
Math 465 - Homework 2
Solutions

Prof. Arturo Magidin

1. Let G be a group with operation ·. We define the opposite group Gop, by taking the same
underlying set as G, and defining the operation ⊙ : G×G → G by

a⊙ b = b · a.

(i) Prove that Gop is a group.

Proof. From the definition it is clear that ⊙ is an operation on G. To show it is associative,
let a, b, c ∈ G. Then

a⊙ (b⊙ c) = a⊙ (c · b) = (c · b) · a = c · (b · a) (because · is associative)

= (b · a)⊙ c = (a⊙ b)⊙ c.

So we conclude that ⊙ is associative.

If e is the identity of G, then it is also the identity of Gop: for a ⊙ e = e · a = a, and
e⊙ a = a · e = a.

And if a ∈ G, then its inverse a−1 under · is also an inverse under ⊙: a⊙ a−1 = a−1 · a = e
and a−1 ⊙ a = a · a−1 = e.

Thus, Gop is a group. □

(ii) Prove that (Gop)op = G.

Proof. Say we denote the operation of (Gop)op by ⊗. So a⊗ b = b⊙ a. But

a⊗ b = b⊙ a = a · b,

so for all a, b ∈ G, a ⊗ b = a · b. So the operation on (Gop)op is the same as the operation
on G. Same set and same operation on the set, so (Gop)op = G. □

2. Let G be a group. Prove that G is Abelian if and only if for every a, b ∈ G, we have that
(ab)−1 = a−1b−1.

Proof. We know that we always have (xy)−1 = y−1x−1.

If G is Abelian, then (ab)−1 = b−1a−1 = a−1b−1 holds for all a, b ∈ G, since a−1 commutes
with b−1.

Conversely, if we always have that (ab)−1 = a−1b−1, then taking inverses again we have

ab = ((ab)−1)−1 = (a−1b−1)−1 = (b−1)−1(a−1)−1 = ba.

So we conclude that for any a, b ∈ G, we have ab = ba. Thus, G is Abelian. □

3. Let G be a group, and a, b ∈ G. Prove that if (ab)2 = a2b2, then ab = ba.

Proof. Expanding (ab)2, a2, and b2, we have abab = aabb. Then we can cancel an a on the left
and a b on the right to obtain ba = ab, as desired. □

4. Let G be a group. Prove that if g2 = e for every g ∈ G, then G is Abelian (that is, for all a, b ∈ G,
ab = ba).

Proof. Let a, b ∈ G. Then (ab)2 = e because ab ∈ G and the square of any element in G is the
identity; and a2 = b2 = e for the same reasons. But that means that a2b2 = ee = e. Therefore,
(ab)2 = e = a2b2.

So we can conclude that (ab)2 = a2b2. By Problem 3, it follows that ab = ba. Since a and b were
arbitrary, we see that any two elements of G commute, so G is Abelian, as claimed. □
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5. Determine the order of each element of U(14).

Answer. I will use ≡ when we have an equality modulo 14.

The elements of U(14) are
U(14) =

{
1, 3, 5, 9, 11, 13

}
.

Listing the powers until we get 1 modulo 14 (at each step we can just multiply the previous
reduced result; for example, we don’t actually have to compute 35 and then reduce modulo 14;
since 34 ≡ 11 modulo 14, then 35 = 3(34) ≡ 3(11) = 33 modulo 14), we have:

• |1| = 1.

• 3, 32 = 9, 33 = 27 ≡ 13, 34 ≡ 39 ≡ 11, 35 ≡ 33 ≡ 5, 36 ≡ 15 ≡ 1. So |3| = 6.

• 5, 52 = 25 ≡ 11, 53 ≡ 55 ≡ 13, 54 ≡ 65 ≡ 9, 55 ≡ 45 ≡ 3, 56 ≡ 15 ≡ 1. Thus, we also have
|5| = 6.

• 9, 92 = 81 ≡ 11, 93 ≡ 99 ≡ 1, so |9| = 3.

• 11, 112 = 121 ≡ 9, 113 ≡ 99 ≡ 1, and we again have |11| = 3.

• 13, 132 = 169 ≡ 1, so |13| = 2.

6. In the group Z12 of integers modulo 12 under addition modulo 12, find |a|, |b|, and |a+ b| in each
of the following cases:

(a) a = 6, b = 2;

Answer. Since a + a = 0 in Z12, we have |a| = 2; and the smallest positive multiple of b
that is a multiple of 12 is 6b, so |b| = 6.

Meanwhile, a+b = 8; the smallest positive multiple of 8 that is divisible by 12 is 24 = (3)(8),
so |a+ b| = 3.

