Math 465 - Homework 3

Due Friday September 26

- 1. Let G be a group, and let $a, x \in G$.
 - (i) Prove that for every integer n,

$$(axa^{-1})^n = ax^n a^{-1}.$$

SUGGESTION: Use induction on n to prove it for $n \ge 0$, then take inverses to prove it for negative n.

- (ii) Let G be a group, $a, x \in G$. Prove that $|x| = |axa^{-1}|$. Suggestion: Show that the set of k for which $x^k = e$ is the same as the set of k for which $(axa^{-1})^k = e$.
- 2. If n > 2 and n is even, show that D_n has a subgroup of order 4.
- 3. Let G a group, and let H, K be subgroups. Show that if hk = kh for every $h \in H$ and $k \in K$, then $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.
- 4. (i) Find all the generators of the groups \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} .
 - (ii) Let $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ be cyclic groups of order 6, 8, and 20, respectively. Find all the generators of $\langle a \rangle$, of $\langle b \rangle$, and of $\langle c \rangle$.
- 5. Let G be a group, and let $a \in G$ be an element with |a| = 15. Compute the orders of each of the following elements of G:
 - (i) a^3 , a^6 , a^9 , and a^{12} .
 - (ii) a^5 and a^{10} .
 - (iii) a^2 , a^4 , a^8 , and a^{14} .
- 6. In \mathbb{Z} , find all generators of the subgroup $\langle 3 \rangle$.
- 7. In \mathbb{Z} , find a generator for the subgroup $\langle 10 \rangle \cap \langle 12 \rangle$.
- 8. In \mathbb{Z} , show that $\langle n \rangle \subseteq \langle m \rangle$ if and only if m divides n.
- 9. In \mathbb{Z} , if $n, m \in \mathbb{Z}$, what is a generator for $\langle n \rangle \cap \langle m \rangle$?
- 10. Let G be an Abelian group, and let

$$H = \{g \in G \mid |g| \text{ divides } 12\}.$$

- (i) Prove that H is a subgroup of G.
- (ii) Is there anything special about 12, or would your proof be valid if 12 were replaced by some other positive integer?
- (iii) State the general result derived from your answer of (ii).