Math 465 - Homework 2

Due Friday September 19

1. Let G be a group with operation \cdot . We define the operation \odot : $G \times G \to G$ by

$$a \odot b = b \cdot a$$
.

- (i) Prove that G^{op} is a group.
- (ii) Prove that $(G^{op})^{op} = G$.
- 2. Let G be a group. Prove that G is Abelian if and only if for every $a, b \in G$, we have $(ab)^{-1} = a^{-1}b^{-1}$.
- 3. Let G be a group, and $a, b \in G$. Prove that if $(ab)^2 = a^2b^2$, then ab = ba.
- 4. Let G be a group. Prove that if $g^2 = e$ for every $g \in G$, then G is Abelian (that is, for all $a, b \in G$, ab = ba).
- 5. Determine the order of each element of U(14).
- 6. In the group \mathbb{Z}_{12} of integers modulo 12 under addition modulo 12, find |a|, |b|, and |a+b| in each of the following cases:
 - (a) a = 6, b = 2;
 - (b) a = 3, b = 8;
 - (c) a = 5, b = 4.
- 7. Let G be a group, and let $a \in G$. Prove that $|a| = |a^{-1}|$, meaning that either they are both infinite, or they are both finite and equal to each other.
- 8. Let G be a group, and let $a, b \in G$. Prove that |ab| = |ba|, meaning that either they are both infinite, or they are both finite and equal to each other.
- 9. Let $G = D_4$ be the dihedral group of order 8.
 - (a) Show that for every $g \in G$, we have $g^4 = R_0$ (the identity of G).
 - (b) Show that for every $a, b \in G$, we have $(ab)^4 = a^4b^4$.
 - (c) Show that G is not Abelian.