Math 666 - Homework 8 Due Wednesday April 2

- 1. Recall that an Ω -algebra A is *locally finite* if and only if whenever $X \subseteq |A|$ is finite, the subalgebra it generates, $|\langle X \rangle|$ is finite. Let **V** be a variety of Ω -algebras. Let \mathcal{C} be the collection of all **V**-algebras that are locally finite.
 - (i) Show that C is closed under taking subalgebras, homomorphic images, and direct limits. That is, subalgebras of locally finite V-algebras are locally finite; homomorphic images of locally finite V-algebras are locally finite, etc.
 - (ii) Show that the collection of all locally finite groups is not a variety.
 - 2. Let Ω be a type, **V** a variety of Ω -algebras. We prove Noether's Isomorphism Theorems for **V**:
 - (i) The First Isomorphism Theorem. Let $A, B \in Ob(\mathbf{V})$, and $f: A \to B$ a surjective morphism. Then $B \cong A/\sim_f$, where \sim_f is the congruence on Aassociated to f, via the map that sends $[a]_{\sim_f}$ to f(a).
 - (ii) Let $A \in Ob(\mathbf{V})$, B a subalgebra of A, and R a congruence on A. Let R[B] be the set of elements of A that are R-equivalent to some element of B. Then R[B] is also a subalgebra of A.
 - (iii) Let $A \in Ob(\mathbf{V})$, B a subalgebra of A, and R a congruence on A. Then $R_B = R \cap (B \times B)$ is a congruence on B.
 - (iv) Second Isomorphism Theorem. Let $A \in Ob(\mathbf{V})$, B a subalgebra of A, and R a congruence on A. Then B/R_B is isomorphic to $R[B]/R_{R[B]}$, via the map that takes the equivalence class $[b]_{R_B}$ to the class of b in $R[B]/R_{R[B]}$.
 - (v) Third Isomorphism Theorem. Let $A \in Ob(\mathbf{V})$, let R and S be congruences on A with $R \subseteq S$, and let T be a congruence on A/R. Define

$$S/R = \{ ([a]_R, [a']_R) \in (A/R) \times (A/R) \mid (a, a') \in S \}$$

$$T^{-1}[A] = \{ (a, a') \in A \times A \mid ([a]_R, [a']_R) \in T \}.$$

Then S/R is a congruence on A/R, $T^{-1}[A]$ is a congruence on A, and we have isomorphisms

$$\begin{aligned} (A/R)/(S/R) &\cong A/S & \text{via} \ [[a]_R]_{S/R} \longmapsto [a]_S \\ (A/R)/T &\cong A/T^{-1}[A] & \text{via} \ [[a]_R]_T \longmapsto [a]_{T^{-1}[A]}. \end{aligned}$$

(vi) Fourth Isomorphism Theorem. Let $A \in Ob(\mathbf{V})$, and let R be a congruence on A. There is a one-to-one, inclusion preserving correspondence between congruences on A that contain R and congruences on A/R.