
Math 666 - Homework 2
Solutions

Prof. Arturo Magidin

1. Exercise 8.3:3. Let C be a category with small coproducts (that is, any family of objects of C
that is indexed by a small set has a coproduct in C), and let U : C → Set be a functor. Prove that
U has a left adjoint if and only if U is representable.

Proof. Suppose first that U has a left adjoint, and call the adjoint F . Then for every object
C ∈ Ob(C) and every set X we have a bijection

Set(X,U(C)) ∼= C(F (X), C),

which give an isomorphism of functors Setop × C → Set,

Set(−, U(−)) ∼= C(F (−),−).

Let X = {⋆} be a singleton set, and consider F (X). We claim that U ∼= hF (X), that is, U is
represented by F ({⋆}).
Indeed, property (ii) in the theorem defining adjoints tells us that F (X) represents the functor

Set(X,U(−)) ∼= C(F (X),−) = hF (X).

But we also know that hX is isomorphic to the identity functor on Set. Restricting to the image
of U , we obtain that since hX

∼= IdSet, then

Set(X,U(−)) = hX ◦ U ∼= IdSet ◦ U = U.

Thus we obtain that U ∼= hF (X), showing that U is representable.

Conversely, assume that U is representable, and let C0 be the representing object. Then we have a
natural transformation a : U → hC0

which is an isomorphism of functors. Thus, for every object C
of C, a(C) : U(C) → C(C0, C) is an isomorphism (that is, a bijection).

Define a functor F : Set → C by letting F (X) = ⨿x∈XC0; that is, the coproduct of a family of
copies of C0, indexed by X. We claim that F is the left adjoint of U .

For simplicity, let us denote F (X) by ⨿XC0, and let qx : C0 → ⨿XC0 be the corresponding
structure morphisms.

First, F is a functor. Suppose that f : X → Y is a set map. From the universal property of the
coproduct, we will obtain a map ⨿XC0 → ⨿Y C0 if we have morphisms from each of {C0}x∈X to
⨿Y C0. We obtain these maps by mapping the copy of C0 indexed by x, via the identity map, to
the copy indexed by f(x), followed by the map qf(x) : C0 → ⨿Y C0. Call this resulting map ⨿f id.
Thus, ⨿f id is the unique map such that qf(x) = (⨿f id) ◦ qx for each x ∈ X.

Therefore, ⨿idid = id⨿XC0
, since this map satisfies qx = (id⨿XC0

) ◦ qx for all x ∈ X, and by the
uniqueness clause of the universal property of the coproduct, that means this is the unique map
that works.

If f : X → Y and g : Y → Z are functions, then ⨿g◦f id is the unique map for which

q(g◦f)(x) = (⨿g◦f id) ◦ qx;

we know that qf(x) = (⨿f id) ◦ qx, and that qg(y) = (⨿gid) ◦ qy. Therefore,

(⨿gid) ◦ ((⨿f id) ◦ qx) = (⨿gid) qf(x) = qg(f(x)) = q(g◦f)(x),

1



thus (⨿gid) ◦ (⨿f id) = ⨿g◦f id. Therefore, F sends compositions to compositions, hence F is a
functor.

Before proceeding, note that the universal property of the coproduct tells us that

C(⨿XC0, C) ∼=
∏
X

C(C0, C),

since a map from the coproduct is equivalent to a family of maps from the factors, and similarly
in any category.

To establish that F is the left adjoint of U , we note that for every X and every object C ∈ Ob(C),
we have:

C(F (X), C) = C(⨿XC0, C) ∼=
∏
X

C(C0, C) ∼=
∏
X

hC0
(C) ∼=

∏
X

U(C)

∼=
∏
X

Set({⋆}, U(C)) ∼= Set(⨿X{⋆}, U(C)) ∼= Set(X,U(C)),

and the latter because X is isomorphic to ⨿X{⋆} in Set. Because both U and F are functors, we
know from Lemma 8.2.10 that this will give us an isomorphism of bifunctors, proving that F is
the left adjoint of U , as claimed. □

2. Exercise 8.3:5. Show that if A : C → D and B : D → C give an equivalence of categories, then
B is both a right and a left adjoint of A.

Proof. We know that A and B are both full and faithful; that every object C ∈ Ob(C) is
isomorphic to B(DC) for some DC ∈ Ob(D); and each object D ∈ Ob(D) is isomorphic to A(CD)
for some CD ∈ Ob(C). Also, we have isomorphisms of functors a : BA → IdC and b : AB → IdD.

Let C be an object of C and D an object of D. Then: C(C,B(D)) ∼= C(BA(C), B(D)) ∼=
D(A(C), D), with the first bijection induced by a−1, and the last bijection because B is full and
faithful; because A and B are known to be functors, Lemma 8.2.10 guarantees these identifications
give an isomorphism of bifunctors, so A is the left adjoint of B.

Symmetrically, D(D,A(C)) ∼= D(AB(D), A(C)) ∼= C(B(D), C), and Lemma 8.2.10 guarantees
this gives an isomorphism of bifunctors, so A is the right adjoint of B. □

3. Exercise 8.3:6. Let C be the category with Ob(C) = Ob(Group), but with morphisms defined so
that for any groups G and H, C(G,H) = Set(|G|, |H|). Thus, Group is a subcategory of C with
the same objects, but smaller morphism sets. Does the inclusion function Group → C have a left
and/or a right adjoint?

Answer. Note that we can also view C as a full subcategory of Set, where we only look at
underlying sets of groups (assuming the axiom of choice, every nonempty set can be given a group
structure, so this would just amount to “all nonempty sets”, but with “repeats”, since the same
underlying set may have multiple group structures on it).

Vieweing C as this full subcategory, we define F : C → Group to be the restriction of the free group
functor F : Set → Group to the objects of C. In particular, H is a functor, and for any groups
G and H, we have Group(F (G), H) = Group(F (|G|), H) ∼= Set(|G|, |H|) = C(G,H) = C(G, i(H)),
where i : Group → C is the inclusion functor. This shows that F is the left adjoint of the inclusion
functor.

On the other hand, if i has a right adjoint U , then we would necessarily have for every group G
and H that

Set(|G|, |H|) = C(G,H) = C(i(G), H) ∼= Group(G,U(H)).

But take G to be the trivial group; then Group(G,U(H)) contains only the trivial homomorphism,
hence C(i(G), H) = Set({e}, |H|) would necessarily be a singleton. But Set({e}, |H|) ∼= |H|, so
this would require H to be the trivial group. Thus, there can be no right adjoint U to i. □
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