Math 270-005: Calculus I

Prof. Arturo Magidin

Homework 5

Solutions

15. We have $f(t)=t^{2}-4 t, 0 \leq t \leq 5$. The variable t is measured in seconds, the position $f(t)$ in feet.
(a) A graph of the function $f(t)$:

(b) The velocity function is the derivative of the position. So in this case, $v(t)=f^{\prime}(t)=2 t-4$. Here's a graph on $[0,5]$:

The object is moving left when $v(t)<0$, which happens for $0 \leq t<2$. It is moving right when the velocity is positive, which is $2<t \leq 5$. And it is stationary when $v(t)=0$, which happens when $t=2$.
(c) The acceleration is the derivative of the velocity, so $a(t)=v^{\prime}(t)=2$. Thus, at $t=1$, the velocity is $v(1)=2(1)-4=-2 \mathrm{ft} / \mathrm{sec}$, and the acceleration is $2 \mathrm{ft} / \mathrm{sec}^{2}$.
(d) When is the velocity zero? When $v(t)=2 t-4=0$. This happens when $t=2$. The acceleration at that time is $2 \mathrm{ft} / \mathrm{sec}^{2}$ because the acceleration is always $2 \mathrm{ft} / \mathrm{sec}^{2}$ for this motion.
(e) The speed is the absolute value of the velocity. If we graph it, we get:

So we see that the speed is increasing for $2 \leq t \leq 5$. Alternatively: the velocity increases when velocity and acceleration have the same sign. Since the acceleration is always positive, this happens on $[2,5]$, where the velocity is not negative.
23. Now the stone is trown vertically from a cliff. The initial velocity is $32 \mathrm{ft} / \mathrm{s}$, and the initial height is 48 ft . The position function is given by

$$
s(t)=-16 t^{2}+32 t+48
$$

(a) The velocity function is $v(t)=-32 t+32$.
(b) The highest point is achieved when the velocity is 0 , which happens when $t=1$: one second after throwing the stone.
(c) The height at the highest point is then $s(1)=-16+32+48=64 \mathrm{ft}$ above the ground.
(d) The stone strikes the ground when $s(t)=0$. We have

$$
\begin{aligned}
-16 t^{2}+32 t+48 & =0 \\
-16\left(t^{2}-2 t-3\right) & =0 \\
-16(t-3)(t+1) & =0
\end{aligned}
$$

Since $t=-1$ is impossible, it strikes the ground when $t=3$: three seconds after we throw it.
(e) The velocity when it strikes the ground is $v(3)=-32(3)+32=-32(2)=-64 \mathrm{ft} / \mathrm{sec}$. Negative because it is moving down.
(f) When is the speed increasing? Since the acceleration is $a(t)=v^{\prime}(t)=-32$, which is always negative, the speed is increasing when the velocity is negative; this occures on $[1,3]$: from the moment it starts falling until it hits the ground.

§3.7

27. If $y=\left(3 x^{2}+7 x\right)^{10}$, then the outside function is $f(u)=u^{10}$, the inside function is $u=g(x)=$ $3 x^{2}+7 x$. We have:

$$
y^{\prime}=10\left(3 x^{2}+7 x\right)^{9}\left(3 x^{2}+7 x\right)^{\prime}=10\left(3 x^{2}+7 x\right)^{9}(6 x+7)
$$

35. If $y=\tan e^{x}$, then the "outside function" is $f(u)=\tan u$, the "inside function" is $u=g(x)=e^{x}$. We have:

$$
y^{\prime}=\sec ^{2}\left(e^{x}\right)\left(e^{x}\right)^{\prime}=e^{x} \sec ^{2}\left(e^{x}\right)
$$

§3.8

13. The curve is $x^{4}+y^{4}=2$, the point is $(1,-1)$. Note that the point is indeed on the curve.
(a) First we find the derivative using implicit differentiation:

$$
\begin{aligned}
x^{4}+y^{4} & =2 \\
\frac{d}{d x}\left(x^{4}+y^{4}\right) & =\frac{d}{d x}(2) \\
4 x^{3}+4 y^{3} y^{\prime} & =0 \\
4 y^{3} y^{\prime} & =-4 x^{3} \\
y^{\prime} & =-\frac{4 x^{3}}{4 y^{3}} \\
y^{\prime} & =-\frac{x^{3}}{y^{3}}
\end{aligned}
$$

