } x \neq 0 \\ 5 & \text { if } x=0\end{cases}
$$

then from the definition we see that $g(0)=5$. And because $g(x)$ takes the exact same values as $2 x+1$ everywhere near 0 , except at 0 , we have

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(2 x+1)=2(0)+1=1
$$

19. To be explicit with the limit laws, we have

$$
\lim _{x \rightarrow 4}(3 x-7)=3 \lim _{x \rightarrow 4} x-\lim _{x \rightarrow 4} 7=3(4)-7=5
$$

25. Since the limit of the denominator is not 0 , we can proceed directly:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{5 x^{2}+6 x+1}{8 x-4} & =\frac{\lim _{x \rightarrow 1}\left(5 x^{2}+6 x+1\right)}{\lim _{x \rightarrow 1}(8 x-4)} \\
& =\frac{5(1)^{2}+6(1)+1}{8(1)-4}=\frac{5+6+1}{8-4} \\
& =\frac{12}{4}=3
\end{aligned}
$$

27. Since the limit of the denominator is not 0 , we can proceed directly:

$$
\begin{aligned}
\lim _{p \rightarrow 2} \frac{3 p}{\sqrt{4 p+1}-1} & =\frac{\lim _{p \rightarrow 2} 3 p}{\lim _{x \rightarrow 2} \sqrt{4 p+1}-1}=\frac{3(2)}{\sqrt{4(2)+1}-1} \\
& =\frac{6}{\sqrt{9}-1}=\frac{6}{2}=3 .
\end{aligned}
$$

35. The denominator has a limit of 0 ; so we factor, and cancel:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x^{2}-16}{4-x} & =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{-(x-4)} \stackrel{*}{=} \lim _{x \rightarrow 4} \frac{x+4}{-1} \\
& =-8
\end{aligned}
$$

where $*$ holds because the function $\frac{(x-4)(x+4)}{4-x}$ and the function $\frac{x+4}{-1}$ are equal at every point near $x=4$, except for at $x=4$; so they have the same limit as x approaches 4 .
49. This looks daunting, but if we do the algebra it becomes similar to problems we have already solved:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{x-4} & =\lim _{x \rightarrow 4} \frac{\frac{4-x}{4 x}}{x-4}=\lim _{x \rightarrow 4} \frac{4-x}{(4 x)(x-4)} \\
& =\lim _{x \rightarrow 4} \frac{-(x-4)}{4 x(x-4)}=\lim _{x \rightarrow 4} \frac{-1}{4 x} \\
& =-\frac{1}{16}
\end{aligned}
$$

73. The function is

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<-1 \\ \sqrt{x+1} & \text { if } x \geq-1\end{cases}
$$

(a) Consider what happens as x approaches -1 from the left. Since x will be smaller than -1 , the function f just takes the value $x^{2}+1$. So we have

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(x^{2}+1\right)=(-1)^{2}+1=2
$$

(b) On the other hand, if we approach -1 from the right, the function f will take the exact same values as the function $\sqrt{x+1}$. Using the limit laws, we have

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \sqrt{x+1}=\sqrt{-1+1}=\sqrt{0}=0
$$

(c) Since the one-sided limits are not equal to each other, $\lim _{x \rightarrow-1} f(x)$ does not exist.
87. We have the function

$$
f(x)= \begin{cases}\frac{x^{2}-5 x+6}{x-3} & \text { if } x \neq 3 \\ a & \text { if } x=3\end{cases}
$$

We want to know what value of a will result in $\lim _{x \rightarrow 3} f(x)=f(3)$.

Note that $f(3)=a$; so what we really need to find out is the value of $\lim _{x \rightarrow 3} f(x)$. Since $f(x)$ takes the exact same values as $\frac{x^{2}-5 x+6}{x+3}$ for any x near (but not equal to) x, we have

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3}
$$

Now, this rational function has both a numerator and denominator that evaluate to 0 when we plug in 3 , so we factor out $x-3$ from the numerator and cancel:

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(x-2)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x-2}{1}=3-2=1
\end{aligned}
$$

So in order for $f(3)$ to equal 1 , we need $a=1$.

