Math 270-005: Calculus I
 Prof. Arturo Magidin

 Homework 11

 Homework 11
 Solutions

§5.1

9. See the book for the graph. The length of each subinterval is $\Delta x=\frac{7-1}{6}=1$. The values of the function at the grid points are

$$
f(1)=10, f(2)=9, f(3)=7, f(4)=5, f(5)=2, f(6)=1 f(7)=0 .
$$

So the left Riemann sum is

$$
f(1)(1)+f(2)(1)+f(3)(1)+f(4)(1)+f(5)(1)+f(6)(1)=10+9+7+5+2+1=34 .
$$

The right Riemann sum is

$$
f(2)(1)+f(3)(1)+f(4)(1)+f(5)(1)+f(6)(1)+f(7)(1)=9+7+5+2+1+0=24
$$

15. See the book for the graphs:
(a) The function is $v=3 t^{2}+1$. The midpoints are $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$, and $\frac{7}{2}$. So the approximation is:

$$
v(.5)+v(1.5)+v(2.5)+v(3.5)=1.75+7.75+19.75+37.75=67 \mathrm{ft} .
$$

(b) With the further divisions, now the interval length is $\frac{1}{2}$, and the midpoints are $\frac{1}{4}, \frac{3}{4}, \ldots, \frac{15}{4}$. So we have:

$$
\begin{aligned}
v(0.25)(0.5) & +v(0.75)(0.5)+v(1.25)(0.5)+v(1.75)(0.5) \\
& +v(2.25)(0.5)+v(2.75)(0.5)+v(3.25)(0.5)+v(3.75)(0.5) \\
& =0.5(1.1875+2.6875+5.6875+10.1875+16.1875+23.6875+32.6875+43.1875) \\
& =0.5(135.5)=67.75 \mathrm{ft} .
\end{aligned}
$$

25. We have the function $f(x)=x+1$ on the interval $[0,4]$, and we want to divide the interval into $n=4$ subintervals.
(a) First we want a sketch of the graph of the function, which is a straight line:

(b) Here $\Delta x=\frac{4-0}{4}=1$, and the grid points are $x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=3$ and $x_{4}=4$.
(c) The left Riemann sum is given by adding up the following rectangles:

From the picture, we see that this is an underestimate.
The right Riemann sum is given by adding the following rectangles:

From the picture we can see that this is an overestimate.
(d) The left Riemann sum is given by:

$$
\begin{aligned}
\sum_{k=1}^{4} f\left(x_{k}^{*}\right) \Delta x & =\sum_{k=1}^{4} f\left(x_{k-1}\right)(1) \\
& =f(0)+f(1)+f(2)+f(3)=1+2+3+4=10
\end{aligned}
$$

The right Riemann sum is given by

$$
\begin{aligned}
\sum_{k=1}^{4} f\left(x_{k}^{*}\right) \Delta x & =\sum_{k=1}^{4} f\left(x_{k}\right)(1) \\
& =f(1)+f(2)+f(3)+f(4)=2+3+4+5=14
\end{aligned}
$$

§5.2
27. We want the region between the graph of $y=-3 x$ and the x-axis, for $-2 \leq x \leq 2$:

So the area of the region is 0 , with the left "positive" triangle canceling out the right "negative" triangle.
39. Graphing the function $y=8-2 x$ on $[0,4]$ we have:

This region has an area of $\frac{1}{2}(8)(4)=16$. So

$$
\int_{0}^{4}(8-2 x) d x=16
$$

43. The graph of $y=\sqrt{16-x^{2}} d x$ is the top half of the circle with radius 4 centered at the origin:

So the area is one quarter the area of a circle of radius 4:

$$
\int_{0}^{4} \sqrt{16-x^{2}} d x=\frac{1}{4} \pi\left(4^{2}\right)=4 \pi
$$

47. See the book for the picture related to this problem and the next two.

From the picture, the region between 0 and π consists of regions 1 and 2 , which have areas 1 and $\pi-1$, respectively. So, writing $A\left(R_{i}\right)$ for the area of region i, we have:

$$
\int_{0}^{\pi} x \sin x d x=A\left(R_{1}\right)+A\left(R_{2}\right)=1+(\pi-1)=\pi
$$

48. Here we have the areas of regions 1 and 2 , minus the area of region 3 which is $\pi+1$. So we have

$$
\int_{0}^{3 \pi / 2} x \sin x d x=A\left(R_{1}\right)+A\left(R_{2}\right)-A\left(R_{3}\right)=1+(\pi-1)-(\pi+1)=-1
$$

