Math 465 - Homework 2

SOLUTIONS

Prof. Arturo Magidin

1. Let G be a group with operation \cdot . We define the opposite group G^{op} , by taking the same underlying set as G, and defining the operation $\odot: G \times G \to G$ by

$$a \odot b = b \cdot a$$
.

(i) Prove that G^{op} is a group.

Proof. From the definition it is clear that \odot is an operation on G. To show it is associative, let $a, b, c \in G$. Then

$$a \odot (b \odot c) = a \odot (c \cdot b) = (c \cdot b) \cdot a = c \cdot (b \cdot a)$$
 (because · is associative)
= $(b \cdot a) \odot c = (a \odot b) \odot c$.

So we conclude that \odot is associative.

If e is the identity of G, then it is also the identity of G^{op} : for $a \odot e = e \cdot a = a$, and $e \odot a = a \cdot e = a$.

And if $a \in G$, then its inverse a^{-1} under \cdot is also an inverse under \odot : $a \odot a^{-1} = a^{-1} \cdot a = e$ and $a^{-1} \odot a = a \cdot a^{-1} = e$.

Thus, G^{op} is a group. \square

(ii) Prove that $(G^{op})^{op} = G$.

Proof. Say we denote the operation of $(G^{op})^{op}$ by \otimes . So $a \otimes b = b \odot a$. But

$$a \otimes b = b \odot a = a \cdot b$$
,

so for all $a, b \in G$, $a \otimes b = a \cdot b$. So the operation on $(G^{op})^{op}$ is the same as the operation on G. Same set and same operation on the set, so $(G^{op})^{op} = G$. \square

2. Let G be a group. Prove that G is Abelian if and only if for every $a,b \in G$, we have that $(ab)^{-1} = a^{-1}b^{-1}$.

Proof. We know that we always have $(xy)^{-1} = y^{-1}x^{-1}$.

If G is Abelian, then $(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}$ holds for all $a,b\in G$, since a^{-1} commutes with b^{-1} .

Conversely, if we always have that $(ab)^{-1} = a^{-1}b^{-1}$, then taking inverses again we have

$$ab = ((ab)^{-1})^{-1} = (a^{-1}b^{-1})^{-1} = (b^{-1})^{-1}(a^{-1})^{-1} = ba.$$

So we conclude that for any $a, b \in G$, we have ab = ba. Thus, G is Abelian. \square

3. Let G be a group, and $a, b \in G$. Prove that if $(ab)^2 = a^2b^2$, then ab = ba.

Proof. Expanding $(ab)^2$, a^2 , and b^2 , we have abab = aabb. Then we can cancel an a on the left and a b on the right to obtain ba = ab, as desired. \square

4. Let G be a group. Prove that if $g^2 = e$ for every $g \in G$, then G is Abelian (that is, for all $a, b \in G$, ab = ba).

Proof. Let $a, b \in G$. Then $(ab)^2 = e$ because $ab \in G$ and the square of any element in G is the identity; and $a^2 = b^2 = e$ for the same reasons. But that means that $a^2b^2 = ee = e$. Therefore, $(ab)^2 = e = a^2b^2$.

So we can conclude that $(ab)^2 = a^2b^2$. By Problem 3, it follows that ab = ba. Since a and b were arbitrary, we see that any two elements of G commute, so G is Abelian, as claimed. \square

5. Determine the order of each element of U(14).

Answer. I will use \equiv when we have an equality modulo 14.

The elements of U(14) are

$$U(14) = \{1, 3, 5, 9, 11, 13\}.$$

Listing the powers until we get 1 modulo 14 (at each step we can just multiply the previous reduced result; for example, we don't actually have to compute 3^5 and then reduce modulo 14; since $3^4 \equiv 11$ modulo 14, then $3^5 = 3(3^4) \equiv 3(11) = 33$ modulo 14), we have:

- |1| = 1.
- 3, $3^2 = 9$, $3^3 = 27 \equiv 13$, $3^4 \equiv 39 \equiv 11$, $3^5 \equiv 33 \equiv 5$, $3^6 \equiv 15 \equiv 1$. So |3| = 6.
- 5, $5^2 = 25 \equiv 11$, $5^3 \equiv 55 \equiv 13$, $5^4 \equiv 65 \equiv 9$, $5^5 \equiv 45 \equiv 3$, $5^6 \equiv 15 \equiv 1$. Thus, we also have |5| = 6.
- $9, 9^2 = 81 \equiv 11, 9^3 \equiv 99 \equiv 1, \text{ so } |9| = 3.$
- 11, $11^2 = 121 \equiv 9$, $11^3 \equiv 99 \equiv 1$, and we again have |11| = 3.
- $13, 13^2 = 169 \equiv 1$, so |13| = 2.
- 6. In the group \mathbb{Z}_{12} of integers modulo 12 under addition modulo 12, find |a|, |b|, and |a+b| in each of the following cases:
 - (a) a = 6, b = 2;

Answer. Since a + a = 0 in \mathbb{Z}_{12} , we have |a| = 2; and the smallest positive multiple of b that is a multiple of 12 is 6b, so |b| = 6.

Meanwhile, a+b=8; the smallest positive multiple of 8 that is divisible by 12 is 24=(3)(8), so |a+b|=3.

