
Math 666 - Homework 5
Solutions

Prof Arturo Magidin

1. Exercise 8.9:1. Let D and E each be the category with object set {0, 1} and no morphisms other
than the identity morphisms.

(i) Suppose L is a lattice, Lpos is the underlying partially ordered set, and let C = (Lpos)cat be
the corresponding category. Describe what it means to give a bifunctor B : D × E → C as in
Lemma 8.9.1, verify that the indicated limits and colimits exist, and identify the comparison
morphism cB . (Since C is a category in which C(X,Y ) has at most one element, you should
specifically describe the domain and codomain, and prove that an arrow exists between
them).

Answer. A bifunctor B : D × E means giving a family of four elements of L, which we can
label x00, x01, x10, and x11, corresponding to the objects of D × E , which are (0, 0), (0, 1),
(1, 0), and (1, 1). The only arrows in D × E are the identity arrows, so we do not need to
worry about comparability of the xij in L.

Here, because D × E has no arrows except the identity arrows, the limits of the functors
B(i,−) : E → C are products, and the colimits of the functors B(−, j) : D → C are coproducts.
In (Lpos)cat, a product of a family of elements is an element with maps into every element of
the family (that is, less than or equal to each element of the family), such that any element
with maps into each element of the family maps to the product (that is, larger than or equal
to every element that is a lower bound to the family). That is, the product of a family is
the meet of the family. Dually, the coproduct of a family is the join of the family. That
means that the corresponding limits and colimits exist, since L has meets and joins of pairs
of elements (by definition of a lattice).

The objects in question are:

lim−→Dlim←−EB(D,E) = (x00 ∧ x01) ∨ (x10 ∧ x11),

lim←−E lim−→DB(D,E) = (x00 ∨ x10) ∧ (x01 ∨ x11).

To verify that the comparison morphism cB exists, we need to show that the former element
is less than or equal to the latter element.

Indeed, note that:

x00 ∧ x01 ≤ x00 ≤ x00 ∨ x10

x00 ∧ x01 ≤ x01 ≤ x01 ∨ x11,

That means that x00 ∧ x01 is a lower bound for both x00 ∨ x10 and x01 ∨ x11, and therefore
that

x00 ∧ x01 ≤ (x00 ∨ x10) ∧ (x01 ∨ x11).

Similarly,

x10 ∧ x11 ≤ x10 ≤ x00 ∨ x10

x10 ∧ x11 ≤ x11 ≤ x01 ∨ x11

x10 ∧ x11 ≤ (x00 ∨ x10) ∧ (x01 ∨ x11).

Since (x00 ∨ x10) ∧ (x01 ∨ x11) is an upper bound for both x00 ∧ x01 and x10 ∧ x11, it is also
an upper bound for their join. That is,

(x00 ∧ x01) ∨ (x10 ∧ x11) ≤ (x00 ∨ x10) ∧ (x01 ∨ x11),

which proves that cB is the unique arrow between these two elements of L. □
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(ii) Let C be the two element lattice, and show that it is possible for the comparison morphism
cB to fail to be an isomorphism.

Answer. We need to make a choice of xij such that the two elements described above are
distinct.

We can achieve this by letting x00 = x11 = 0 and x01 = x10 = 1. Then we have

lim−→Dlim←−EB(D,E) = (0 ∧ 1) ∨ (1 ∧ 0) = 0 ∨ 0 = 0

lim←−E lim−→DB(D,E) = (0 ∨ 1) ∧ (1 ∨ 0) = (1 ∧ 1) = 1.

This, cB is the unique arrow between 0 and 1, which is not an isomorphism. □

(iii) Do the same with C = Set, and D and E as above.

Answer. In the case of Set, the colimits will correspond again to coproducts, i.e. disjoint
unions; and the limits will correspond to products, i.e. cartesian products. Thus, here we
will have four sets, Aij , and the limits and colimits will be:

lim−→Dlim←−EB(D,E) = (A00 ×A01)⨿ (A10 ×A11)

lim←−E lim−→DB(D,E) = (A00 ⨿A10)× (A01 ⨿A11).

For ease, denote elements of Aij with a superscript label, e.g. a(ij) for an element of Aij .

An element of (A00 × A01) ⨿ (A10 × A11) will be either of the form (a(00), a(01)) or of the
form (a(10), a(11)). An element of (A00 ⨿A10)× (A01 ⨿A11) will be of the form (a(ij), b(rs)),
where (i, j) ∈ {(0, 0), (1, 0)} and (r, s) ∈ {(0, 1), (1, 1)}.
Note that this means that (A00×A01)⨿(A10×A11) is a subset of (A00⨿A10)×(A10⨿A11), and
the comparison map cB is the inclusion map. To show that it is need not be an isomorphism
it suffices to show that it is not always surjective.

This is straightforward; note that the cardinality of the domain is

card(A00)car(A01) + card(A10)card(A11),

whereas the cardinality of the codomain is:

card
(
(A00 ⨿A10)× (A01 ⨿A11)

)
= (card(A00) + card(A10))(card(A01) + card(A11))

= card(A00)card(A01) + card(A00)card(A11)

+ card(A10)card(A01) + card(A10)card(A11).

