
Math 666 - Homework 3
Solutions

Prof Arturo Magidin

1. Recall that a subset J of a partially ordered set I is cofinal in I if and only if for every i ∈ I there
exists j ∈ J such that i ≤ j. Let C be a category, I a directed set, and J cofinal in I.

(i) Show that J is directed.

Proof. Let x, y ∈ J . We know that there exists z ∈ I such that x ≤ z and y ≤ z, since I
is directed. Because J is cofinal in I, there exists w ∈ J such that z ≤ w. Then x ≤ w and
y ≤ w, proving that J is directed. □

(ii) Show that if (Xi, (fij))I is a directed system in C, then (Xj , (fjk))J (the collection of objects
and maps where all indices lie in J) is also a directed system.

Proof. The index set is a directed set; and if j ≤ k ≤ m with all indices in J , then
fkm ◦ fjk = fjm, because this equality holds in (Xi, fij)I . In addition, fjj = idXj

. So we
have a directed system. □

(iii) Show that lim−→I
Xi “equals” lim−→J

Xj , in the sense that if one exists then so does the other,
and they are isomorphic via a unique isomorphism that respects the coprojections.

Proof. We will denote the direct limit over I, if it exists, by L = lim−→I
Xi, with coprojections

qi : Xi → L. We will denote the direct limit over J , if it exists, by M = lim−→J
Xj with

coprojections pj : Xj → M .

We will show that if L exists, then it has the universal property of M ; and that if M exists,
then it has the universal property of L.

Assume L exists; then the coprojections (qi)i∈J give a cone from the Xj to L. Now let W
be an object, and let wj : Xj → W be morphisms such that for all j, k ∈ J , if j ≤ k then
wj = wk ◦ fjk. Given i ∈ I, i /∈ J , let j ∈ J be such that i ≤ j. Define wi : Xi → W by
wi = wj ◦ fij . I claim that this is well defined. Indeed, if j′ ∈ J is another index with i ≤ j′,
let k ∈ J be such that j, j′ ≤ k. Then

wj ◦ fij = (wk ◦ fjk) ◦ fij = wk ◦ fik

and
wj′ ◦ fij′ = (wk ◦ fj′k) ◦ fij′ = wk ◦ fik,

so defining wi using j or j′ gives the same end result.

Next, if r, s ∈ I, r ≤ s, then let j ∈ J be such that s ≤ j. We need to show that wr = ws◦frs.
But indeed, we have that

wr = wj ◦ frj = wj ◦ fsj ◦ frs = ws ◦ frs,

as required. Thus, we have a cone from the direct family (Xi, fij)I to W , and so there exists
a unique morphism w : L → M such that wr = w◦qr for each r ∈ I. In particular, wj = w◦qj
for all j ∈ J . Hence, L and the coprojections qj satisfy the universal property of lim−→J

Xj , so
L ∼= lim−→J

Xj .

Conversely, assume M exists. We define functions qi : Xi → M as follows: if i ∈ J , then
qi = pi. If i /∈ J , then let j ∈ J be such that i ≤ j, and define qi = pj ◦ fij .
This is well-defined: if j, j′ ∈ J are such that i ≤ j and i ≤ j′, let k ∈ J be such that
j, j′ ≤ k. Then

pj ◦ fij = (pk ◦ fjk) ◦ fij = pk ◦ fik
and

pj′ ◦ fij′ = (pk ◦ fj′k) ◦ fij′ = pkfik,
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so qi is well-defined.

If r, s ∈ I are such that r ≤ s, then let j ∈ J be such that s ≤ j. Then

qr = pj ◦ frj = pj ◦ (fsj ◦ frs) = (pj ◦ fsj) ◦ frs = qs ◦ frs,

so the qi form a cone to M .