(b) a = 3, b = 8;

Answer. Here we have |a| = 4, |b| = 6. and a + b = 11; the smallest positive multiple of 11 that is divisible by 12 is (12)(11), so |a + b| = 12.

(c) a = 5, b = 4.

Answer. Here we have |a| = 12 and |b| = 3; the smallest positive multiple of a + b = 9 that is divisible by 12 is (3)(9) = 36, so |a + b| = 3.

7. Let G be a group, and let $a \in G$. Prove that $|a| = |a^{-1}|$, meaning that either they are both infinite, or they are both finite and equal to each other.

Proof. If $a^n = e$, then $(a^{-1})^n = (a^n)^{-1} = e^{-1} = e$. So

$$\{k \in \mathbb{Z} \mid a^k = e\} \subseteq \{k \in \mathbb{Z} \mid (a^{-1})^k = e\}.$$

Applying the same argument now to a^{-1} , and noting that $(a^{-1})^{-1} = a$, we conclude that the other inclusion also holds, so

$$\{k \in \mathbb{Z} \mid a^k = e\} = \{k \in \mathbb{Z} \mid (a^{-1})^k = e\}.$$
 (1)

Since $|a| = \infty$ if and only if the set on the left of (1) consists only of 0; that is, is $\{0\}$; and similarly for a^{-1} . It follows that $|a| = \infty$ if and only if $|a^{-1}| = \infty$. And |a| = n > 0 if and only if the least positive integer in the set on the left of (1) is n, and similarly for a^{-1} , so if |a| is finite, then $|a| = |a^{-1}|$ and likewise the converse. \square

8. Let G be a group, and let $a, b \in G$. Prove that |ab| = |ba|, meaning that either they are both infinite, or they are both finite and equal to each other.

Proof. We claim that $(ab)^{n+1} = a(ba)^n b$ for all n > 0. We prove it by Induction on n. For n = 1, we have $(ab)^2 = a(ba)^1 b$, which holds. For the Inductive Step, assume that $(ab)^{k+1} = a(ba)^k b$ holds; we want to prove that $(ab)^{k+2} = a(ba)^{k+1} b$. We have

$$(ab)^{k+2} = (ab)(ab)^{k+1} = ab (a(ba)^k b) = a(ba)(ba)^k b = a(ba)^{k+1} b,$$

as required.

If $(ba)^n = e$, then $(ab)^{n+1} = a(ba)^n b = ab$. Therefore, $(ab)^{n+1} = ab$. Cancelling one ab, we obtain $(ab)^n = e$. That is, if $(ba)^n = e$, then $(ab)^n = e$. Exchanging the roles of a and b, we also obtain that if $(ab)^m = e$ then $(ba)^m = e$. Therefore,

$$\{k \in \mathbb{Z} \mid (ab)^k = e\} = \{k \in \mathbb{Z} \mid (ba)^k = e\}.$$

Since the two sets are equal, then arguing as we did in problem 7 we conclude that either both |ab| and |ba| are infinite, or else they are both finite and equal to each other, which is what we wanted to prove. \square

- 9. Let $G = D_4$ be the dihedral group of order 8.
 - (a) Show that for every $g \in G$, we have $g^4 = R_0$ (the identity of G).

Proof. For the rotations, we have $R_{180}^2 = R_0$, so $(R_{180})^4 = R_0$; and $(R_{90})^2 = (R_{270})^2 = R_{180}$, so $(R_{90})^4 = (R_{270})^4 = (R_{180})^2 = R_0$

For each reflection we have that the square equals R_0 , and therefore the fourth power equals R_0 as well. So $g^4 = R_0$ for every $g \in D_4$. \square

(b) Show that for every $a, b \in G$, we have $(ab)^4 = a^4b^4$.

Proof. Since the fourth power of any element of G equals R_0 , we have $(ab)^4 = R_0$ for all $a, b \in G$; and $a^4b^4 = R_0R_0 = R_0$. Thus,

$$(ab)^4 = R_0 = a^4b^4$$

holds for every $a, b \in G$.

(c) Show that G is not Abelian.

Proof. As we saw in class in the Cayley table, the result of doing a rotation of 90° and then a horizontal reflection is different from the result of first doing a horizontal reflection and then a rotation of 90° . One results in the reflection we called D, and the other in the reflection we called D'.

Alternatively, using the notation we saw in class, we have that if F is any reflection and R is the rotation by 90°, then $FR = R^{-1}F$, which cannot equal RF because $R \neq R^{-1}$. So $FR \neq RF$, proving the group is not abelian. \square

REMARK. Thinking about Problem 3 above, we see that if $(ab)^2 = a^2b^2$ for every $a, b \in G$, then G is Abelian. Likewise, from Problem 2 we see that if $(ab)^{-1} = a^{-1}b^{-1}$ always holds, then G is Abelian. So one might wonder if for other values we might have that if $(ab)^n = a^nb^n$ always holds, then G will be Abelian. The answer is "no"; this problem shows that certainly $(ab)^4 = a^4b^4$ does not suffice; in fact, there are examples for every $n, n \neq 2, n \neq -1$, of groups G in which $(ab)^n = a^nb^n$ always holds, but G is not Abelian.