Math 566 - Homework 8

Due Wednesday April 10, 2024

1. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x], a_{n} \neq 0$ be primitive, and let p be a prime number. Let

$$
\bar{f}=\overline{a_{0}}+\overline{a_{1}} x+\cdots+\overline{a_{n}} x^{n} \in \mathbb{Z}_{p}[x],
$$

where \bar{a} is the image of a in \mathbb{Z}_{p} under the canonical map $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ from the integers to the integers modulo p.
(i) Show that if f is monic and \bar{f} is irreducible in $\mathbb{Z}_{p}[x]$ for some prime p, then f is irreducible in $\mathbb{Z}[x]$.
(ii) Show the result still holds if we replace " f is monic" with " a_{n} is not a multiple of p ".
(iii) Give an example to show that the conclusion may fail to hold if a_{n} is divisible by p.
2. Prove that if F is a field, and $n \geq 2$, then $F\left[x_{1}, \ldots, x_{n}\right]$ is not a PID.
3. In \mathbb{Z}, given any $n>1$, for every $a>0$ there exist unique $r \geq 0$, and integers a_{0}, \ldots, a_{r}, $0 \leq a_{i}<n, a_{r} \neq 0$, such that

$$
a=a_{0}+a_{1} n+a_{2} n^{2}+\cdots+a_{r} n^{r}
$$

that is, we can write every number in "base n ", and the digits are uniquely determined. Prove the following analog for polynomials:
Let F be a field, and let $g \in F[x], \operatorname{deg}(g) \geq 1$. Prove that for every nonzero $f \in F[x]$ there exist unique $r \geq 0$ and polynomials $f_{0}, \ldots, f_{r} \in F[x]$, each f_{i} either equal to 0 or with $\operatorname{deg}\left(f_{i}\right)<\operatorname{deg}(g)$, and $f_{r} \neq 0$, such that

$$
f=f_{0}+f_{1} g+\cdots+f_{r} g^{r} ;
$$

that is, we can express every polynomial uniquely in "base g."
4. We prove Schönemann's Irreducibility Criterion. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, $\operatorname{deg}(f)=n>0$, and assume that there exists a prime p, and integer a, and a polynomial $\mathcal{F}(x) \in \mathbb{Z}[x]$ such that

$$
f(x)=(x-a)^{n}+p \mathcal{F}(x) \quad \text { and } \mathcal{F}(a) \not \equiv 0 \quad(\bmod p) .
$$

We will prove that if this occurs, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(i) Show that the leading coefficient of f is not divisible by p.
(ii) Assume that $f(x)=G(x) H(x)$ with $G(x), H(x)$ polynomials with integer coefficients. Let $\overline{f(x)}, \overline{G(x)}$ and $\overline{H(x)}$ denote the images of $f(x), G(x)$, and $H(x)$ in $(\mathbb{Z} / p \mathbb{Z})[x]$ obtained by reducing the coefficients modulo p. Prove that we have $\operatorname{deg}(\overline{G(x)})=\operatorname{deg}(G(x))$ and $\operatorname{deg}(\overline{H(x)})=\operatorname{deg}(H(x))$.
(iii) Show that $\overline{G(x)}=(x-\bar{a})^{i}$ and $\overline{H(x)}=(x-\bar{a})^{j}$ for some nonnegative integers i, j with $i+j=n$.
(iv) Show that if $i, j>0$, then $G(a) \equiv H(a) \equiv 0(\bmod p)$.
(v) Show that if $i, j>0$, then $p \mathcal{F}(a) \equiv 0\left(\bmod p^{2}\right)$, and reach a contradiction.
(vi) Conclude that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