If W is an object and wi : Xi → W are morphisms such that for all i, j ∈ I with i ≤ j,
wi = wj ◦ fij , then restricting to wj with j ∈ J we get a cone from (Xj , fij)J , so there exists
a unique morphism w : M → W such that for all j ∈ J , wj = w ◦ pj . If i ∈ I, let j ∈ J be
such that i ≤ j. Then

w ◦ qi = w ◦ (pj ◦ fij) = (w ◦ pj) ◦ fij = wj ◦ fij = wi

so M has the universal property of lim−→I
Xi, as required. □

(iv) What can you say about lim−→I
Xi if I has a maximal element?

Answer. Note that a maximal element m in a directed set I is necessarily a maximum.
Indeed, if i ∈ I, then because I is directed we know that there exists j ∈ I such that i ≤ j
and m ≤ j; but since m is maximal, this gives m = j, and hence i ≤ m. Thus, m is a
maximum of I.

So if I has a maximal element m, then J = {m} is cofinal in I. Thus, (Xm, idXm
) is a

directed system, and Xm is a direct limit, with coprojection idXm . Thus, lim−→J
Xj = Xm.

Therefore, lim−→I
Xi = Xm, with coprojections qi = fim for all i ∈ I. □

2. Let I be a directed set, and let (Gi, (fij))I be a directed family of groups. Define an operation
on the direct limit lim−→I

|Gi| in Set as follows: given [g, i] and [h, j], let k ∈ I be such that i ≤ k

and j ≤ k. Then define the product of [g, i] and [h, j] by:

[g, i] · [h, j] = [fik(g)fjk(h), k],

where the product on the right hand side occurs in Gk.

(i) Prove that the operation is well defined, and makes lim−→I
|Gi| into a group, denoted lim−→I

Gi.

Proof. First, we verify that the definition does not depend on the specific k chosen. If
k, k′ ∈ I are such that i ≤ k, k′, j ≤ k, k′, then let m ∈ I be such that k, k′ ≤ m. Then we
have that

fim(g)fjm(h) = fkm(fik(g))fkm(fjk(h))

= fkm(fik(g)fjk(g)),

fim(g)fjm(h) = fk′m(fik′(g))fk′m(fjk′(h))

= fk′m(fik′(g)fjk′(h)).

Therefore, we have that [fik(g)fjk(h), k] = [fik′(g)fjk′(h), k′]. So the equivalence class of the
result, for fixed pairs (g, i) and (h, j), does not depend on the choice of k.

Next we verify that it does not depend on the choice of representatives for [g, i] and [h, j].
Suppose that [g, i] = [a, s] and [h, j] = [b, t].

Since [g, i] = [a, s], there exists m ∈ I, i, s ≤ m, such that fim(g) = fsm(a). And from
[h, j] = [b, t], we know that there exists n ∈ I, j, t ≤ n, such that fjn(h) = ftn(b). Now let
p ∈ I be such that m,n ≤ p. Then we also have fip(g) = fsp(a), and fjp(h) = ftp(b). And
we have

[g, i][h, j] = [fip(g)fjp(h), p]

= [fsp(a)ftp(b), p]

= [a, s][b, t],
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from what we proved before. Thus, the operation is well-defined.

Next we verify it makes lim−→I
|Gi| into a group. Note that [g, i] = [fim(g),m] for any m ≥ i.

Associativity: Let [g, r], [h, s], [k, t] ∈ lim−→I
|Gi|. Let m ∈ I be such that r, s, t ≤ m. Then(

[g, r][h, s]
)
[k, t] = [frm(g)fsm(h),m][k, t]

= [fmm(frm(g)fsm(h))ftm(k),m]

= [frm(g)fsm(h)ftm(k),m].

[g, r]
(
[h, s][k, t]

)
= [g, r][fsm(h)ftm(k),m]

= [frm(g)fmm(fsm(h)ftm(k)),m]

= [frm(g)fsm(h)ftm(k),m].

Identity element. Let i ∈ I. We claim that [eGi
, i] is the identity element of lim−→I

|Gi| (we
have used the fact that I is nonempty here). We note that [eGi , i] = [eGj , j] for all i, j ∈ I.
Indeed, if m ∈ I is such that i, j ≤ m, then fim(eGi) = eGm and fjm(eGj ) = eGm , since the
maps frs are group homomorphisms. Thus, [eGi

, i] = [eGj
, j] for all i, j ∈ I.

