Math 465 - Homework 2
SOLUTIONS
Prof. Arturo Magidin

1. Let G be a group with operation -. We define THE OPPOSITE GROUP G°P, by taking the same
underlying set as GG, and defining the operation ©®: G x G — G by

a®b=>-a.

(i) Prove that G°P is a group.
Proof. From the definition it is clear that ® is an operation on G. To show it is associative,
let a,b,c € G. Then

a®boc)=aG(c-b)=(c-b)-a=c-(b-a) (because - is associative)
=0b-a)0c=(a®b)Oc

So we conclude that ® is associative.

If e is the identity of GG, then it is also the identity of G°P: for a ® e = e-a = a, and
ea=a-e=a.

And if a € G, then its inverse a~' under - is also an inverse under ®: a®a ' =a"'-a=e

anda 'Ga=a-a"!=e.
Thus, G°P is a group. [
(ii) Prove that (G°P)°P = G.
Proof. Say we denote the operation of (G°P)°P by ®. So a ® b=b® a. But
a®b=bGa=a-b,

so for all a,b € G, a® b = a-b. So the operation on (G°P)°P is the same as the operation
on G. Same set and same operation on the set, so (G°P)°P = G. O

2. Let G be a group. Prove that G is Abelian if and only if for every a,b € G, we have that
(ab)™t =a 1o~ 1.
Proof. We know that we always have (vy)~! =y~ lz~1.

If G is Abelian, then (ab)™! = b~la=! = a6~ holds for all a,b € G, since a~! commutes
with b1,

Conversely, if we always have that (ab)~! = a=!b~!, then taking inverses again we have
ab=((ab)™ )t =(a b H =" a) ! = ba.
So we conclude that for any a,b € G, we have ab = ba. Thus, G is Abelian. [J
3. Let G be a group, and a,b € G. Prove that if (ab)? = a?b?, then ab = ba.

Proof. Expanding (ab)?, a?, and b?, we have abab = aabb. Then we can cancel an a on the left
and a b on the right to obtain ba = ab, as desired. [

4. Let G be a group. Prove that if g? = e for every g € G, then G is Abelian (that is, for all a,b € G,
ab = ba).
Proof. Let a,b € G. Then (ab)? = e because ab € G and the square of any element in G is the
identity; and a® = b? = e for the same reasons. But that means that a?b?> = ee = e. Therefore,
(ab)? = e = a?b?.
So we can conclude that (ab)? = a?b?. By Problem 3, it follows that ab = ba. Since a and b were
arbitrary, we see that any two elements of G commute, so G is Abelian, as claimed. O



5. Determine the order of each element of U(14).
Answer. I will use = when we have an equality modulo 14.
The elements of U(14) are
U(14) = {1,3,5,9,11,13}.

Listing the powers until we get 1 modulo 14 (at each step we can just multiply the previous
reduced result; for example, we don’t actually have to compute 3° and then reduce modulo 14;
since 3* = 11 modulo 14, then 3° = 3(3%) = 3(11) = 33 modulo 14), we have:

o |1|=1.
3,32=9,33=27=13,31=39=11,3"=33=5,3=15=1. So |3| = 6.
5, 52=25=11,53=55=13,5*=65=9, 5° = 45 = 3, 5 = 15 = 1. Thus, we also have
|5 = 6.
9,92=81=11,9=99=1, so |9 = 3.
11,112 =121 =9, 113 = 99 = 1, and we again have |11| = 3.
e 13,132 =169 =1, so |[13| = 2.

6. In the group Z;» of integers modulo 12 under addition modulo 12, find |al, |b], and |a + b| in each
of the following cases:

(a) a=6,b=2;
Answer. Since a +a = 0 in Z;2, we have |a| = 2; and the smallest positive multiple of b
that is a multiple of 12 is 6b, so |b| = 6.
Meanwhile, a+b = 8; the smallest positive multiple of 8 that is divisible by 12 is 24 = (3)(8),
so la+b| = 3.

(b) a=3,b=358;
Answer. Here we have |a| =4, |b| = 6. and a + b = 11; the smallest positive multiple of 11
that is divisible by 12 is (12)(11), so |a + b| = 12.

