Math 666 - Homework 1 Due Wednesday February 5

- 1. For each of the following universal constructions, describe explicitly an "auxiliary category" that we can use to define them, and whether they would be an initial or a terminal object in that category. Your description of the category should include an explicit description of both objects and arrows in the category.
 - (i) The kernel of a given group homomorphism $f: G \to H$.
 - (ii) The cokernel of a given abelian group homomorphism $\phi: A \to B$.
 - (iii) The equalizer of two given morphisms $f, g: X \to Y$ in some category \mathcal{C} .
 - (iv) The coequalizer of two given morphisms $\phi, \theta: Z \to W$ in some category \mathcal{C} .
 - (v) The product of a given family of objects $\{X_i\}_{i \in I}$ in some category \mathcal{C} .
 - (vi) The coproduct of a given family of objects $\{Y_j\}_{j\in J}$ in some category \mathcal{C} .
 - (vii) The pushout of a given pair of morphisms, $f_1: X_0 \to X_1$ and $f_2: X_0 \to X_2$, in some category \mathcal{C} .
 - (viii) The pullback of a given pair of morphisms $g_1: Y_1 \to Y_3$ and $g_2: Y_2 \to Y_3$ in some category \mathcal{C} .
- 2. Let $F: \mathsf{Set} \to \mathsf{Set}$ be the functor associating to every set S the set S^{ω} of all sequences (s_0, s_1, \ldots) of elements of S. Use Yoneda's Lemma to determine all morphisms from F to the identity functor of Set.
- 3. Show that the functor Monoid \rightarrow Set that sends a monoid M to the set of invertible elements in M is representable, and describe the representing object.
- 4. Show that the contravariant functor $Set \to Set$ that associates to every set X the set $\mathbf{P}(X)$ of all subsets of X, is representable.
- 5. Let (\mathcal{C}, U) be a concrete category (so \mathcal{C} is a category, and $U: \mathcal{C} \to \mathsf{Set}$ is a faithful functor). Prove that the following are equivalent:
 - (i) \mathcal{C} has a free object on one generator with respect to U.
 - (ii) The concretization functor U is representable.