Let [h, j] be any other element of the direct limit. Then

[eGi
, i][h, j] = [eGj

, j][h, j] = [eGj
h, j] = [h, j],

[h, j][eGi
, i] = [h, j][eGj

, j] = [heGj
, j] = [h, j].

Thus, [eGi , i] is the identity of lim−→I
Gi.

Inverses. Let [g, i] be an element of the direct limit. Then [g, i][g−1, i] = [gg−1, i] = [eGi
, i]

and [g−1, i][g, i] = [g−1g, i] = [eGi , i]; so [g−1, i] = [g, i]−1. □

(ii) Prove that this group is the direct limit of (Gi, (fij))I in Group.

Proof. Define the coprojection maps qi : Gi → lim−→I
Gi by qi(g) = [g, i]. These are group

homomorphisms, since qi(gh) = [gh, i] = [g, i][h, i] = qi(g)qi(h).

These maps satisfy the defining property: if i ≤ j are in I, we want to show that qj ◦fij = qi.
If g ∈ Gi, then

qj ◦ fij(g) = qj(fij(g)) = [fij(g), j].

But [fij(g), j] = [g, i]. So qj ◦ fij = qi, as required.

Finally, this group together with these maps satisfy the universal property. Let M be any
group and let mi : Gi → M be group homomorphisms such that mj ◦ fij = mi for all i, j ∈ I
with i ≤ j. We want to show that there exists a unique morphism m : lim−→I

Gi → M such
that mi = m ◦ qi for all i.
Because lim−→I

|Gi| is the direct limit of the corresponding sets, we have a unique set function

m : lim−→I
|Gi| → |M | such that mi = m ◦ qi. This map is given by m[g, i] = mi(g). We just

need to verify that this map is a group homomorphism.

Let [g, i], [h, j] ∈ lim−→I
Gi. Let k ∈ I be such that i, j ≤ k. Then [g, i][h, j] = [fik(g)fjk(h), k].

But since mk(fik(g)) = mi(g) and mk(fjk(h)) = mj(h), then

m
(
[g, i][h, j]

)
= m

(
[fik(g)fjk(h), k]

)
= mk(fik(g)fjk(h))

= mk(fik(g))mk(fjk(h))

= mi(g)mj(h) = m([g, i])m([h, j]).

This proves the result. □
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3. Let I be a directed set, and let (Ai, (fij))I and (B, (gij))I be directed systems of abelian groups. By
a homomorphism u : (Ai) → (Bi) of directed system we mean a family of group homomorphism
ui : Ai → Bi such that for all i, j ∈ I, if i ≤ j then uj ◦ fij = gij ◦ ui.

Suppose we are given three directed systems of abelian groups (Ai, (fij))I , (Bi, (gij))I , andf
(Ci, (hij))I , and homomorphisms u : (Ai) → (Bi) and v : (Bi) → (Ci), and that for each i, we
have Im(ui) = ker(vi).

(i) Prove that u and v induce homomorphisms of direct limits U : lim−→I
Ai → lim−→I

Bi and
V : lim−→I

Bi → lim−→I
Ci.

Proof. For simplicity, let A = lim−→I
Ai, B = lim−→I

Bi, and C = lim−→I
Ci; let pi : Ai → A,

qi : Bi → B, and ri : Ci → C be the corresponding coprojections.

The maps qi ◦ ui : Ai → B define maps from from the Ai to B, and if i ≤ j, then

(qj ◦ uj) ◦ fij = qj ◦ (uj ◦ fij) = qj ◦ (gij ◦ ui) = (qj ◦ gij) ◦ ui = qi ◦ ui,

so the maps form a cone from (Ai, fij)I to B. Therefore, the universal property of A yields
a morphism U : A → B such that for all i, qi ◦ui = U ◦pi. In particular, U([a, i]) = [ui(a), i].

