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Prof. Arturo Magidin

1. Exercise 8.3:3. Let C be a category with small coproducts (that is, any family of objects of C
that is indexed by a small set has a coproduct in C), and let U: C — Set be a functor. Prove that
U has a left adjoint if and only if U is representable.

Proof. Suppose first that U has a left adjoint, and call the adjoint F. Then for every object
C € Ob(C) and every set X we have a bijection

Set(X,U(C)) = C(F(X), O),
which give an isomorphism of functors Set®® x C — Set,
Set(—,U(—)) = C(F (=), —)-

Let X = {x} be a singleton set, and consider F'(X). We claim that U = hp(x), that is, U is
represented by F({*}).

Indeed, property (ii) in the theorem defining adjoints tells us that F(X) represents the functor
Set(X7 U(_)> = C(F(X)a _) = hF(X)'

But we also know that hx is isomorphic to the identity functor on Set. Restricting to the image
of U, we obtain that since hx = Idse, then

Set(X,U(f)) =hxoU=Idget o U =U.

Thus we obtain that U = hp(x), showing that U is representable.

Conversely, assume that U is representable, and let Cy be the representing object. Then we have a
natural transformation a: U — h¢, which is an isomorphism of functors. Thus, for every object C
of C, a(C): U(C) — C(Cp, C) is an isomorphism (that is, a bijection).

Define a functor F': Set — C by letting F(X) = II,cxCo; that is, the coproduct of a family of
copies of Cy, indexed by X. We claim that F' is the left adjoint of U.

For simplicity, let us denote F(X) by IIxCp, and let ¢,: Co — IIxCy be the corresponding
structure morphisms.

First, F' is a functor. Suppose that f: X — Y is a set map. From the universal property of the
coproduct, we will obtain a map IIxCy — Iy Cy if we have morphisms from each of {Cy}.cx to
Iy Cy. We obtain these maps by mapping the copy of Cy indexed by x, via the identity map, to
the copy indexed by f(z), followed by the map gs(,y: Co — HyCp. Call this resulting map IIyid.
Thus, IIyid is the unique map such that gy, = (II;id) o ¢, for each x € X.

Therefore, Iqid = idy, ¢, since this map satisfies g, = (idir,¢,) © ¢z for all x € X, and by the
uniqueness clause of the universal property of the coproduct, that means this is the unique map
that works.

If f: X =Y and g: Y — Z are functions, then I . fid is the unique map for which
q(gof)(z) = (Hgofid) O (qx;
we know that gy, = (IIyid) o ¢, and that g4, = (Il4id) o g¢,. Therefore,

(yid) o (Lid) © gz) = (Hgid) Gy (a) = Gg(s(x)) = d(gof)(x)s



thus (II,id) o (ITfid) = I orid. Therefore, F' sends compositions to compositions, hence F is a
functor.

Before proceeding, note that the universal property of the coproduct tells us that

C HXCO, HC CO;

since a map from the coproduct is equivalent to a famlly of maps from the factors, and similarly
in any category.

To establish that F' is the left adjoint of U, we note that for every X and every object C' € Ob(C),
we have:

C(F(X),C) = C(IIxCo, C Hc Co,C) = [ her(C©) =[] U©)
X X
= [ Set({x}.U(C)) = Set(Lix {x},U(C)) = Set(X, U(C)),
X

and the latter because X is isomorphic to IIx{*} in Set. Because both U and F' are functors, we
know from Lemma 8.2.10 that this will give us an isomorphism of bifunctors, proving that F' is
the left adjoint of U, as claimed. O

. Exercise 8.3:5. Show that if A: C — D and B: D — C give an equivalence of categories, then
B is both a right and a left adjoint of A.

Proof. We know that A and B are both full and faithful; that every object C' € Ob(C) is
isomorphic to B(D¢) for some Do € Ob(D); and each object D € Ob(D) is isomorphic to A(Cp)
for some Cp € Ob(C). Also, we have isomorphisms of functors a: BA — Id¢ and b: AB — Idp.

Let C be an object of C and D an object of D. Then: C(C,B(D)) = C(BA(C),B(D)) =
D(A(C), D), with the first bijection induced by a~!, and the last bijection because B is full and
faithful; because A and B are known to be functors, Lemma 8.2.10 guarantees these identifications
give an isomorphism of bifunctors, so A is the left adjoint of B.

Symmetrically, D(D, A(C)) = D(AB(D), A(C)) = C(B(D),C), and Lemma 8.2.10 guarantees
this gives an isomorphism of bifunctors, so A is the right adjoint of B. [J

. Exercise 8.3:6. Let C be the category with Ob(C) = Ob(Group), but with morphisms defined so
that for any groups G and H, C(G, H) = Set(|G|, |H|). Thus, Group is a subcategory of C with
the same objects, but smaller morphism sets. Does the inclusion function Group — C have a left
and/or a right adjoint?

Answer. Note that we can also view C as a full subcategory of Set, where we only look at
underlying sets of groups (assuming the axiom of choice, every nonempty set can be given a group
structure, so this would just amount to “all nonempty sets”, but with “repeats”, since the same
underlying set may have multiple group structures on it).

Vieweing C as this full subcategory, we define F': C — Group to be the restriction of the free group
functor F': Set — Group to the objects of C. In particular, H is a functor, and for any groups
G and H, we have Group(F(QG), H) = Group(F(|G]), H) = Set(|G|, |H|) = C(G, H) = C(G,i(H)),
where i: Group — C is the inclusion functor. This shows that F' is the left adjoint of the inclusion
functor.
On the other hand, if ¢ has a right adjoint U, then we would necessarily have for every group G
and H that

Set(|G|,|H|) = C(G,H) =C(i(G), H) = Group(G,U(H)).
But take G to be the trivial group; then Group(G,U(H)) contains only the trivial homomorphism,
hence C(i(G), H) = Set({e}, |H|) would necessarily be a singleton. But Set({e}, |H|) = |H|, so
this would require H to be the trivial group. Thus, there can be no right adjoint U to . [J



