Math 465 - Homework 3

SOLUTIONS

Prof. Arturo Magidin

- 1. Let G be a group, and let $a, x \in G$.
 - (i) Prove that for every integer n,

$$(axa^{-1})^n = ax^na^{-1}.$$

Suggestion: Use induction on n to prove it for $n \geq 0$, then take inverses to prove it for negative n.

Proof. Following the suggestion: the result holds for n = 0, since $(axa^{-1})^0 = e$, and $ax^0a^{-1} = aea^{-1} = aa^{-1} = e$.

The result also holds for n=1, as both sides of the equation equal axa^{-1} . Let $k\geq 1$.

INDUCTIVE HYPOTHESIS: Assume that $(axa^{-1})^k = ax^ka^{-1}$.

We want to show that $(axa^{-1})^{k+1} = ax^{k+1}a^{-1}$. We have:

$$(axa^{-1})^{k+1} = (axa^{-1})^k (axa^{-1})$$
 (by definition)

$$= (ax^ka^{-1})(axa^{-1})$$
 (by the Induction Hypothesis)

$$= ax^ka^{-1}axa^{-1}$$

$$= ax^kxa^{-1}$$
 (since $a^{-1}a$ cancels out)

$$= ax^{k+1}a^{-1}.$$

as we needed to show. This completes the inductive step, and thus the induction. Hence, we know the formula holds for all positive integers n.

Now let n < 0, and write n = -m with m > 0. Using the formula for the inverse of a product, we have:

$$(axa^{-1})^n = (axa^{-1})^{-m} = ((axa^{-1})^m)^{-1} = (ax^ma^{-1})^{-1}$$
$$= (a^{-1})^{-1}(x^m)^{-1}a^{-1} = ax^{-m}a^{-1} = ax^na^{-1}.$$

This proves the equality for every integer n, as desired.

(ii) Let G be a group, $a, x \in G$. Prove that $|x| = |axa^{-1}|$. SUGGESTION: Show that the set of k for which $x^k = e$ is the same as the set of k for which $(axa^{-1})^k = e$.

Proof. Since $(axa^{-1})^k = ax^ka^{-1}$, by Problem 1 we have that if $x^m = e$, then we also have $(axa^{-1})^m = ax^ma^{-1} = aea^{-1} = e$. Therefore,

$$\{k \in \mathbb{Z} \mid x^k = e\} \subseteq \{k \in \mathbb{Z} \mid (axa^{-1})^k = e\}.$$

Conversely, if $(axa^{-1})^m = e$, then $ax^ma^{-1} = e$. Multiplying by a^{-1} on the left and a on the right, we get $x^m = a^{-1}ea = e$. So

$$\{k\in\mathbb{Z}\mid (axa^{-1})^k=e\}\subseteq \{k\in\mathbb{Z}\mid x^k=e\}.$$

Thus, the two sets are equal.

Therefore, either both sets are just $\{0\}$, and then $|x| = |axa^{-1}| = \infty$; or both sets have the same smallest element n, and $|x| = |axa^{-1}| = n$. In either case, $|x| = |axa^{-1}|$. \square

REMARK. An alternative argument is the following: after we have proven the inclusion $\{k \in \mathbb{Z} \mid x^k = e\} \subseteq \{k \in \mathbb{Z} \mid (axa^{-1})^k = e\}$, we can now replace x with axa^{-1} , and a with a^{-1} . Then the same argument shows that

$$\{k \in \mathbb{Z} \mid (axa^{-1})^k = e\} \subseteq \{k \in \mathbb{Z} \mid a^{-1}(axa^{-1})^k a = e\}.$$

But $a^{-1}(axa^{-1})^k a = a^{-1}(ax^ka^{-1})a = x^k$, we in fact we obtain the reverse inclusion this way.

2. If n > 2 and n is even, show that D_n has a subgroup of order 4.

Answer. Because n is even, we know that the rotation by 180° is an element of D_n and lies in $Z(D_n)$, so it commutes with every element of D_n . Call this rotation R_{180} . If F is any reflection, then I claim that $H = \{I, R_{180}, F, R_{180}F\}$ is a subgroup of D_n .