(¢c) a=5,b=4.
Answer. Here we have |a| = 12 and |b| = 3; the smallest positive multiple of a + b = 9 that
is divisible by 12 is (3)(9) = 36, so |a + b| = 3.

7. Let G be a group, and let a € G. Prove that |a| = |a~!|, meaning that either they are both
infinite, or they are both finite and equal to each other.

Proof. If a” = ¢, then (a7 !)" = (a") ! =e ! =e. So

{(keZ|d*=e}C{kcZ]|(a )k =¢}.

1

Applying the same argument now to a~!, and noting that (a=!)~! = a, we conclude that the

other inclusion also holds, so

{(keZ|adt=e}={kecZ|(a ) =e¢}. (1)

Since |a| = oo if and only if the set on the left of (1) consists only of 0; that is, is {0}; and similarly
for a=t. Tt follows that |a] = oo if and only if |[a=!| = co. And |a| = n > 0 if and only if the
least positive integer in the set on the left of (1) is n, and similarly for a=*, so if |al is finite, then

la| = |[a=!| and likewise the converse. [J



8. Let G be a group, and let a,b € G. Prove that |ab] = |ba|, meaning that either they are both
infinite, or they are both finite and equal to each other.
Proof. We claim that (ab)"*! = a(ba)™b for all n > 0. We prove it by Induction on n. For n = 1,
we have (ab)? = a(ba)'b, which holds. For the Inductive Step, assume that (ab)**! = a(ba)*b
holds; we want to prove that (ab)**2? = a(ba)*+'b. We have

(ab)**2 = (ab)(ab)**! = ab (a(ba)*b) = a(ba)(ba)*b = a(ba)* b,

as required.

If (ba)™ = e, then (ab)"™! = a(ba)"b = ab. Therefore, (ab)"*! = ab. Cancelling one ab, we obtain
(ab)™ = e. That is, if (ba)™ = e, then (ab)™ = e. Exchanging the roles of a and b, we also obtain
that if (ab)™ = e then (ba)™ = e. Therefore,

{(keZ|(ab)* =e} ={k € Z]| (ba)* = e}.

Since the two sets are equal, then arguing as we did in problem 7 we conclude that either both
|ab] and |ba| are infinite, or else they are both finite and equal to each other, which is what we
wanted to prove. [

9. Let G = Dy4 be the dihedral group of order 8.

(a) Show that for every g € G, we have g* = Ry (the identity of G).
Proof. For the rotations, we have R2q, = Ry, so (Rig0)* = Ro; and (Rgg)? = (Ra270)? =
Riso, 50 (Rgo)* = (Ra70)* = (Riso)? = Ro
For each reflection we have that the square equals Ry, and therefore the fourth power
equals Ry as well. So g* = Ry for every g € Dy. O

(b) Show that for every a,b € G, we have (ab)* = a®b?.

Proof. Since the fourth power of any element of G equals Ry, we have (ab)* = Ry for all
a,b € G; and a*b* = RyRy = Ry. Thus,

(ab)* = Ry = a*b*

holds for every a,b € G.

(¢) Show that G is not Abelian.

Proof. As we saw in class in the Cayley table, the result of doing a rotation of 90° and
then a horizontal reflection is different from the result of first doing a horizontal reflection
and then a rotation of 90°. One results in the reflection we called D, and the other in the
reflection we called D’.

Alternatively, using the notation we saw in class, we have that if F' is any reflection and R
is the rotation by 90°, then FR = R™'F, which cannot equal RF because R # R~'. So
FR # RF, proving the group is not abelian. [J

REMARK. Thinking about Problem 3 above, we see that if (ab)? = a?b? for every a,b € G,
then G is Abelian. Likewise, from Problem 2 we see that if (ab)™! = a~1b~! always holds,
then G is Abelian. So one might wonder if for other values we might have that if (ab)™ = a™b™
always holds, then G will be Abelian. The answer is “no”; this problem shows that certainly
(ab)* = a*b* does not suffice; in fact, there are examples for every n, n # 2, n # —1, of
groups G in which (ab)™ = a™b™ always holds, but G is not Abelian.



