
Math 666 - Homework 1
Solutions

Prof. Arturo Magidin

1. For each of the following universal constructions, describe explicity an “auxiliary category” that
we can use to define them, and whether they would be an initial or a terminal object in that
category. Your description of the category should include an explicit description of both objects
and arrows in the category.

(i) The kernel of a given group homomorphism f : G→ H.

Answer. Let C be the category whose objects are pairs, (K, g), where K is a group, and
g : K → G is a homomorphism such that f ◦ g = z, where z is the trivial morphism sending
everything to e. Morphisms in C are ϕ : (K, g) → (L, h), where ϕ : K → L is a group
homomorphism such that h ◦ ϕ = g.

In this category, (ker(f), ι), where ι : ker(f) ↪→ G is the inclusion, is a terminal object.

Although you do not need to prove that this is the case, I include a proof. First, note that
(ker(f), ι) is in the category. Next, if (K, g) ∈ C, then we know that g(K) ⊆ ker(f), so g
induces, via co-restriction, a morphism g : G→ ker(f). The morphism g : (K, g) → (ker(f), ι)
is in the category, since ι◦g = g. Moreover, the morphism is unique: if ϕ : (K, g) → (ker(f), ι)
is any morphism, then ι ◦ ϕ = g = ι ◦ g; and since ι is an embedding, it is a monomorphism
and therefore left cancellable, so ϕ = g. Thus, (ker(f), ι) is a terminal object. □

(ii) The cokernel of a given abelian group homomorphism ϕ : A→ B.

Answer. Let C be the category whose objects are pairs (C, g), where C is an abelian group,
and g : B → C is a morphism such that g ◦ ϕ = z, where z is the zero morphism that sends
everything to the identity. Morphisms in C are f : (C, g) → (D,h) where f : C → D is an
abelian group morphsm such that f ◦ g = h.

In this category, the cokernel (Coker(ϕ), π), where π : B → B/ϕ(A) = Coker(ϕ) is the
canonical projection, is an initial object.

Note that this is indeed an object of the category C. To verify it is initial, let (C, g) be
an object in C. Then since g ◦ ϕ = z, it follows that ϕ(A) ⊆ ker(g), so g factors through
Coker(ϕ); hence there exists g : Coker(ϕ) → C such that g = g ◦ π. To verify uniqueness, if
h : Coker(ϕ) → C also satisfies h ◦ π = g, then h ◦ π = g ◦ π, and since π is surjective it is
necessarily an epimorphism, hence right-cancellable. Thus, h = g, proving uniqueness. □

(iii) The equalizer of two given morphisms f, g : X → Y in some category C.
Answer. Let D be the category whose objects are pairs (Z, h), where Z is an object of C,
and h : Z → X is a morphism in C such that f ◦ h = g ◦ h. The morphisms of D are
ϕ : (Z, h) → (W,k), where ϕ : Z → W is a morphism in C such that k ◦ ϕ = h. In this
category, the equalizer (E, u) (where u : E → X is the structure map of the equalizer) is the
terminal object.

Indeed, by definition of the qualizer we have f ◦ u = g ◦ u, so (E, u) is in the category. And
if (Z, h) is an object in C, then f ◦ h = g ◦ h, so by the definition of the equalizer there
exists a unique morphism k : Z → E such that u ◦ k = h; this gives the unique morphism
k : (Z, h) → (E, u), showing that (E, u) is a terminal object in this category. □

(iv) The coequalizer of two given morphisms ϕ, θ : Z →W in some category C.
Answer. Let D be the category whose objects are pairs (X, f), where X is an object in C,
and f : W → X is a morphism in C such that f ◦ ϕ = f ◦ θ. The morphisms in D are
ψ : (X, f) → (Y, g), where ψ : X → Y is a morphism in C such that ψ ◦ f = g. In this
category, the coequalizer is an initial object.

Indeed, if (C, q) is the coequalizer of ϕ, θ, then it is an object of D. And given any object
(X, f) in D, the universal property of the coequalizer guarantees the existence of a unique
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morphism h : C → X such that f = h ◦ q; this morphism is the unique morphism in D from
(C, q) to (X, f). □

(v) The product of a given family of objects {Xi}i∈I in some category C.
Answer. Let D be the category whose objects are pairs, (Y, {fi}i∈I), where Y is an ob-
ject in C, and for each i, fi : Y → Xi is a morphism in C. The morphisms in D are
ϕ : (Y, {fi}i∈I) → (Z, {gi}i∈i) where ϕ : Y → Z is a morphism in C such that fi = gi ◦ ϕ
for each i ∈ I.