For finite sets, the two sets will have equal cardinality if and only if

card(A00)card(A11) + card(A10)card(A01) = 0.

Thus, taking any nonempty sets will provide an example where cB is not a bijection. Ex-
plicitly, taking each Aij = {aij}, we have

lim−→Dlim←−EB(D,E) = {(a00, a01), (a10, a11)}
lim←−E lim−→DB(D,E) = {(a00, a01), (a00, a11), (a10, a01), (a10, a11)},

so cB is not a bijection. □

2. Let {G1n, G2n}∞n=1 be a family of groups. We can view the family as the image of a bifunctor
B : D × E → Group, D = Pcat where P is the two element set with the discrete order (each
element is only comparable to itself), and E = Qcat where Q is the positive integers with the
discrete order.
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(i) Describe explicitly the comparison morphism

cB : lim−→m
lim←−n

Gmn −→ lim←−n
lim−→m

Gmn.

Answer. Again, the colimit corresponds to a coproduct (free product of groups), and the
limit to a product of groups. So we have:

lim−→m
lim←−n

Gmn =

( ∞∏
n=1

G1n

)
∗

( ∞∏
n=1

G2n

)

lim←−n
lim−→m

Gmn =

∞∏
n=1

(G1n ∗G2n).

In order to describe the comparison morphism, let us use superscript of the form (ij) to
indicate that a given element lies in the group Gij .

The elements of lim−→ lim←−Gmn are words in the alphabet of tuples (g(1n)) and (g(2n)). That is,
a general element will look like(

g
(1n)
1

)(
h
(2n)
1

)(
g
(1n)
2

)(
h
(2n)
2

)
· · ·
(
g
(1n)
k

)(
h
(2n)
k

)
,

where none of the tuples, except perhaps for (g
(1n)
1 ) and (h

(2n)
k ), are the trivial element.

The elements of lim←− lim−→Gmn are tuples of the form (wn), where wn ∈ G1n ∗G2n is a word of
the form

x
(1n)
1 y

(2n)
1 x

(1n)
2 y

(2n)
2 · · ·x(1n)

ℓ y
(2n)
ℓ ,

where none of the elements, except perhaps for x
(1n)
1 and y

(2n)
ℓ , are the identity.

The map cB is given by(
g
(1n)
1

)(
h
(2n)
1

)(
g
(1n)
2

)(
h
(2n)
2

)
· · ·
(
g
(1n)
k

)(
h
(2n)
k

)
cB7−→
(
g
(1n)
1 h

(2n)
1 · · · g(1n)k h

(2n)
k

)
. □

(ii) Determine whether the map is always an isomorphism. If the map is always an isomorphism,
prove this is the case. If not, then give an explicit example where it is not, and prove that
it is not.

Answer. If there exist two indices j ̸= k such that G1j and G2k are both nontrivial, then
the map is not injective. If there are infintely many indices j for which both G1j and G2j

are nontrivial, then the map is not surjective.

To verify that the map is not injective when we have indices j ̸= k with G1j and G2k both
nontrivial, let x ∈ G1j , y ∈ G2k both be nontrivial. Let x ∈

∏
G1n and y ∈

∏
G2n be the

elements with

πr(x) =

{
x if r = j,
e otherwise;

and πs(y) =

{
y if s = k,
e otherwise.

Now consider the element xyx−1y−1 ∈ lim−→m
lim←−n

Gmn. This is a nontrivial element, but we
have:

πt

(
cB(xyx

−1y−1)
)
=

 xex−1e−1 if t = j,
eye−1y−1 if t = k,
e otherwise

 = e.

Thus, the map is not injective.
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Now assume that there are infinitely many indices j1, j2, . . . for which both G1jk and G2jk

are nontrivial. Let xk ∈ G1jk and yk ∈ G2jk be nontrivial elements. Let g be the element of
lim←− lim−→Gmn with

πjk(g) = (xkyk)
k.

Note that if h lies in the image of cB , then there exists k such that for every t, πt(h) has
at most k factors that alternate between elements of G1t and G2t; that is, the components
have bounded “length” as elements of the corresponding free products. But g does not have
this property: its components can be arbitrarily long. That means that g cannot lie in the
image of cB and thus that cB is not surjective when there are infinitely many indices j for
which both G1j and G2j are nontrivial. □

Remark. In fact, it is not hard to verify that the conditions give above are “if and only if”.
Thus, cB is one-to-one if and only if there is no pair j ̸= k of indices such that G1j and G2k

are both nontrivial. And cB is surjective if and only if there are only finite many indices j
for which both G1j and G2j are nontrivial. That means that we will get an isomorphism if
and only if either all G1n are trivial, or all G2n trivial (in which case both groups are just
the product of the other family), or else there is an index n0 such that Gin is nontrivial if
and only if n = n0 (in which case both groups in question are isomorphic to G1n0

∗G2n0
).

3. Exercise 8.9.10. Determine whether the abelianization functor Group→ Ab respects

(i) Inverse limits;

(ii) Products;

(iii) Equalizers.

In each case where the answer is negative, determine whether it is injectivity, surjectivity, or both
properties of the comparison morphism that may fail.