Indeed, the set is nonempty; each element is its own inverse, so the set is closed under inverses. As for products of two elements, remembering that R_{180} commutes with F; and that the square of any element is equal to I, we only need to verify that the product of $R_{180}F$ with both F and R_{180} lies in the set; and indeed, we have:

$$(R_{180}F)F = R_{180}(FF) = R_{180}, \qquad (R_{180}F)R_{180} = R_{180}(R_{180}F) = (R_{180}R_{180})F = F.$$

So all the products of two elements of H are in H. Thus, H is a subgroup of D_n , and H has order A. \square

3. Let G a group, and let H, K be subgroups. Show that if hk = kh for every $h \in H$ and $k \in K$, then $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.

Proof. The set is not empty, since neither H nor K are empty. Now let $h_1k_1, h_2k_2 \in HK$, with $h_1, h_2 \in H$ and $k_1, k_2 \in K$. We want to show that $(h_1k_1)(h_2k_2)^{-1} \in HK$. We have:

$$(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1}$$

$$= h_1(k_1k_2^{-1})h_2^{-1}$$

$$= h_1h_2^{-1}(k_1k_2^{-1}) \qquad \text{(because } k_1k_2^{-1} \in K, h_2^{-1} \in H, \text{ so they commute)}$$

$$= (h_1h_2^{-1})(k_1k_2^{-1}).$$

But this product lies in HK, since $h_1h_2^{-1} \in H$ (because H Is a subgroup and $h_1, h_2 \in H$), and $k_1k_2^{-1} \in K$ (because $k_1, k_2 \in K$ and K is a subgroup).

By the "One-Step subgroup test", HK is a subgroup of G. \square

4. (i) Find all the generators of the groups \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} .

Answer. An integer k, $1 \le k < 6$ generates \mathbb{Z}_6 if and only if gcd(k,6) = 1. So the two generators are 1 and 5.

Similarly, the generators of \mathbb{Z}_8 are the integers k with $1 \le k < 8$ and gcd(k, 8) = 1, namely 1, 3, 5, and 7.

For \mathbb{Z}_{20} , we take the integers k, $1 \le k < 20$ that are relatively prime to 20: 1, 3, 7, 9, 11, 13, 17, and 19. \square

(ii) Let $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ be cyclic groups of order 6, 8, and 20, respectively. Find all the generators of $\langle a \rangle$, of $\langle b \rangle$, and of $\langle c \rangle$.

Answer. If |x| = n, then x^k generates $\langle x \rangle$ if and only if gcd(k, n) = 1. So the answers look similar to those above:

The generators of $\langle a \rangle$ are a and a^5 .

The generators of $\langle b \rangle$ are b, b^3, b^5 , and b^7 .

The generators of $\langle c \rangle$ are $c, c^3, c^7, c^9, c^{11}, c^{13}, c^{17}$, and c^{19} . \square

- 5. Let G be a group, and let $a \in G$ be an element with |a| = 15. Compute the orders of each of the following elements of G:
 - (i) a^3 , a^6 , a^9 , and a^{12} .

Answer. We know the order of a^k is $\frac{15}{\gcd(15,k)}$. Since

$$gcd(15,3) = gcd(15,6) = gcd(15,9) = gcd(15,12) = 3,$$

we have that all four of these elements have order $\frac{15}{3} = 5$.

(ii) a^5 and a^{10} .

Answer. Since gcd(15,5) = gcd(15,10) = 5, the orders of both a^5 and a^{10} are both $\frac{15}{5} = 3$.

(iii) a^2 , a^4 , a^8 , and a^{14} .

