
Math 270–005: Calculus I
Prof. Arturo Magidin

Homework 6
Solutions

§3.9

21. If y = ln(x4 + 1), then using the Chain Rule we have:

y′ =
1

x4 + 1
(x4 + 1)′ =

4x3

x4 + 1
.

25. If y = (x2 + 1) lnx, then using the Product Rule we have

y′ = (x2 + 1)′ lnx+ (x2 + 1)(lnx)′ = 2x lnx+
x2 + 1

x
.

29. If y = ln(lnx), then by the Chain Rule we have:

y′ =
1

lnx
(lnx)′ =

1

lnx

(
1

x

)
=

1

x lnx
.

37. If y = 8x, then y′ = ln(8)8x.

43. And if y = x33x, then using the Product Rule we have:

y′ = (x3)′3x + x3(3x)′ = 3x23x + x3(ln(3)3x) = 3xx2(3 + x ln(3)).

§3.10

13. If f(x) = arcsin(2x), then by the Chain Rule we have:

f ′(x) =
1√

1− (2x)2
(2x)′ =

2√
1− 4x2

.

17. If f(x) = arcsin(e−2x), then we apply the Chain Rule twice:

f ′(x) =
1√

1− (e−2x)2
(e−2x)′

=
1√

1− e−4x
e−2x(−2x)′

= − 2e−2x

√
1− e−4x

.

21. If f(y) = arctan(2y2 − 4), then by the Chain Rule we have:

f ′(y) =
1

1 + (2y2 − 4)2
(2y2 − 4)′ =

4y

1 + (2y2 − 4)2
=

4y

4y4 − 16y2 + 17
.
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25. If f(x) = x2 + 2x3arccot(x)− ln(1 + x2), we have:

f ′(x) = 2x+ 2
(
(x3)′arccotx+ x3(arccotx)′

)
− 1

1 + x2
(1 + x2)′

= 2x+ 2

(
3x2arccotx− x3

(
1

1 + x2

))
− 2x

1 + x2

= 2x+ 6x2arccotx− 2x3

1 + x2
− 2x

1 + x2

= 2x+ 6x2arccotx− 2x3 + 2x

1 + x2

= 2x+ 6x2arccotx− 2x(x2 + 1)

1 + x2

= 2x+ 6x2arccotx− 2x

= 6x2arccotx.

§3.11

21. Let V (t) be the volume of the snowball at time t, measured in cm3. Let S(t) be the surface area
of the snowball at time t, measured in cm2, and let r(t) be the length of the radius at time t,
measured in cm. We will measure time in minutes.

We are told that the rate of change of the volume is proportional to the size of the surface; that
is, we are told that dV

dt = kS for some constant k.

The volume is given by V (t) = 4
3πr

3. Differentiating implicitly and remembering that S(t) = 4πr2

we get:

dV

dt
= 4πr2

dr

dt

kS(t) = (4πr2)
dr

dt

kS(t) = S(t)
dr

dt

k =
dr

dt
.

That is, the rate of change of the length of the radius is constant, as claimed.

36. See the picture in the book. Let h(t) be the height of the water inside the tank at time t,
measured in feet; let r(t) be the radius of the surface of the water at time t, measured in feet. We
will measure time in seconds.

Using similar triangles, we have that

h(t)

r(t)
=

12

6
= 2,

so r(t) = 1
2h(t).

We want to know how fast the depth is changing when the depth is 3 feet. So we want to know
the value of dh

dt when h = 3.

We are told that the volume is changing at a rate of −2 ft3/sec (negative because the water is
draining). So we know that dV

dt = −2 cubic feet per second.
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We want an equation that relates volume and height. We have:

V =
1

3
πr2h

V =
1

3
π

(
h

2

)2

h

V =
π

12
h3.

Differentiating both sides implicitly with respect to t, we get:

dV

dt
=

π

4
h2 dh

dt
.

Now, plugging in the known values and solving, we get:

−2 =
π

4
(3)2

dh

dt

− 8

9π
=

dh

dt
.