The product of the family {Xi}i∈I is a terminal object in D. Indeed, if (P, {pi}i∈I) is the
product and the projections, this is an object in D. And if (Y, {fi}i∈I) is any object in D,
then the universal property of the product tells us that there exists a unique ϕ : Y → P such
that fi = pi ◦ ϕ for each i ∈ I. This is the unique morphism ϕ(Y, {fi}i∈I) → (P, {pi}i∈I)
in D. □

(vi) The coproduct of a given family of objects {Yj}j∈J in some category C.
Answer. Let D be the category whose objects are pairs (X, {rj}j∈J), where X is an object
of C, and for each j ∈ J , rj : Yj → X is a morphism in C. The morphisms of D are
ϕ : (X, {rj}j∈J) → (W, {sj}j∈J), where ϕ : X → W is a morphism in C such that for each
j ∈ J , we have sj ◦ ϕ = rj .

The coproduct (Q, {qj}j∈J), where the qj are the structure maps, is the initial object in
this category. Indeed, if (X, {rj}j∈J) is any object in D, then the universal property of the
coproduct says that there exists a unique morphism ϕ : Q → X such that for each j ∈ J ,
ϕ ◦ qj = rj , and this gives a morphism ϕ : (Q, {qj}j∈J) → (X, {rj}j∈J). □

(vii) The pushout of a given pair of morphisms, f1 : X0 → X1 and f2 : X0 → X2, in some cate-
gory C.
Answer. Let D be the category whose objects are pairs (Y, {ϕ1, ϕ2}), where Y is an object
in C, and ϕ1 : X1 → Y and ϕ2 : X2 → Y are morphisms in C such that ϕ1 ◦ f1 = ϕ2 ◦ f2.
The morphisms in C are g : (Y, {ϕ1, ϕ2}) → (Z, {ψ1, ψ2}) where g : Y → Z is a morphism in
C such that ψ1 = g ◦ ϕ1 and ψ2 = g ◦ ϕ2.
The pushout is an initial object in this category. Indeed, if (P, {p1, p2}) is the pushout,
then it is an object in the category. And if (Y, {ϕ1, ϕ2}) is an object in D, then because
ϕ1 ◦ f1 = ϕ2 ◦ f2, the universal property of the pushout gives a unique morphism g : P → Y
in C such that ϕ1 = g◦p1 and ϕ2 = g◦p2; this gives the unique morphism g from (P, {p1, p2})
to (Y, {ϕ1, ϕ2}) in D. □

(viii) The pullback of a given pair of morphisms g1 : Y1 → Y3 and g2 : Y2 → Y3 in some category C.
Answer. Let D be the category whose objects are pairs (X, {f1, f2}), where X is an object
in C, and f1 : X → Y1, f2 : X → Y2 are morphisms in C such that g1 ◦ f1 = g2 ◦ f2. The
morphisms are ϕ : (X, {f1, f2}) → (W, {h1, h2}) where ϕ : X → W is a morphism in C such
that f1 = h1 ◦ ϕ and f2 = h2 ◦ ϕ.
The pullback of g1 and g2 in C is a terminal object in D. Indeed, if P is the pullback, with
structure morphisms ϕi : P → Yi, then (P, {ϕ1, ϕ2}) is an object of D; and if (X, {f1, f2}) is
any object in D, then because g1 ◦f1 = g2 ◦f2, there exists a unique morphism ψ : X → P in
C such that f1 = ϕ1 ◦ψ and f2 = ϕ2 ◦ψ; this gives the unique morphism ψ from (X, {f1, f2})
to (P, {ϕ1, ϕ2}) in D. □

2. Let F : Set → Set be the functor associating to every set S the set Sω of all sequences (s0, s1, . . .)
of elements of S. Use Yoneda’s Lemma to determine all morphisms from F to the identity functor
of Set.

Answer. Note that F is equal to the functor hω = Set(ω,−). Thus, by Yoneda’s Lemma,
morphisms from F = hω to IdSet correspond to elements of IdSet(ω) = ω.
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Namely, let n ∈ ω. According to Yoneda’s Lemma, we obtain a morphism νn : F → Idset as
follows: given S ∈ Ob(Set), we define the map a(S) : Set(ω, S) → IdSet(S) by

f 7−→ IdSet(f)
(
n
)
= f(n).

That is, given s ∈ Sω, νn(s) = sn, the projection onto the nth term of the sequence.

So, we obtain the natural transformations νn, given by

νn : S
ω −→ S

s 7−→ sn

which is a natural transformation: given f : S → T , the diagram

Sω
νn(S) //

F (f)

��

S

f

��
Tω

νn(T ) // T

commutes, because if s ∈ Sω, we have

f(νn(S)(s)) = f(sn),

νn(T )(F (f)(s)) = νn(f ◦ s) = (f ◦ s)(n) = f(sn),

as required.

While these morphisms of functors are morphisms we might have come up with without Yoneda’s
Lemma, the strength of Yoneda’s Lemma here is that it guarantees that these are the only mor-
phism F → IdSet. □

Remark. We can also construct these morphisms by noting that the identity functor on Set is
also a representable/hom functor: it corresponds to h{⋆}, where {⋆} is a singleton set. Then the
Yoneda Embedding tells us that morphism F → IdSet (that is, morphisms hω → h{⋆}) correspond
to set functions {⋆} → ω; that is, elements of ω. □

3. Show that the functor Monoid → Set that sends a monoid M to the set of invertible elements in
M is representable, and describe the representing object.