Answer. Since gcd(15,2) = gcd(15,4) = gcd(15,8) = gcd(15,14) = 1, all of these elements have order 15. \square

6. In \mathbb{Z} , find all generators of the subgroup $\langle 3 \rangle$.

Answer. Because $|3| = \infty$ in \mathbb{Z} , we know that the only generators of $\langle 3 \rangle$ are 3 and -3. \square

7. In \mathbb{Z} , find a generator for the subgroup $\langle 10 \rangle \cap \langle 12 \rangle$.

Answer. The subgroup $\langle 10 \rangle \cap \langle 12 \rangle$ is the subgroup of all elements that are both multiples of 10 and multiples of 12. As the least common multiple of 10 and 12 is $\frac{(10)(12)}{\gcd(10,12)} = \frac{120}{2} = 60$, we have $\langle 10 \rangle \cap \langle 12 \rangle = \langle 60 \rangle$, and so a generator is 60. (The only other generator is -60.)

8. In \mathbb{Z} , show that $\langle n \rangle \subseteq \langle m \rangle$ if and only if m divides n.

Proof. If $\langle n \rangle \subseteq \langle m \rangle$, then $n \in \langle n \rangle \subseteq \langle m \rangle$, so n must be a multiple of m; that is, m divides n. Conversely, if m divides n, then we can write n = mk, and so $n \in \langle m \rangle$. Therefore, the cyclic subgroup generated by n is a subgroup of $\langle m \rangle$, so $\langle n \rangle \subseteq \langle m \rangle$, as desired. \square

9. In \mathbb{Z} , if $n, m \in \mathbb{Z}$, what is a generator for $\langle n \rangle \cap \langle m \rangle$?

Answer. We know that $\langle n \rangle \cap \langle m \rangle$ is a subgroup of \mathbb{Z} (a cyclic group), so it is cyclic. That is, there is an integer k such that $\langle n \rangle \cap \langle m \rangle = \langle k \rangle$. Because $\langle k \rangle \subseteq \langle n \rangle$, By Problem 8 we have that k is a multiple of n. Symmetrically, k is a multiple of m. So k is a common multiple of n and m.

And if r is any common multiple of n and m, then $r \in \langle n \rangle \cap \langle m \rangle$, so $\langle r \rangle \subseteq \langle n \rangle \cap \langle m \rangle = \langle k \rangle$, which again by Problem 8 tells us that r is a multiple of k.

So a generator of $\langle n \rangle \cap \langle m \rangle$ is a common multiple of m and n that divides any other common multiple of m and n; this is the least common multiple of m and n. Thus, we conclude that $\langle n \rangle \cap \langle m \rangle$ is generated by $\operatorname{lcm}(m,n) = \frac{mn}{\gcd(m,n)}$. \square

- 10. Let G be an Abelian group, and let $H = \{g \in G \mid |g| \text{ divides } 12\}.$
 - (i) Prove that H is a subgroup of G.

Proof. Since |e| = 1, we have that $e \in H$.

Now assume that $x, y \in H$, so that |x| divides 12 and |y| divides 12. This implies that $x^{12} = y^{12} = e$. We want to prove that $|xy^{-1}|$ divides 12, and to that end it is enough to show that $(xy^{-1})^{12} = e$. Indeed, because G is Abelian, we know that

$$(xy^{-1})^{12} = x^{12}(y^{-1})^{12} = x^{12}(y^{12})^{-1} = ee = e.$$

Therefore, $xy^{-1} \in H$. By the One-Step subgroup test, it follows that H is a subgroup of G. \square

(ii) Is there anything special about 12, or would your proof be valid if 12 were replaced by some other positive integer?

Answer. There is nothing special about 12: we used that |e| = 1 divides 12, and that if |a| divides 12, then $a^{12} = e$. This will also work for any positive integer n.

(iii) State the general result derived from your answer of (ii).

Answer. "Let G be an Abelian group, let n be a positive integer, and let

$$H = \Big\{ g \in G \ \Big| \ |g| \ \mathrm{divdes} \ n \Big\}.$$

Then H is a subgroup of G."

Note that it is possible that, for some values of n we will have $H = \{e\}$; that is, that no element of G other than e will have order dividing n. But that still yields a subgroup.