So when the water is 3 feet deep, the depth is decreasing at a rate of 8
9π feet per second.

41. Let x(t) be the distance from the foot of the ladder to the wall at time t, in feet, and y(t) the
distance from the top of the ladder to the ground at time t, also in feet. We measure t in seconds:

13 ft

x(t)

y(t)

�
�

�
�

�
�

�
�
�

�
�

We are told that dx
dt = 0.5 ft/sec (positive because it is moving away from the wall). We want to

know the value of dy
dt when x = 5.

An equation that connects x(t) and y(t) is

132 = x2 + y2.

Differentiating implicitly, we get

0 = 2x
dx

dt
+ 2y

dy

dt
.

We want to plug in the values of x and dx
dt and solve for dy

dt ; but we also need the value of y when
x = 5.

3



If 132 = x2 + y2, then at x = 5 we have 169 = 25 + y2, so y2 = 144. Therefore, y = 12. Plugging
in, we have

0 = 2x
dx

dt
+ 2y

dy

dt

0 = 2(5)(0.5) + 2(12)
dy

dt

−5 = 24
dy

dt

− 5

24
=

dy

dt
.

Negative because the ladder is sliding down.

So when the foot of the ladder is 5 feet from the wall, the top of the ladder is sliding down the
wall at a rate of 5

24 feet per second.

43. Let w(t) be the distance from the woman to the streetlamp, and s(t) the length of the shadow
she casts, both measured in feet with t in seconds:

w(t)s(t)

5 ft
20 ft

��
���

���
���

By similar triangles, we have that s+w
20 = s

5 , or equivalently, s+ w = 4s, or 3s = w.

Now, first we want to know the rate of change of the length of the shadow, that is dw
dt , when

s = 15. But the value of s is irrelevant: from 3s = w we get 3s′(t) = w′(t). Now, we are told that
dw
dt = −8 ft/sec (because she is approaching the lamp), so this means that s′(t) = − 8

3 feet per
second.

So the length of the shadow is shrinking at a rate of 8
3 feet per second.

Now, the tip of the shadow is s+ w away from the lamp. If we want to know the rate of change
of s+ w, then we want

d

dt
(s+ w) = s′(t) + w′(t) = −8− 8

3
= −32

3
,

so the tip of the shadow is moving at a speed of 32
3 feet per second (towards the lamp).

50. Let θ be the angle made by the beam, and let x(t) be the distance of the spotlight to the point
P , mesured in meters: I’m imagining the beam rotating anticlockwise, so the beam is moving left
to right.

s
�

�
�

�
�

�
��

x(t)

θ
500

P
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We are told the beam rotates four times each minute, so the rate of change of the angle is dθ
dt = 8π

radians/minute. We want to know the value of dx
dt when x(t) = 200.

We need an equation that connects θ to x(t). The simplest is to use the tangent, which will give
tan θ = x

500 , or 500 tan θ = x(t).

Differentiating implicitly, we obtain:

500 sec2(θ)
dθ

dt
=

dx

dt
.

We need to know the value of sec2(θ) when x(t) = 200.

We can calculate it directly, or recall that

sec2 θ = 1 + tan2 θ.

Since tan(θ) = 200
500 = 2

5 , we obtain that

sec2 θ = 1 +
4

25
=

29

25
.

Plugging in the values we get

500 sec2(θ)
dθ

dt
=

dx

dt

500

(
29

25

)
(8π) =

dx

dt

4640π =
dx

dt
.

So the beam is moving at a speed of 4640π meters/minute at that instant.

How does the speed of the beam along the shore vary when the distance between P and Q? From
the equation

dx

dt
= 500π sec2(θ)

dθ

dt
,

we see that when sec(θ) gets smaller, the beam slows down. The secant achieves its smaller value
at 0, and grows as we move further away from zero in either direction. So the further we are from
the point P , the faster the beam seems to move along the shore.
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