The same argument shows that we get a map V : B → C such that for all i, ri ◦ vi = V ◦ qi,
and we have V ([b, j]) = [vj(b), j]. □

(ii) Show that Im(U) = ker(V ).

Proof. Let [b, i] ∈ ker(V ). Then [0, i] = V ([b, i]) = [vi(b), i] ∈ C. Thus, there exists j ∈ I,
i ≤ j, such that hij(vi(b)) = 0. But hij ◦ vi = vj ◦ gij , so we have 0 = vj(gij(b)) Thus,
gij(b) ∈ ker(vj), hence gij(b) ∈ Im(uj).

Therefore, there exists a ∈ Aj such that uj(a) = gij(b). Hence

U([a, j]) = [uj(a), j] = [gij(b), j] = [b, i],

and [b, i] ∈ Im(U). Thus, ker(V ) ⊆ Im(U).

Conversely, let [b, i] ∈ Im(U). That means that there exists [a, j] ∈ A such that U([a, j]) =
[b, i]. Since U([a, j]) = [uj(a), j], we have [uj(a), j] = [b, i]. Thus, there exists k ∈ I, i, j ≤ k,
such that gjk(uj(a)) = gik(b). Thus we have

V ([b, i]) = V [gik(b), k] = V [gjk(uj(a)), k] = [vk
(
gjk(uj(a))

)
, k].

But vk ◦ gjk = hjk ◦ vj . So

vk(gjk(uj(a))) = hjk(vj(uj(a))).

By assumption, Im(uj) = ker(vj), so vj(uj(a)) = 0, hence

V ([b, i]) = [vk ◦ gjk ◦ uj(a), k] = [hjk ◦ vj ◦ uj(a), k] = [hjk(0), k] = [0, k],

showing that [b, i] ∈ ker(V ). This proves the equality. □

4. Exercise 8.5:8. Let (Xi, (fij))I be a directed system in Ab, where I is the set of positive integers
ordered by divisiblity, each Xi is the additive group Z, and for j = ni, the morphism fij : Z → Z
is multiplication by n.

(i) Show that lim−→I
Xi may be identified with the additive group of rational numbers.

Proof. For each positive integer k, define qk : Z → Q by qk(a) =
a
k . This is an additive map.

We claim that Q is has the universal property of the direct limit lim−→I
Xi with the qk as the

coprojections.
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First, we verify that these maps fit into the relevant commuting triangle. That is, if j = ni,
we must show that qi(a) = qj(fij(a)). Indeed, since j = in, then fij(a) = na. Thus,

qj(fij(a)) = qj(na) =
na

j
=

na

ni
=

a

i
= qi(a).

Now, suppose that B is an abelian group, and gi : Z → B are such that if j = ni, then
gj ◦fij = gi. We want to show that there exists a unique abelian group morphism G : Q → B
such that gi = Gqi for all i.

Define G : Q → B as follows: given a
b ∈ Q with b > 0, let G(ab ) = gb(a).

This is well defined: if k is a positive integer, then

G

(
ak

bk

)
= gbk(ak) = gbk(fa,ak(a)) = gb(a) = G

(a
b

)
.

Thus, if a
b = r

t , then
at
bt = rb

bt ; so then

G
(a
b

)
= G

(
at

bt

)
= G

(
rb

bt

)
= G

(r
t

)
.

Given a ∈ Z, we have:

Gqi(a) = G
(a
i

)
= gi(a),

so Gqi = gi, as desired.

Finally, G is unique: if H also has the property that Hqi = gi for all i, then given a
b ∈ Q,

we have
H

(a
b

)
= Hqb(a) = gb(a) = Gqb(a) = G

(a
b

)
,

so H = G.

This proves that Q and the proejctions qk have the universal property of lim−→I
Xi, which

proves the desired result. □

(ii) Show that if you perform the same construction starting with an arbitrary abelian group
A in place of Z, the result is a Q vector space which can be characterized by a universal
property relative to A.

