Math 666 - Homework 9 Due Wednesday April 16

- 1. Let Ω be a type, and let **V** be a variety of Ω -algebras. If k is a cardinal (finite or infinite), then we say that an Ω -algebra A is "k-generated" if and only if there exists a subset $X \subseteq |A|$ such that $\operatorname{card}(X) \leq k$ and $\langle X \rangle = A$.
 - (i) Prove that the class of all Ω -algebras A with the property that every k-generated subalgebra of A lies in \mathbf{V} is a variety. Denote this variety by $\mathbf{V}_{(k)}$.
 - (ii) Show that if W and V are varieties, then the class of all algebras in W with the property that their k-generated subalgebras lie in V is a subvariety of W.
- 2. Let A be a finitely generated abelian group. Prove that there exists a set X and a function $u: X \to |A|$ such that (A, u) is relatively free if and only if A is *homocyclic*; that is, a direct sum of finitely many (possibly zero) isomorphic cyclic groups.
- 3. Let (P, \leq) be a partially ordered set. A subset F of P is a filter if and only if
 - (a) F is nonempty;
 - (b) F is downward directed: if $x, y \in F$, there exists $z \in F$ such that $z \leq x$ and $z \leq y$; and
 - (c) F is upward closed: for all $x \in F$ and $p \in P$, if $x \leq p$ then $p \in F$.

If $F \neq P$, then we say that F is a proper filter. An **ultrafilter** is a proper filter such that $F \subseteq F' \subseteq P$ for some filter F' implies either F = F' or F' = P. If $x \in P$, the set $\uparrow(x)$ of all $p \in P$ with $x \leq p$ is a filter. We say a filter F is principal if and only if $F = \uparrow(x)$ for some $x \in P$.

Let I be a set. We will consider the partially ordered set $(\mathcal{P}(I), \subseteq)$ of subsets of I, partially ordered by inclusion.

- (i) Show that a filter F is proper if and only if $\emptyset \notin F$.
- (ii) Show that a proper filter F satisfies the *finite intersection property*: the intersection of any finite family of elements of F is nonempty.
- (iii) Show that if F is an ultrafilter on $\mathcal{P}(I)$, and $J \subseteq I$, then either $J \in F$ or $I \setminus J \in F$, but not both.
- (iv) Prove that if I is finite, then every ultrafilter on $\mathcal{P}(I)$ is principal.
- (v) Show that the Axiom of Choice implies that every proper filter in $\mathcal{P}(I)$ is contained in an ultrafilter.
- (vi) Prove that if I is infinite and F is a nonprincipal ultrafilter, then every cofinite subset of I is an element of F.

- (vii) Show that if I is an infinite set, then (assuming the Axiom of Choice) $\mathcal{P}(I)$ has nonprincipal ultrafilters.
- 4. Let **V** be a variety of Ω -algebras, where Ω is finitary, and let $\{A_i\}_{i\in I}$ be a family of **V**-algebras. Let F be a filter on $\mathcal{P}(I)$. Define a relation on $P = \prod_{i\in I} A_i$ as follows: for $a, b \in P$,

$$a \sim_F b \iff \{j \in I \mid a_j = b_j\} \in F.$$

- (i) Prove that \sim_F is a congruence on P, and thus that we can form the quotient P/\sim_F , which will be an algebra in \mathbf{V} . If F is an ultrafilter, then the quotient P/\sim_F is called an *ultraproduct*, and is denoted P/F.
- (ii) Show that if F is a nonprincipal ultrafilter, then two elements $a, b \in P$ have the same image in P/\sim_F if a and b are equal almost everywhere $(a_i = b_i \text{ for almost all } i \in I)$.
- (iii) Loś's Theorem (the Fundamental Theorem of Ultraproducts) states that if F is an ultrafilter, then a first order formula ϕ in the language of Ω -algebras is true in the ultraproduct P/\sim_F if and only if the set of indices i for which the formula ϕ is true in A_i is an element of F.

Consider the product $P = \prod_{n \in \omega} \mathbb{R}$ of the real numbers with itself countably many times, and let F be a nonprincipal ultrafilter in ω . Show that:

- (a) P/F is a field that contains a copy of \mathbb{R} .
- (b) There is an element of P/F that is larger than every natural number.
- (c) The field P/F contains infinitesimals, that is, elements ϵ such that for every positive integer $n, 0 < \epsilon < \frac{1}{n}$.

The field P/F is sometimes called the *hyperreals*, and is a setting for non-standard analysis.