
Math 270–005: Calculus I
Prof. Arturo Magidin

Homework 7
Solutions

§4.1

11. Please see the book for the graph. The funciton has an absolute maximum at b, and an absolute
minimum at c2.

13. Please see the book for the graph. This function has an absolute minimum at x = a, but has no
absolute maximum.

15. Please see the book for the graph. The absolute maximum of f(x) occurs at x = b, and the
absolute minimum occurs at x = a. Both are also local extremes.

There are also local maxima that are not absolute maxima at x = p and x = r; and local minima
that are not absolute minima at x = q and at x = s.

19. We want a continuous function f(x) defined on [0, 4] which has f ′(x) = 0 at x = 1 and at x = 2,
an absolute maximum at x = 4, an absolute minimum at x = 0, and a local minimum at x = 2.
There are many possible graphs; here is one:
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23. To find the critical points of f(x) = 3x2 − 4x+ 2, we first take the derivative:

f ′(x) = 6x− 4.

This is always defined, and is equal to 0 at x = 2
3 . This is the only critical point, which is a

stationary point.

35. First we find the derivative of f(x) = 1
x +lnx. Note that the function is only defined when x > 0.

f ′(x) = − 1

x2
+

1

x
=

1

x
− 1

x2
.

This is not defined at x = 0, but x = 0 is not in the domain of f , so it doesn’t count as a critical
point.

The stationary points are the points where f ′(x) = 0. This will occur if 1
x = 1

x2 , which requires
x2 = x, or x2 − x = x(x − 1) = 0. This means x = 0 (which we already noted is not in the
domain), or x = 1. Indeed, x = 1 is a stationary point.

Thus, the only critical point is x = 1.

45. We want to find the absolute extremes of f(x) = x3 − 3x2 on [−1, 3]. Note the function is
continuous on a finite closed interval, so we can find the absolute extremes by finding all critical
points in [−1, 3], and evaluating the function at them and the endpoints.
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We have f ′(x) = 3x2 − 6x = 3x(x− 2). The critical points are then x = 0 and x = −2. We have:

f(−1) = −1− 3 = −4,

f(3) = 27− 27 = 0,

f(0) = 0,

f(2) = 8− 12 = −4.

So the absolute maximum is 0, achieved at x = 0 and at x = 3; and the absolute minimum is −4,
achieved at x = −1 and at x = 2.

55. Here we have f(x) = x2 + arccos(x) on [−1, 1]. Note the function is continuous on that interval.
So proceeding as above, we have

f ′(x) = 2x− 1√
1− x2

=
2x

√
1− x2 − 1√
1− x2

.

This is undefined at x = −1 and x = 1, which are the endpoints.

The stationary points are where 2x
√
1− x2−1 = 0, or when 2x

√
1− x2 = 1. Squaring both sides,

we get 4x2(1− x2) = 1, or 4x2 − 4x4 − 1 = 0. This is a quadratic equation on x2,

4(x2)2 − 4(x2) + 1 = 0

And we can rewrite as

0 = 4(x2)2 − 4x2 + 1 = (2x2)2 − 2(2x2) + 1 = (2x2 − 1)2.

So the critical points occur when 2x2 = 1, or when x2 = 1
2 , which occurs at x =

√
2
2 and x = −

√
2
2 .

However, note that x = −
√
2
2 is not a critical point, since f ′(−

√
2
2 ) < 0; this spurious solution

arises because we squared both sides of the equation. So the only critical points are x = 1, x = −1

(which are also the endpoints), and x =
√
2
2 .

Evaluating, we have:

f(−1) = 1 + arccos(−1) = 1 + π.

f(1) = 1 + arccos(1) = 1.

f

(√
2

2

)
=

1

2
arccos

(√
2

2

)
=

1

2
+

π

4
=

2 + π

4
.

Of these, the smallest value is 1, achieved at x = 1; and the largest value is 1 + π, achieved at
x = −1.

§4.2

5. Please see the book for the graph of f(x) = x2

4 + 1 on [−2, 4].

(a) From the graph, it would seem that the tangent is parallel to the green line around c = 1.

(b) To verify this, we compute. First, f ′(x) = x
2 . The slope of the secant line is

f(4)− f(−2)

4− (−2)
=

5− 2

6
=

1

2
.

And we see that f ′(c) = c
2 takes the value 1

2 at c = 1, as we guessed.
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11. We have the function f(x) = x(x− 1)2 on the interval [0, 1].

The function is a polynomial, so it is continuous everywhere; in particular, on [0, 1]. It is also
differentiable everywhere, so it is differentiable on (0, 1). Finally, wee verify that f(0) = f(1)
(both are equal to 0. So the hypotheses of Rolle’s Theorem are true for f(x) on [0, 1], and the
theorem applies: there exists at least one point c in (0, 1) where f ′(c) = 0.

To find all such points, we compute f ′(x):

f ′(x) = (x)′(x− 1)2 + x((x− 1)2)′ = (x− 1)2 +2x(x− 1) = (x− 1)(x− 1+ 2x) = (x− 1)(3x− 1).

The only solution to f ′(x) = 0 in (0, 1) is x = 1
3 . So the one value where f ′(c) = 0 in (0, 1) is

c = 1
3 .

15. We now consider f(x) = 1 − x2/3 on [−1, 1]. The function is continuous everywhere, so it is
continuous on [−1, 1]. The derviative is f ′(x) = − 2

3x
−1/3 = − 2

3 3
√
x
. We note that this is undefined

at x = 0. This means that f(x) is not differentiable on (−1, 1), and so the hypotheses of Rolle’s
Theorem are not satisfied. The theorem does not apply.

(And although f(−1) = f(1), in this case there are no points where f ′(c) = 0.)

21. (a) The function f(x) = 7 − x2 is continuous everywhere, so it is continuous on [−1, 2]. It is
differentiable everywhere, so it is differentiable on (−1, 2). The hypotheses of the Mean Value
Theorem are satisfied, so it applies to f(x) on [−1, 2].

(b) We have
f(2)− f(−1)

2− (−1)
=

3− 6

3
= −1.

Now, f ′(x) = −2x. The only point where f ′(c) = −1 is then c = 1
2 .
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