Proof. Consider copies of A index by the positive integers, and for j = ni, the morphism
fij : A → A by fij(a) = na. Let VA be the direct limit of this directed system, with
coprojections qi, where as usual qi(a) = [a, i].

We claim that VA has a Q-vector space structure; and that if V is any Q-vector space and
there is an abelian group morphism f : A → V , then there exists a unique linear transforma-
tion F : VA → V such that f = Fq1.

To show that VA has a Q-vector space structure, let [a, i] ∈ VA. Given r
s ∈ Q, define

r

s
[a, i] = [ra, si].

To show this makes sense, we need to show it does not depend on the representation of the
rational, or on the representative of the equivalence class [a, i] chosen.

If r
s = x

y , then ry = sx; thus we have

r

s
[a, i] = [ra, si] = [rya, syi] = [sxa, syi] = [xa, yi] =

x

y
[a, i].

So the representation of the rational r
s .

5



To verify that the representative of [a, i] does not affect the result, note that for any n ≥ 1
we have:

[rna, sni] = [n(ra), n(si)] = qnsi(nra) = qnsifsi,nsi(ra) = qsi(ra) = [ra, si].

Thus, we also have that r
s [a, i] =

r
s [na, ni]. Now assume that [a, i] = [b, j]. Then there exists

k with im = k and jn = k such that fik(a) = fjk(b); that is, ma = nb. Therefore,

r

s
[a, i] =

r

s
[ma,mi] =

r

s
[nb, nj] =

r

s
[b, j].

And this corresponds to a “Q-scalar multiplication” on VA. Indeed, we have 1
1 [a, i] = [a, i].

In addition,
r

s

(u
v
[a, i]

)
=

r

s
[ua, vi] = [rua, svi] =

ru

sv
[a, i].

For left distributivity we have(r
s
+

u

v

)
[a, i] =

rv + su

sv
[a, i] = [(rv + su)a, svi].

r

s
[a, i] +

u

v
[a, i] = [ra, si] + [ua, vi] = [rva, svi] + [sua, svi]

= [rva+ sua, svi] = [(rv + su)a, svi].

And for right distributivity, we have:

r

s

(
[a, i] + [b, j]

)
=

r

s

(
[aj, ij] + [bi, ij]

)
=

r

s
[aj + bi, ij] = [r(aj + bi), sij].

r

s
[a, i] +

r

s
[b, j] = [ra, si] + [rb, js] = [rja, sij] + [rib, jsi] = [rja+ rib, isj] = [r(aj + bi), sij].

Thus, VA is a Q-vector space.

Now assume that V is a Q-vector space and f : A → V an abelian group homomorphism.
Since any additive map between Q-vector spaces is in fact a linear transformation, we just
need to show that there exists a unique abelian group morphism F : VA → V such that
f = Fq1. Indeed, define F : VA → V by F ([a, i]) = 1

i f(a). This is well defined:

F ([na, ni]) =
1

ni
f(na) =

1

ni
(nf(a)) =

n

ni
f(a) =

1

i
f(a) = F ([a, i]).

Then, as above, this means that F is well defined. It is additive, since

F ([a, i] + [b, j]) = F ([aj, ij] + [ib, ij]) = F ([aj + ib, ij]) =
1

ij
f(aj + ib)

=
1

ij
f(aj) +

1

ij
f(ib) =

j

ij
f(a) +

i

ij
f(b) =

1

i
f(a) +

1

j
f(b) = F ([a, i]) + F ([b, j]),

from which it follows that F is additive.

And we have that Fq1(a) = F [a, 1] = f(a).

Finally, uniqueness follows because if G : VA → V also satisfies that Gq1 = f , then

iG([a, i]) = G([ia, i]) = G([a, 1]) = Gq1(a) = f(a) = F ([a, 1]),

so G([a, i]) = 1
iF ([a, 1]). On the other hand,

F ([a, i]) =
1

i
f(a) =

1

i
F ([a, 1]) = G([a, i]),

so F = G. This proves the universal property. □
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