
Math 465 - Homework 3
Solutions

Prof. Arturo Magidin

1. Let G be a group, and let a, x ∈ G.

(i) Prove that for every integer n,
(axa−1)n = axna−1.

Suggestion: Use induction on n to prove it for n ≥ 0, then take inverses to prove it for
negative n.

Proof. Following the suggestion: the result holds for n = 0, since (axa−1)0 = e, and
ax0a−1 = aea−1 = aa−1 = e.

The result also holds for n = 1, as both sides of the equation equal axa−1. Let k ≥ 1.

Inductive Hypothesis: Assume that (axa−1)k = axka−1.

We want to show that (axa−1)k+1 = axk+1a−1. We have:

(axa−1)k+1 = (axa−1)k(axa−1) (by definition)

= (axka−1)(axa−1) (by the Induction Hypothesis)

= axka−1axa−1

= axkxa−1 (since a−1a cancels out)

= axk+1a−1,

as we needed to show. This completes the inductive step, and thus the induction. Hence, we
know the formula holds for all positive integers n.

Now let n < 0, and write n = −m with m > 0. Using the formula for the inverse of a
product, we have:

(axa−1)n = (axa−1)−m =
(
(axa−1)m

)−1
=

(
axma−1

)−1

= (a−1)−1(xm)−1a−1 = ax−ma−1 = axna−1.

This proves the equality for every integer n, as desired.

(ii) Let G be a group, a, x ∈ G. Prove that |x| = |axa−1|. Suggestion: Show that the set of k
for which xk = e is the same as the set of k for which (axa−1)k = e.

Proof. Since (axa−1)k = axka−1, by Problem 1 we have that if xm = e, then we also have
(axa−1)m = axma−1 = aea−1 = e. Therefore,

{k ∈ Z | xk = e} ⊆ {k ∈ Z | (axa−1)k = e}.

Conversely, if (axa−1)m = e, then axma−1 = e. Multiplying by a−1 on the left and a on the
right, we get xm = a−1ea = e. So

{k ∈ Z | (axa−1)k = e} ⊆ {k ∈ Z | xk = e}.

Thus, the two sets are equal.

Therefore, either both sets are just {0}, and then |x| = |axa−1| = ∞; or both sets have the
same smallest element n, and |x| = |axa−1| = n. In either case, |x| = |axa−1|. □
Remark. An alternative argument is the following: after we have proven the inclusion
{k ∈ Z | xk = e} ⊆ {k ∈ Z | (axa−1)k = e}, we can now replace x with axa−1, and a with
a−1. Then the same argument shows that

{k ∈ Z | (axa−1)k = e} ⊆ {k ∈ Z | a−1(axa−1)ka = e}.

But a−1(axa−1)ka = a−1(axka−1)a = xk, we in fact we obtain the reverse inclusion this
way.
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2. If n > 2 and n is even, show that Dn has a subgroup of order 4.

Answer. Because n is even, we know that the rotation by 180◦ is an element of Dn and lies in
Z(Dn), so it commutes with every element of Dn. Call this rotation R180. If F is any reflection,
then I claim that H = {I,R180, F,R180F} is a subgroup of Dn.

Indeed, the set is nonempty; each element is its own inverse, so the set is closed under inverses.
As for products of two elements, remembering that R180 commutes with F ; and that the square of
any element is equal to I, we only need to verify that the product of R180F with both F and R180

lies in the set; and indeed, we have:

(R180F )F = R180(FF ) = R180, (R180F )R180 = R180(R180F ) = (R180R180)F = F.

So all the products of two elements of H are in H. Thus, H is a subgroup of Dn, and H has order
4. □

3. Let G a group, and let H,K be subgroups. Show that if hk = kh for every h ∈ H and k ∈ K,
then HK = {hk | h ∈ H, k ∈ K} is a subgroup of G.

Proof. The set is not empty, since neither H nor K are empty. Now let h1k1, h2k2 ∈ HK, with
h1, h2 ∈ H and k1, k2 ∈ K. We want to show that (h1k1)(h2k2)

−1 ∈ HK. We have:

(h1k1)(h2k2)
−1 = h1k1k

−1
2 h−1

2

= h1(k1k
−1
2 )h−1

2

= h1h
−1
2 (k1k

−1
2 ) (because k1k

−1
2 ∈ K,h−1

2 ∈ H, so they commute)

= (h1h
−1
2 )(k1k

−1
2 ).

But this product lies in HK, since h1h
−1
2 ∈ H (because H Is a subgroup and h1, h2 ∈ H), and

k1k
−1
2 ∈ K (because k1, k2 ∈ K and K is a subgroup).

By the “One-Step subgroup test”, HK is a subgroup of G. □

4. (i) Find all the generators of the groups Z6, Z8, and Z20.

Answer. An integer k, 1 ≤ k < 6 generates Z6 if and only if gcd(k, 6) = 1. So the two
generators are 1 and 5.

Similarly, the generators of Z8 are the integers k with 1 ≤ k < 8 and gcd(k, 8) = 1, namely
1, 3, 5, and 7.