49. For the integral up to 2π we also need to take the areas of regions 3 and 4 , which are $\pi+1$ and $2 \pi-1$, respectively; but because they are under the x-axis, they count as negative. We have:

$$
\int_{0}^{2 \pi} x \sin x d x=A\left(R_{1}\right)+A\left(R_{2}\right)-A\left(R_{3}\right)-A\left(R_{4}\right)=1+(\pi-1)-(\pi+1)-(2 \pi-1)=-2 \pi
$$

50. For the integral from $\pi / 2$ to 2π, we need the areas of regions 2 (positive), 3 (negative), and 4 (negative). We have:

$$
\int_{\pi / 2}^{2 \pi} x \sin x d x=A\left(R_{2}\right)-A\left(R_{3}\right)-A\left(R_{4}\right)=(\pi-1)-(\pi+1)-(2 \pi-1)=-2 \pi-1
$$

51. Using the fact that $\int_{0}^{4} 3 x(4-x) d x=32$ and no other information, we can answer three of the following four integrals:
(a) $\int_{4}^{0} 3 x(4-x) d x=-\int_{0}^{4} 3 x(4-x) d x=-32$.
(b) $\int_{0}^{4} x(x-4) d x=\int_{0}^{4}\left(-\frac{1}{3}\right)(3 x(4-x)) d x=-\frac{1}{3} \int_{0}^{4} 3 x(4-x) d x=-\frac{1}{3}(32)=-\frac{32}{3}$.
(c) $\int_{4}^{0} 6 x(4-x) d x=2 \int_{4}^{0} 3 x(4-x) d x=-2 \int_{0}^{4} 3 x(4-x) d x=-2(32)=-64$.
(d) We cannot evaluate $\int_{0}^{8} 3 x(4-x) d x$ knowing only the integral from 0 to 4 . We know that

$$
\int_{0}^{8} 3 x(4-x) d x=\int_{0}^{4} 3 x(4-x) d x+\int_{4}^{8} 3 x(4-x) d x=32+\int_{4}^{8} 3 x(4-x) d x
$$

but at that point we need additional information or calculations.
53. If $\int_{0}^{3} f(x) d x=2, \int_{3}^{6} f(x) d x=-5$, and $\int_{3}^{6} g(x) d x=1$, then:
(a) $\int_{0}^{3} 5 f(x) d x=5 \int_{0}^{3} f(x) d x=5(2)=10$.
(b) $\int_{3}^{6}(-3 g(x)) d x=-3 \int_{3}^{6} g(x) d x=-3(1)=-3$.
(c) $\int_{3}^{6}(3 f(x)-g(x)) d x=3 \int_{3}^{6} f(x) d x-\int_{3}^{6} g(x) d x=3(-5)-(1)=-16$.
(d) $\int_{6}^{3}(f(x)+2 g(x)) d x=\int_{6}^{3} f(x)+3 \int_{6}^{3} g(x) d x=-\int_{3}^{6} f(x)-2 \int_{3}^{6} g(x) d x=-(-5)-2(1)=3$.
§5.3
29. Since $\left(x^{4}\right)^{\prime}=4 x^{3}$, we have

$$
\int_{0}^{2} 4 x^{3} d x=\left.x^{4}\right|_{0} ^{2}=16-0=16
$$

33. An antiderivative for $x+\sqrt{x}$ is $\frac{1}{2} x^{2}+\frac{2}{3} x^{3 / 2}$, so

$$
\int_{0}^{1}(x+\sqrt{x}) d x=\left.\left(\frac{1}{2} x^{2}+\frac{2}{3} x^{3 / 2}\right)\right|_{0} ^{1}=\left(\frac{1}{2}+\frac{2}{3}\right)-(0+0)=\frac{7}{6}
$$

39. An antiderivative of $t^{-3}-8$ is $-\frac{1}{2} t^{-2}-8 t$, so

$$
\int_{1 / 2}^{1}\left(t^{-3}-8\right) d t=\left.\left(-\frac{1}{2} t^{-2}-8 t\right)\right|_{1 / 2} ^{1}=\left(-\frac{1}{2}-8\right)-\left(-\frac{4}{2}-4\right)=-\frac{1}{2}-8+2+4=-\frac{5}{2}
$$

45. Here,

$$
\int_{0}^{\pi / 4} \sec ^{2} \theta d \theta=\left.\tan \theta\right|_{0} ^{\pi / 4}=\tan (\pi / 4)-\tan (0)=1-0=1
$$