(b) a = 3, b = 8;

Answer. Here we have |a| = 4, |b| = 6. and a+ b = 11; the smallest positive multiple of 11
that is divisible by 12 is (12)(11), so |a+ b| = 12.

(c) a = 5, b = 4.

Answer. Here we have |a| = 12 and |b| = 3; the smallest positive multiple of a+ b = 9 that
is divisible by 12 is (3)(9) = 36, so |a+ b| = 3.

7. Let G be a group, and let a ∈ G. Prove that |a| = |a−1|, meaning that either they are both
infinite, or they are both finite and equal to each other.

Proof. If an = e, then (a−1)n = (an)−1 = e−1 = e. So

{k ∈ Z | ak = e} ⊆ {k ∈ Z | (a−1)k = e}.

Applying the same argument now to a−1, and noting that (a−1)−1 = a, we conclude that the
other inclusion also holds, so

{k ∈ Z | ak = e} = {k ∈ Z | (a−1)k = e}. (1)

Since |a| = ∞ if and only if the set on the left of (1) consists only of 0; that is, is {0}; and similarly
for a−1. It follows that |a| = ∞ if and only if |a−1| = ∞. And |a| = n > 0 if and only if the
least positive integer in the set on the left of (1) is n, and similarly for a−1, so if |a| is finite, then
|a| = |a−1| and likewise the converse. □
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8. Let G be a group, and let a, b ∈ G. Prove that |ab| = |ba|, meaning that either they are both
infinite, or they are both finite and equal to each other.

Proof. We claim that (ab)n+1 = a(ba)nb for all n > 0. We prove it by Induction on n. For n = 1,
we have (ab)2 = a(ba)1b, which holds. For the Inductive Step, assume that (ab)k+1 = a(ba)kb
holds; we want to prove that (ab)k+2 = a(ba)k+1b. We have

(ab)k+2 = (ab)(ab)k+1 = ab
(
a(ba)kb

)
= a(ba)(ba)kb = a(ba)k+1b,

as required.

If (ba)n = e, then (ab)n+1 = a(ba)nb = ab. Therefore, (ab)n+1 = ab. Cancelling one ab, we obtain
(ab)n = e. That is, if (ba)n = e, then (ab)n = e. Exchanging the roles of a and b, we also obtain
that if (ab)m = e then (ba)m = e. Therefore,

{k ∈ Z | (ab)k = e} = {k ∈ Z | (ba)k = e}.

Since the two sets are equal, then arguing as we did in problem 7 we conclude that either both
|ab| and |ba| are infinite, or else they are both finite and equal to each other, which is what we
wanted to prove. □

9. Let G = D4 be the dihedral group of order 8.

(a) Show that for every g ∈ G, we have g4 = R0 (the identity of G).

Proof. For the rotations, we have R2
180 = R0, so (R180)

4 = R0; and (R90)
2 = (R270)

2 =
R180, so (R90)

4 = (R270)
4 = (R180)

2 = R0

For each reflection we have that the square equals R0, and therefore the fourth power
equals R0 as well. So g4 = R0 for every g ∈ D4. □

(b) Show that for every a, b ∈ G, we have (ab)4 = a4b4.

Proof. Since the fourth power of any element of G equals R0, we have (ab)4 = R0 for all
a, b ∈ G; and a4b4 = R0R0 = R0. Thus,

(ab)4 = R0 = a4b4

holds for every a, b ∈ G.

(c) Show that G is not Abelian.

Proof. As we saw in class in the Cayley table, the result of doing a rotation of 90◦ and
then a horizontal reflection is different from the result of first doing a horizontal reflection
and then a rotation of 90◦. One results in the reflection we called D, and the other in the
reflection we called D′.

Alternatively, using the notation we saw in class, we have that if F is any reflection and R
is the rotation by 90◦, then FR = R−1F , which cannot equal RF because R ̸= R−1. So
FR ̸= RF , proving the group is not abelian. □

Remark. Thinking about Problem 3 above, we see that if (ab)2 = a2b2 for every a, b ∈ G,
then G is Abelian. Likewise, from Problem 2 we see that if (ab)−1 = a−1b−1 always holds,
then G is Abelian. So one might wonder if for other values we might have that if (ab)n = anbn

always holds, then G will be Abelian. The answer is “no”; this problem shows that certainly
(ab)4 = a4b4 does not suffice; in fact, there are examples for every n, n ̸= 2, n ̸= −1, of
groups G in which (ab)n = anbn always holds, but G is not Abelian.
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