Math 270-005: Calculus I
 Prof. Arturo Magidin

Homework 2

Solutions
§2.4
7. See the book for the graph.
(a) As we approach 1 from the left, the values of f grow without bound. So $\lim _{x \rightarrow 1^{-}} f(x)=\infty$.
(b) The same thing happens as we approach from the right, so $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.
(c) Since both one sided limits do not exist because the function "goes to infinity", the same is true for the two-sided limit: $\lim _{x \rightarrow 1} f(x)=\infty$.
(d) As we approach 2 from the left, the values of f grow without bound, so $\lim _{x \rightarrow 2^{-}} f(x)=\infty$.
(e) If we approach from the right, however, the values grow large and negative. So $\lim _{x \rightarrow 2^{+}} f(x)=$ $-\infty$.
(f) The two-sided limit does not exist; it does not equal either ∞ nor $-\infty$.
15. Factoring the numerator and denominator, we have

$$
f(x)=\frac{x^{3}-4 x+3}{x^{2}-3 x+2}=\frac{(x-3)(x-1)}{(x-2)(x-1)}
$$

So the function is undefined at $x=1$ and at $x=2$.
As we approach 1, we have

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{(x-3)(x-1)}{(x-2)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x-3}{x-2}=\frac{1-3}{1-2} \\
& =\frac{-2}{-1}=2
\end{aligned}
$$

Since the limit exists, there is no vertical asymptote at $x=1$.
When we approach 2, however, we have:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{(x-3)(x-1)}{(x-2)(x-1)}=\lim _{x \rightarrow 2^{-}} \frac{x-3}{x-2}
$$

If x is very small but a little less than 2 , then $x-3$ will be very close to -1 and $x-2$ will be very small and negative. The quotient will be very large and positive, and grow larger the closer x is to 2 . Therefore,

$$
\lim _{x \rightarrow 2^{-}} f(x)=\infty
$$

This already tells us the function has a vertical asymptote at $x=2$.
Something similar happens as we approach from the right:

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x-3}{x-2}
$$

But this time, the denominator will be small and positive, so the quotient will be large and negative (since the numerator will be negative). So this time we have

$$
\lim _{x \rightarrow 2^{+}} f(x)=-\infty
$$

This would also tell us that $f(x)$ has a vertical asymptote at $x=2$.
17. There are of course many possibilities. Here is the sketch of one function defined on $[0,4]$, with $f(1)=0, f(3)$ undefined, $\lim _{x \rightarrow 3} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x)=-\infty, \lim _{x \rightarrow 2} f(x)=\infty$, and $\lim _{x \rightarrow 4^{-}} f(x)=\infty$.

21. (a) As we approach 2 from the right, the denominator $x-2$ is very small and positive, so the reciprocal is very large and positive. Therefore

$$
\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=\infty
$$

(b) As we approach from the left, the main difference is that the denominator is now negative, so the reciprocal is large and negative. We then have

$$
\lim _{x \rightarrow 2^{-}} \frac{1}{x-2}=-\infty
$$

(c) Putting (a) and (b) together we conclude that the best we can say is that $\lim _{x \rightarrow 2} \frac{1}{x-2}$ does not exist.
23. (a) As x approaches 4 from the right, the denominator is small and positive, and the numerator approaches -1 ; the result is a large negative number. So

$$
\lim _{x \rightarrow 4^{+}} \frac{x-5}{(x-4)^{2}}=-\infty
$$

(b) The same thing happens as we approach 4 from the left, because of the square in the denominator:

$$
\lim _{x \rightarrow 4^{-}} \frac{x-5}{(x-4)^{2}}=-\infty
$$

(c) Since the one-sided limits are both ∞, we have

$$
\lim _{x \rightarrow 4} \frac{x-5}{(x-4)^{2}}=-\infty
$$

25. (a) As we approach 3 from the right, the denominator is small and positive, and the numerator approaches 2, so the quotient is large and positive:

$$
\lim _{z \rightarrow 3^{+}} \frac{(z-1)(z-2)}{(z-3)}=\infty
$$

(b) If we approach 3 from the left, however, the denominator is small and negative; the quotient will be large and negative. We therefore have

$$
\lim _{z \rightarrow 3^{-}} \frac{(z-1)(z-2)}{(z-3)}=-\infty
$$

(c) The best we can say, then is that

$$
\lim _{z \rightarrow 3} \frac{(z-1)(z-2)}{(z-3)} \text { does not exist. }
$$

27. (a) Note that $x^{2}-4 x+3$ takes value -1 at $x=2$. So the denominator is very small and positive, the nuemrator is very close to -1 , so

$$
\lim _{x \rightarrow 2^{+}} \frac{x^{2}-4 x+3}{(x-2)^{2}}=-\infty
$$

(b) A similar thing happens here, because even though $x-2$ is small and negative as we approach 2 from the left, once we square we get a small and positive number. We have:

$$
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+3}{(x-2)^{2}}=-\infty
$$

(c) Therefore we have $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+3}{(x-2)^{2}}=-\infty$.