(b) Next we find the curve (the slope of the tangent line to the curve) at $(1,-1)$:

$$
\left.y^{\prime}\right|_{(1,-1)}=-\frac{(1)^{3}}{(-1)^{3}}=-\frac{1}{-1}=1
$$

19. Here we have the curve $\cos y=x$, at the point $\left(0, \frac{\pi}{2}\right)$. Note that the point does indeed satisfy the equation.
(a) The derivative:

$$
\begin{aligned}
\cos y & =x \\
\frac{d}{d x}(\cos y) & =\frac{d}{d x}(x) \\
(-\sin y) y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{-\sin y} \\
y^{\prime} & =-\csc (y)
\end{aligned}
$$

(b) At the point $\left(0, \frac{\pi}{2}\right)$, we obtain $y^{\prime}=-\csc \left(\frac{\pi}{2}\right)=-1$.
37. Now we have:

$$
\begin{aligned}
6 x^{3}+7 y^{3} & =13 x y \\
\frac{d}{d x}\left(6 x^{3}+7 y^{3}\right) & =\frac{d}{d x}(13 x y) \\
18 x^{2}+21 y^{2} y^{\prime} & =13\left((x)^{\prime} y+x(y)^{\prime}\right) \\
18 x^{2}+21 y^{2} y^{\prime} & =13\left(y+x y^{\prime}\right) \\
21 y^{2} y^{\prime}-13 x y^{\prime} & =13 y-18 x^{2} \\
\left(21 y^{2}-13 x\right) y^{\prime} & =13 y-18 x^{2} \\
y^{\prime} & =\frac{13 y-18 x^{2}}{21 y^{2}-13 x} .
\end{aligned}
$$

46. We have the curve $x^{3}+y^{3}=2 x y$ (the folium of Descartes), and the point $(1,1)$.
(a) The point lies in the curve, since $(1)^{3}+(1)^{2}=2=2(1)(1)$.
(b) To find the equation of the tangent line at the point, first we find $\left.y^{\prime}\right|_{(1,1)}$:

$$
\begin{aligned}
x^{3}+y^{3} & =2 x y \\
\frac{d}{d x}\left(x^{3}+y^{3}\right) & =\frac{d}{d x}(2 x y) \\
3 x^{2}+3 y^{2} y^{\prime} & =2\left(y+x y^{\prime}\right) \\
3(1)^{2}+3(1)^{2} y^{\prime} & =2\left(1+(1) y^{\prime}\right) \\
3+3 y^{\prime} & =2+2 y^{\prime} \\
y^{\prime} & =-1
\end{aligned}
$$

So the slope is -1 , and the equation of the tangent line is:

$$
\begin{aligned}
y-1 & =(-1)(x-1) \\
y & =-(x-1)+1 \\
y & =1-x+1 \\
y & =2-x
\end{aligned}
$$

51. To find the second derivative $\frac{d^{2} y}{d x^{2}}$, we have:

$$
\begin{aligned}
x+y^{2} & =1 \\
\frac{d}{d x}\left(x+y^{2}\right) & =\frac{d}{d x}(1) \\
1+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-1 \\
y^{\prime} & =-\frac{1}{2 y} . \\
\frac{d}{d x} y^{\prime} & =\frac{d}{d x}\left(-\frac{1}{2 y}\right) \\
y^{\prime \prime} & =-\frac{1}{2}\left(\frac{d}{d x} y^{-1}\right) \\
y^{\prime \prime} & =-\frac{1}{2}\left(-y^{-2} y^{\prime}\right) \\
y^{\prime \prime} & =\frac{1}{2 y^{2}} y^{\prime} \\
y^{\prime \prime} & =\frac{1}{2 y^{2}}\left(-\frac{1}{2 y}\right) \\
y^{\prime \prime} & =-\frac{1}{4 y^{3}} .
\end{aligned}
$$

