Math 666 - Homework 3

Due Wednesday February 19

- 1. Recall that a subset J of a partially ordered set I is *cofinal in* I if and only if for every $i \in I$ there exists $j \in J$ such that $i \leq j$. Let C be a category, I a directed set, and J cofinal in I.
 - (i) Show that J is directed.
 - (ii) Show that if $(X_i, (f_{ij}))_I$ is a directed system in \mathcal{C} , then $(X_j, (f_{jk}))_J$ (the collection of objects and maps where all indices lie in J) is also a directed system.
 - (iii) Show that $\varinjlim_I X_i$ "equals" $\varinjlim_J X_j$, in the sense that if one exists then so does the other, and they are isomorphic via a unique isomorphism that respects the coprojections.
 - (iv) What can you say about $\lim_{I \to I} X_i$ if I has a maximal element?
- 2. Let *I* be a directed set, and let $(G_i, (f_{ij}))_I$ be a directed family of groups. Define an operation on the direct limit $\lim_{i \to I} |G_i|$ in Set as follows: given [g, i] and [h, j], let $k \in I$ be such that $i \leq k$ and $j \leq k$. Then define the product of [g, i] and [h, j] by:

$$[g,i] \cdot [h,j] = [f_{ik}(g)f_{jk}(h),k],$$

where the product on the right hand side occurs in G_k .

- (i) Prove that the operation is well defined, and makes $\varinjlim_I |G_i|$ into a group, denoted $\varinjlim_I G_i$.
- (ii) Prove that this group is the direct limit of $(G_i, (f_{ij}))_I$ in Group.
- 3. Let *I* be a directed set, and let $(A_i, (f_{ij}))_I$ and $(B, (g_{ij}))_I$ be directed systems of abelian groups. By a HOMOMORPHISM $u: (A_i) \to (B_i)$ of directed system we mean a family of group homomorphism $u_i: A_i \to B_i$ such that for all $i, j \in I$, if $i \leq j$ then $u_j \circ f_{ij} = g_{ij} \circ u_i$. Suppose we are given three directed systems of abelian groups $(A_i, (f_{ij}))_I, (B_i, (g_{ij}))_I$, and $(C_i, (h_{ij}))_I$, and homomorphisms $u: (A_i) \to (B_i)$ and $v: (B_i) \to (C_i)$, and that for each i, we have $\operatorname{Im}(u_i) = \ker(v_i)$.
 - (i) Prove that u and v induce homomorphisms of direct limits $U: \varinjlim_I A_i \to \varinjlim_I B_i$ and $V: \varinjlim_I B_i \to \varinjlim_I C_i$.
 - (ii) Show that $\operatorname{Im}(U) = \ker(V)$.
- 4. Exercise 8.5:8. Let $(X_i, (f_{ij}))_I$ be a directed system in Ab, where I is the set of positive integers ordered by divisibility, each X_i is the additive group \mathbb{Z} , and for j = ni, the morphism $f_{ij}: \mathbb{Z} \to \mathbb{Z}$ is multiplication by n.
 - (i) Show that $\lim_{I \to I} X_i$ may be identified with the additive group of rational numbers.
 - (ii) Show that if you perform the same construction starting with an arbitrary abelian group A in place of \mathbb{Z} , the result is a \mathbb{Q} vector space which can be characterized by a universal property relative to A.