§2.5

17. While $\cos (\theta)$ oscillates between -1 and 1 , when we divide by θ^{2} we end up squeezing the cosine down to 0 . We get

$$
\lim _{\theta \rightarrow \infty} \frac{\cos \theta}{\theta^{2}}=0
$$

21. The leading term goes to ∞, so $\lim _{x \rightarrow \infty}\left(3 x^{12}-9 x^{7}\right)=\infty$.
22. Dividing both numerator and denominator by x^{3} (the largest power of x that appears in the denominator) we have:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{14 x^{3}+3 x^{2}-2 x}{21 x^{3}+x^{2}+2 x+1} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}\left(14 x^{3}+3 x^{2}-2 x\right)}{\frac{1}{x^{3}}\left(21 x^{3}+x^{2}+2 x+1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{14+\frac{3}{x}-\frac{2}{x^{2}}}{21+\frac{1}{x}+\frac{2}{x^{2}}+\frac{1}{x^{3}}} \\
& =\frac{14+0-0}{21+0+0+0}=\frac{14}{21}=\frac{2}{3} .
\end{aligned}
$$

37. We have that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{4 x}{20 x+1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}(4 x)}{\frac{1}{x}(20 x+1)}=\lim _{x \rightarrow \infty} \frac{4}{20+\frac{1}{x}}=\frac{4}{20}=\frac{1}{5} \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{4 x}{20 x+1}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}(4 x)}{\frac{1}{x}(20 x+1)}=\lim _{x \rightarrow-\infty} \frac{4}{20+\frac{1}{x}}=\frac{4}{20}=\frac{1}{5}
\end{aligned}
$$

So the horizontal asymptote of $f(x)$ is $y=\frac{1}{5}$, both as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
41. Here we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{3 x^{3}-7}{x^{4}+5 x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{4}}\left(3 x^{3}-7\right)}{\frac{1}{x^{4}}\left(x^{4}+5 x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{3}{x}-\frac{7}{x^{4}}}{1+\frac{5}{x^{2}}}=\frac{0-0}{1+0}=0 . \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow \text { infty }} \frac{3 x^{3}-7}{x^{4}+5 x^{2}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{4}}\left(3 x^{3}-7\right)}{\frac{1}{x^{4}}\left(x^{4}+5 x^{2}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{3}{x}-\frac{7}{x^{4}}}{1+\frac{5}{x^{2}}}=\frac{0-0}{1+0}=0 .
\end{aligned}
$$

So the line $y=0$ is an asymptote to f for both the positive and negative directions.
73. (a) For horizontal asymptotes, we have:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{3 x^{4}+3 x^{3}-36 x^{2}}{x^{4}-25 x^{2}+144}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{4}}\left(3 x^{4}+3 x^{3}-36 x^{2}\right)}{\frac{1}{x^{4}}\left(x^{4}-25 x^{2}+144\right)} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{3}{x}-\frac{36}{x^{2}}}{1-\frac{25}{x^{2}}+\frac{144}{x^{4}}}=\frac{3+0-0}{1-0+0}=3 . \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{3 x^{4}+3 x^{3}-36 x^{2}}{x^{4}-25 x^{2}+144}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{4}}\left(3 x^{4}+3 x^{3}-36 x^{2}\right)}{\frac{1}{x^{4}}\left(x^{4}-25 x^{2}+144\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{3+\frac{3}{x}-\frac{36}{x^{2}}}{1-\frac{25}{x^{2}}+\frac{144}{x^{4}}}=\frac{3+0-0}{1-0+0}=3 .
\end{aligned}
$$

So the line $y=3$ is a horizontal asyptote for $f(x)$ in both the positive and negative directions.
(b) We need to figure out the places where the denominator is 0 , to find the possible places where vertical asymptotes may lie. Although the denominator is a degree 4 polynomial, it is actually a quadratic in x^{2} : letting $z=x^{2}$, we have

$$
x^{4}-25 x^{2}+144=z^{2}-25 z+144=(z-9)(z-16)=\left(x^{2}-9\right)\left(x^{2}-16\right)
$$

where the roots can be found using the quadratic formula. And now we just complete the factorization:

$$
x^{4}-25 x^{2}+144=\left(x^{2}-9\right)\left(x^{2}-16\right)=(x-3)(x+3)(x-4)(x+4) .
$$

The possible locations of vertical asymptotes are thus $x=3, x=-3, x=4$, and $x=-4$. We need to find the limits to determine whether they are or not.
The numerator factors as

$$
3 x^{4}+3 x^{3}-36 x^{2}=3 x^{2}\left(x^{2}+x-12\right)=3 x^{2}(x+4)(x-3)
$$

We have:

