Math 270-005: Calculus I
 Prof. Arturo Magidin

Homework 7

Solutions
§4.1
11. Please see the book for the graph. The funciton has an absolute maximum at b, and an absolute minimum at c_{2}.
13. Please see the book for the graph. This function has an absolute minimum at $x=a$, but has no absolute maximum.
15. Please see the book for the graph. The absolute maximum of $f(x)$ occurs at $x=b$, and the absolute minimum occurs at $x=a$. Both are also local extremes.

There are also local maxima that are not absolute maxima at $x=p$ and $x=r$; and local minima that are not absolute minima at $x=q$ and at $x=s$.
19. We want a continuous function $f(x)$ defined on $[0,4]$ which has $f^{\prime}(x)=0$ at $x=1$ and at $x=2$, an absolute maximum at $x=4$, an absolute minimum at $x=0$, and a local minimum at $x=2$. There are many possible graphs; here is one:

23. To find the critical points of $f(x)=3 x^{2}-4 x+2$, we first take the derivative:

$$
f^{\prime}(x)=6 x-4
$$

This is always defined, and is equal to 0 at $x=\frac{2}{3}$. This is the only critical point, which is a stationary point.
35. First we find the derivative of $f(x)=\frac{1}{x}+\ln x$. Note that the function is only defined when $x>0$.

$$
f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{1}{x}=\frac{1}{x}-\frac{1}{x^{2}}
$$

This is not defined at $x=0$, but $x=0$ is not in the domain of f, so it doesn't count as a critical point.
The stationary points are the points where $f^{\prime}(x)=0$. This will occur if $\frac{1}{x}=\frac{1}{x^{2}}$, which requires $x^{2}=x$, or $x^{2}-x=x(x-1)=0$. This means $x=0$ (which we already noted is not in the domain), or $x=1$. Indeed, $x=1$ is a stationary point.
Thus, the only critical point is $x=1$.
45. We want to find the absolute extremes of $f(x)=x^{3}-3 x^{2}$ on $[-1,3]$. Note the function is continuous on a finite closed interval, so we can find the absolute extremes by finding all critical points in $[-1,3]$, and evaluating the function at them and the endpoints.

We have $f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)$. The critical points are then $x=0$ and $x=-2$. We have:

$$
\begin{aligned}
f(-1) & =-1-3=-4 \\
f(3) & =27-27=0 \\
f(0) & =0 \\
f(2) & =8-12=-4
\end{aligned}
$$

So the absolute maximum is 0 , achieved at $x=0$ and at $x=3$; and the absolute minimum is -4 , achieved at $x=-1$ and at $x=2$.
55. Here we have $f(x)=x^{2}+\arccos (x)$ on $[-1,1]$. Note the function is continuous on that interval. So proceeding as above, we have

$$
f^{\prime}(x)=2 x-\frac{1}{\sqrt{1-x^{2}}}=\frac{2 x \sqrt{1-x^{2}}-1}{\sqrt{1-x^{2}}}
$$

This is undefined at $x=-1$ and $x=1$, which are the endpoints.
The stationary points are where $2 x \sqrt{1-x^{2}}-1=0$, or when $2 x \sqrt{1-x^{2}}=1$. Squaring both sides, we get $4 x^{2}\left(1-x^{2}\right)=1$, or $4 x^{2}-4 x^{4}-1=0$. This is a quadratic equation on x^{2},

$$
4\left(x^{2}\right)^{2}-4\left(x^{2}\right)+1=0
$$

And we can rewrite as

$$
0=4\left(x^{2}\right)^{2}-4 x^{2}+1=\left(2 x^{2}\right)^{2}-2\left(2 x^{2}\right)+1=\left(2 x^{2}-1\right)^{2}
$$

So the critical points occur when $2 x^{2}=1$, or when $x^{2}=\frac{1}{2}$, which occurs at $x=\frac{\sqrt{2}}{2}$ and $x=-\frac{\sqrt{2}}{2}$.
However, note that $x=-\frac{\sqrt{2}}{2}$ is not a critical point, since $f^{\prime}\left(-\frac{\sqrt{2}}{2}\right)<0$; this spurious solution arises because we squared both sides of the equation. So the only critical points are $x=1, x=-1$ (which are also the endpoints), and $x=\frac{\sqrt{2}}{2}$.
Evaluating, we have:

$$
\begin{aligned}
f(-1) & =1+\arccos (-1)=1+\pi \\
f(1) & =1+\arccos (1)=1 \\
f\left(\frac{\sqrt{2}}{2}\right) & =\frac{1}{2} \arccos \left(\frac{\sqrt{2}}{2}\right)=\frac{1}{2}+\frac{\pi}{4}=\frac{2+\pi}{4}
\end{aligned}
$$

Of these, the smallest value is 1 , achieved at $x=1$; and the largest value is $1+\pi$, achieved at $x=-1$.

§4.2

5. Please see the book for the graph of $f(x)=\frac{x^{2}}{4}+1$ on $[-2,4]$.
(a) From the graph, it would seem that the tangent is parallel to the green line around $c=1$.
(b) To verify this, we compute. First, $f^{\prime}(x)=\frac{x}{2}$. The slope of the secant line is

$$
\frac{f(4)-f(-2)}{4-(-2)}=\frac{5-2}{6}=\frac{1}{2}
$$

And we see that $f^{\prime}(c)=\frac{c}{2}$ takes the value $\frac{1}{2}$ at $c=1$, as we guessed.
11. We have the function $f(x)=x(x-1)^{2}$ on the interval $[0,1]$.

The function is a polynomial, so it is continuous everywhere; in particular, on $[0,1]$. It is also differentiable everywhere, so it is differentiable on $(0,1)$. Finally, wee verify that $f(0)=f(1)$ (both are equal to 0 . So the hypotheses of Rolle's Theorem are true for $f(x)$ on $[0,1]$, and the theorem applies: there exists at least one point c in $(0,1)$ where $f^{\prime}(c)=0$.
To find all such points, we compute $f^{\prime}(x)$:
$f^{\prime}(x)=(x)^{\prime}(x-1)^{2}+x\left((x-1)^{2}\right)^{\prime}=(x-1)^{2}+2 x(x-1)=(x-1)(x-1+2 x)=(x-1)(3 x-1)$.
The only solution to $f^{\prime}(x)=0$ in $(0,1)$ is $x=\frac{1}{3}$. So the one value where $f^{\prime}(c)=0$ in $(0,1)$ is $c=\frac{1}{3}$.
15. We now consider $f(x)=1-x^{2 / 3}$ on $[-1,1]$. The function is continuous everywhere, so it is continuous on $[-1,1]$. The derviative is $f^{\prime}(x)=-\frac{2}{3} x^{-1 / 3}=-\frac{2}{3 \sqrt[3]{x}}$. We note that this is undefined at $x=0$. This means that $f(x)$ is not differentiable on $(-1,1)$, and so the hypotheses of Rolle's Theorem are not satisfied. The theorem does not apply.
(And although $f(-1)=f(1)$, in this case there are no points where $f^{\prime}(c)=0$.)
21. (a) The function $f(x)=7-x^{2}$ is continuous everywhere, so it is continuous on $[-1,2]$. It is differentiable everywhere, so it is differentiable on $(-1,2)$. The hypotheses of the Mean Value Theorem are satisfied, so it applies to $f(x)$ on $[-1,2]$.
(b) We have

$$
\frac{f(2)-f(-1)}{2-(-1)}=\frac{3-6}{3}=-1
$$

Now, $f^{\prime}(x)=-2 x$. The only point where $f^{\prime}(c)=-1$ is then $c=\frac{1}{2}$.