Proof. Let M∗ be the set of invertible elements of M .

Since the functor is covariant, if it is representable it is isomorphic (as a functor) to a functor of
the form hN for some monoid N . As noted in class, that would mean a monoid N and an element
u ∈ N∗ that is “universal”, in the sense that for every element x ∈ M∗, there exists a unique
monoid morphism f : N →M such that f(u) = x.

That suggests a free object on one element, u; and in order for u to be invertible, we perhaps
want to take the free group of rank u, F (u), viewed as a monoid.

Let us verify that this works: for every monoidM , and every element x ∈M∗, sinceM∗ is a group
there exists a unique group homomorphism f : F (u) → M∗ such that f(u) = x. If we compose
this morphism with the embedding M∗ ↪→ M , we get a monoid homomorphism f : F (u) → M
with f(u) = x. Moreover, since the image of F (u) under any monoid morphism is completely
determined by its value at u, this map is unique. That is, (F (u), u) is a universal pair for this
functor.
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Thus, the functor sending M to M∗ (and morphisms f : M → M ′ to the restriction of f to M∗,
which necessarily has image inside (M ′)∗) is representable, isomorphic to hF (u), where F (u) is
the free group of rank 1, viewed as a monoid; technically, we should have the forgetful functor
U : Group → Monoid, and use U(F (u)) rather than U . □

4. Show that the contravariant functor Set → Set that associates to every set X the set P(X) of all
subsets of X, is representable.

Proof. As this functor is contravariant, if it is representable it will be isomorphic to hA for
some A. That requires a set A and a universal object u ∈ P(A) such that for every subset Z of
X, there exists a unique function f : X → A such that P(f) : P(A) → P(X) has P(f)(u) = Z.
And recall that P(f)(u) is defined to be {x ∈ X | f(x) ∈ u}.
Thus, we just need a set that can distinguish between “things in the subset” and “things not
in the subset”. So we can take A = {0, 1}, and u = {1}. Then given Z, the unique function
f : X → {0, 1} with P(f)({1}) = {x ∈ X | f(x) ∈ {1}} = Z is χZ , the characteristic function
of Z.

Thus, the contravariant functor is isomorphic to h2 (where 2 = {0, 1} in Set), and hence is
representable. □

5. Let (C, U) be a concrete category (so C is a category, and U : C → Set is a faithful functor). Prove
that the following are equivalent:

(i) C has a free object on one generator with respect to U .

(ii) The concretization functor U is representable.

Proof. (i) =⇒ (ii) Let F be the free object on one generator u ∈ U(F ). Then for everyX ∈ Ob(C)
and every x ∈ U(X), there exists a unique f ∈ C(F,X) such that U(f)(u) = x.

I claim that hF ∼= U . Indeed, let a : hF → U be defined as follows: for each X ∈ Ob(C), define

a(X) : C(F,X) = hF (X) −→ U(X) by a(X)(f) = U(f)(u) ∈ U(X).

The universal property of (F, {u}) guarantees that this is a bijection, so we just need to show that
it is a natural transformation in order to show that it is an isomorphism of functors.

Given g : X → Y ∈ C(X,Y ), the following diagram should commute:

C(F,X)
a(X) //

g◦−
��

U(X)

U(g)

��
C(F, Y )

a(Y ) // U(Y )

Indeed, given f ∈ C(F,X), we have

U(g)
(
a(X)(f)

)
= U(g)

(
U(f)(u)

)
= U(g) ◦ U(f)(u) = U(g ◦ f)(u)
= a(Y )(g ◦ f)

= a(Y )
(
g ◦ −(f)

)
.

Thus, this is a natural transformation, and since the connecting maps a(X) are bijections, it is
an isomorphism of functors. Thus, hF ∼= U , so U is representable, as desired.
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(ii) =⇒ (i) Assume that U is representable by some G ∈ Ob(C), and let b : hG → U be the
isomorphism. Let u = b(G)(idG) (by Yoneda’s Lemma, this is the element that determines b).
The claim is that the object G is free on {u}.
To verify this claim, let X ∈ Ob(C) and let x ∈ U(X). We want to show that there exists a unique
φ : C(G,X) such that U(φ)(u) = x.

Since b(X) : C(G,X) → U(X) is a bijection (because b is an isomorphism), and x ∈ U(X), there
exists a unique φ ∈ C(G,X) such that b(X)(φ) = x. And we obtain the following commutative
diagram:

C(G,G)
b(G) //

φ◦−
��

U(G)

U(φ)

��
C(G,X)

b(X) // U(X)

so we have

U(φ)(u) = U(φ)
(
b(G)(idG)

)
= U

(
φ) ◦ b(G)

)
(idG)

= b(X)
(
φ ◦ idG

)
= b(X)(φ)

= x.

The uniqueness of φ follows from the bijectivity of b(X). □
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