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{3 x^{2}(x+4)(x-3)}{(x-3)(x+3)(x-4)(x+4)}=\lim _{x \rightarrow 3} \frac{3 x^{2}}{(x+3)(x-4)}=\frac{27}{(6)(-1)}=-\frac{27}{6} \\
\lim _{x \rightarrow-4} f(x) & =\lim _{x \rightarrow 3} \frac{3 x^{2}}{(x+3)(x-4)}=\frac{3(16)}{(-1)(-8)}=6
\end{aligned}
$$

So neither $x=3$ nor $x=-4$ are vertical asymptotes.
As we approach -3 , note that the numerator is always positive. If we approach -3 from the right, then $(x+3)$ is positive and $(x-4)$ negative, so the denominator is negative; if we approach from the left, then both $(x+3)$ and $(x-4)$ are negative, so the denominator will be positive. Thus,

$$
\begin{aligned}
\lim _{x \rightarrow-3^{+}} f(x) & =\lim _{x \rightarrow-3^{+}} \frac{3 x^{2}}{(x-3)(x+4)}=-\infty \\
\lim _{x \rightarrow-3^{-}} f(x) & =\lim _{x \rightarrow-3^{-}} \frac{3 x^{2}}{(x-3)(x+4)}=\infty
\end{aligned}
$$

So $x=-3$ is a vertical asymptote for $f(x)$. Similarly, we have

$$
\begin{aligned}
\lim _{x \rightarrow 4^{+}} f(x) & =\lim _{x \rightarrow 4^{+}} \frac{3 x^{2}}{(x-3)(x+4)}=\infty \\
\lim _{x \rightarrow 4^{-}} f(x) & =\lim _{x \rightarrow 4^{-}} \frac{3 x^{2}}{(x-3)(x+4)}=-\infty
\end{aligned}
$$

by analyzing the sign of the denominator in each case. So $x=4$ is also a vertical asymptote for $f(x)$.
§2.6
17. Since the function

$$
f(x)=\frac{2 x^{2}+3 x+1}{x^{2}+5 x}
$$

is not defined at $x=-5$ (the denominator evaluates to 0), the function cannote be continuous.
21. The function

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 3 & \text { if } x=1\end{cases}
$$

is defined at $a=1$. The value of the function is $f(1)=3$. Now, we check the limit:

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=2
$$

Since $\lim _{x \rightarrow 1} f(x) \neq f(1)$, the function is not continuous at $a=1$.
27. $f(x)$ is a rational function, which is undefined at $x=3$ and at $x=-3$ (where the denominator $x^{2}-9$ is zero). Rational functions are continuous at all points where they are defined, so $f(x)$ is continuous on $(-\infty,-3)$, on $(-3,3)$, and on $(3, \infty)$.
31. Because the "outside function" y^{40} is continuous everywhere, we can push the limit "in". We have:

$$
\lim _{x \rightarrow 0}\left(x^{8}-3 x^{6}-1\right)^{40}=\left(\lim _{x \rightarrow 0}\left(x^{8}-3 x^{6}-1\right)\right)^{40}=(-1)^{40}=1
$$

Alternatively, because $f(x)=\left(x^{8}-3 x^{6}-1\right)^{40}$ is a polynomial, we have

$$
\lim _{x \rightarrow 0} f(x)=f(0)=(-1)^{40}=1
$$

39. We have

$$
f(x)= \begin{cases}2 x & \text { if } x<1 \\ x^{2}+3 x & \text { if } x \geq 1\end{cases}
$$

We want to verify the function is not continuous at $a=1$, and determine one sided continuity, if any.
(a) Note that $f(1)=1+3=4$. To find the limit, the easiest thing to do is use the one-sided limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{3}+3 x\right)=4 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x=2
\end{aligned}
$$

Since the one-sided limits are different, $\lim _{x \rightarrow 1} f(x)$ does not exist, so the function cannot be continuous at $a=1$.
(b) We see above that the limit as $x \rightarrow 1^{+}$is the same as $f(1)$, so the function is continuous from the right; but since $\lim _{x \rightarrow 1^{-}} f(x)=2 \neq f(1)$, so the function is not continuous from the left.
(c) The function is continuous on $(-\infty, 1)$, because it is just a polynomial there. It is also continuous on $(1, \infty)$ because it is a polynomial there, and the continuity from the right at $a=1$ lets us add that endpoint. So the intervals are $(-\infty, 1)$ and $[1, \infty)$.
67. (a) The function $f(x)=2 x^{3}+x-2$ is continuous everywhere, and so it is continuous on $[-1,1]$. Since $f(-1)=-2-1-2=-5$ and $f(1)=2+1-2=1$, the function must pass through 0 somewhere in $(-1,1)$, by the Intermediate Value Theorem.
(b) Graphing on the standard window suggests there is only one solution to $f(x)=0$, and that it is near 1. Zooming in to look on the window $[0.7,1] \times[-3,1]$, suggests a value of about 0.835 .