For Z20, we take the integers k, 1 ≤ k < 20 that are relatively prime to 20: 1, 3, 7, 9, 11, 13,
17, and 19. □

(ii) Let ⟨a⟩, ⟨b⟩, and ⟨c⟩ be cyclic groups of order 6, 8, and 20, respectively. Find all the generators
of ⟨a⟩, of ⟨b⟩, and of ⟨c⟩.
Answer. If |x| = n, then xk generates ⟨x⟩ if and only if gcd(k, n) = 1. So the answers look
similar to those above:

The generators of ⟨a⟩ are a and a5.

The generators of ⟨b⟩ are b, b3, b5, and b7.

The generators of ⟨c⟩ are c, c3, c7, c9, c11, c13, c17, and c19. □

5. Let G be a group, and let a ∈ G be an element with |a| = 15. Compute the orders of each of the
following elements of G:

(i) a3, a6, a9, and a12.

Answer. We know the order of ak is 15
gcd(15,k) . Since

gcd(15, 3) = gcd(15, 6) = gcd(15, 9) = gcd(15, 12) = 3,

we have that all four of these elements have order 15
3 = 5.
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(ii) a5 and a10.

Answer. Since gcd(15, 5) = gcd(15, 10) = 5, the orders of both a5 and a10 are both 15
5 = 3.

(iii) a2, a4, a8, and a14.

Answer. Since gcd(15, 2) = gcd(15, 4) = gcd(15, 8) = gcd(15, 14) = 1, all of these elements
have order 15. □

6. In Z, find all generators of the subgroup ⟨3⟩.
Answer. Because |3| = ∞ in Z, we know that the only generators of ⟨3⟩ are 3 and −3. □

7. In Z, find a generator for the subgroup ⟨10⟩ ∩ ⟨12⟩.
Answer. The subgroup ⟨10⟩ ∩ ⟨12⟩ is the subgroup of all elements that are both multiples of 10

and multiples of 12. As the least common multiple of 10 and 12 is (10)(12)
gcd(10,12) =

120
2 = 60, we have

⟨10⟩ ∩ ⟨12⟩ = ⟨60⟩, and so a generator is 60. (The only other generator is −60.)

8. In Z, show that ⟨n⟩ ⊆ ⟨m⟩ if and only if m divides n.

Proof. If ⟨n⟩ ⊆ ⟨m⟩, then n ∈ ⟨n⟩ ⊆ ⟨m⟩, so n must be a multiple of m; that is, m divides n.

Conversely, if m divides n, then we can write n = mk, and so n ∈ ⟨m⟩. Therefore, the cyclic
subgroup generated by n is a subgroup of ⟨m⟩, so ⟨n⟩ ⊆ ⟨m⟩, as desired. □

9. In Z, if n,m ∈ Z, what is a generator for ⟨n⟩ ∩ ⟨m⟩?
Answer. We know that ⟨n⟩ ∩ ⟨m⟩ is a subgroup of Z (a cyclic group), so it is cyclic. That is,
there is an integer k such that ⟨n⟩ ∩ ⟨m⟩ = ⟨k⟩. Because ⟨k⟩ ⊆ ⟨n⟩, By Problem 8 we have that k
is a multiple of n. Symmetrically, k is a multiple of m. So k is a common multiple of n and m.

And if r is any common multiple of n and m, then r ∈ ⟨n⟩ ∩ ⟨m⟩, so ⟨r⟩ ⊆ ⟨n⟩ ∩ ⟨m⟩ = ⟨k⟩, which
again by Problem 8 tells us that r is a multiple of k.

So a generator of ⟨n⟩ ∩ ⟨m⟩ is a common multiple of m and n that divides any other common
multiple of m and n; this is the least common multiple of m and n. Thus, we conclude that
⟨n⟩ ∩ ⟨m⟩ is generated by lcm(m,n) = mn

gcd(m,n) . □

10. Let G be an Abelian group, and let H =
{
g ∈ G

∣∣ |g| divides 12
}
.

(i) Prove that H is a subgroup of G.

Proof. Since |e| = 1, we have that e ∈ H.

Now assume that x, y ∈ H, so that |x| divides 12 and |y| divides 12. This implies that
x12 = y12 = e. We want to prove that |xy−1| divides 12, and to that end it is enough to
show that (xy−1)12 = e. Indeed, because G is Abelian, we know that

(xy−1)12 = x12(y−1)12 = x12(y12)−1 = ee = e.

Therefore, xy−1 ∈ H. By the One-Step subgroup test, it follows that H is a subgroup of G. □

(ii) Is there anything special about 12, or would your proof be valid if 12 were replaced by some
other positive integer?

Answer. There is nothing special about 12: we used that |e| = 1 divides 12, and that if |a|
divides 12, then a12 = e. This will also work for any positive integer n.

(iii) State the general result derived from your answer of (ii).

Answer. “Let G be an Abelian group, let n be a positive integer, and let

H =
{
g ∈ G

∣∣∣ |g| divdes n
}
.

Then H is a subgroup of G.”

Note that it is possible that, for some values of n we will have H = {e}; that is, that no
element of G other than e will have order dividing n. But that still yields a subgroup.
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