Answer. Note that the product of a countable family of groups can be realized as an inverse
limit. Indeed, let {Hi}i∈ω be a countable family. Let Gn = H1 × · · ·Hn, and for n ≤ m,
let fmn : Gm → Gn be the projection map that eliminates the last m − n components. Then
((Gn), fmn) is an inversely directed system of groups indexed by ωop, and its inverse limit is
isomorphic to

∏
i∈ω Hi. Because of this, if we have a counterexample to the functor respecting

countable products, then this will also be a counterexample for the functor respecting countable
inverse limits. So I will do part (ii) first.

(ii) The comparison map

c :

(∏
i∈I

Gi

)ab

→
∏
i∈I

Gab
i ,

is the map induced by mapping the tuple (gi) to (gi), where gi is the image of gi in Gab
i

under the canonical morphism G→ Gab.

The kernel of this map is the image of
∏

i∈I [Gi, Gi] in the quotient.

The comparison map need not be an isomorphism. It is always surjective, since it is the
product of surjective maps: that is, given (xi) ∈

∏
Gab

i pick gi ∈ Gi such that gi = xi; then
c((gi)) = (xi).

However, the map need not be one-to-one. The reason is that in general we have[∏
i∈I

Gi,
∏
i∈I

Gi

]
⊆
∏
i∈I

[Gi, Gi],
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but the inclusion may be proper. The issue is similar to the one in Problem 2(ii): the
elements of [Gi, Gi] may be arbitrarily long products of pure commutators, and the lengths
of the components in

∏
[Gi, Gi] may be unbounded, whereas the lengths in elements of

[
∏

Gi,
∏

Gi] are always bounded. Explicitly, if we let Gi be the free group on 2i elements
x1, . . . , x2i, then the element of

∏
[Gi, Gi] whose nth coordinate is [x1, x2] · · · [x2n−1, x2n] is

not an element of [
∏

Gi,
∏

Gi]. □

(i) The inverse limit L of the system ((Gi), fij) is the subgroup of
∏

Gi consisting of tuples (xi)
for which fij(xi) = xj for all i ≤ j in the index system. The inverse limit of ((Gab

i ), fab
ij ) is the

subgroup of
∏

Gab
i consisting of elements (xi[Gi, Gi]) for which fab

ij (xi[Gi, Gi]) = xj [Gj , Gj ]
whenever i ≤ j; this means the tuples for which

fij(xi)[Gj , Gj ] = xj [Gj , Gj ] whenever i ≤ j.

The comparison maps c : Lab → M is the map c((xi)[L,L]) = (xi[Gi, Gi]), which is well
defined since [L,L] ⊆

∏
[Gi, Gi].

As noted above, since we have the product of a countable family in which the comparison
map is not injective, this also shows that the comparison map for inverse limits need not be
injective.

Although the map need not be surjective either, I confess to not having an example on hand.
This is because under relatively mild condition we will have a surjective map; see for example
I. Barnea and S. Shelah, The abelianization of inverse limits of groups, Israel J. Math. 227
(2018), no. 1, 455–483; MR3846331, where it is shown that if the index set is countable and
the system satisfies the Mittag-Leffler condition, then the comparison map is surjective. An
inversely directed system satisfies the Mittag-Leffler condition if for every t there is an s,
s ≤ t, such that for every r ≤ s, frt(Gr) = fst(Gs). This holds if the structure morphisms
are surjective or if the groups are finite. I will investigate to see if I can find an accessible
example. □

(iii) For equalizers, the map need not be either surjective nor injective.

Let f, g : G→ K be two group homomorphisms, and let H = Eq(f, g); that is,

H = {x ∈ G | f(x) = g(x)}.

The two maps f, g induce maps fab, gab : Gab → Kab, given by

fab(x[G,G]) = f(x)[K,K] and gab(x[G,G]) = g(x)[K,K].

The equalizer of this map is E = {x[G,G] | f(x)[K,K] = g(x)[K,K]}. The comparison map
is then c : Hab → E, given by c(x[H,H]) = x[G,G].

For an example where the map is not surjective, consider the two embeddings of Z/3Z into
S3, one mapping the generator to (123) and the other to (132). The equalizer of these two
maps is trivial; that is, H = {e}.
The abelianization maps are between Z/3Z and Z/2Z and are both trivial, so their equalizer
is all of Z/3Z; that is, E = Z/3Z. So the comparison map is not surjective.

For an example where the map is not injective, consider the following two maps f, g : S3 → S5:
f is the obvious embedding, sending a permutation σ of {1, 2, 3} into the permutation of
{1, 2, 3, 4, 5} that acts on {1, 2, 3} like σ and fixes 4 and 5; and g is the embedding that
agrees with f on A3, and sends elements ρ of S3−A3 to the permutation that acts like ρ on
{1, 2, 3} and that exchanges 4 and 5. This embedds S3 into A5.

Both Sab
3 and Sab

5 are cyclic of order 2; the map fab is the identity of Z2, and the map gab

is the trivial map. Thus, their equalizer is trivial.

But the equalizer of f and g is A3, whose abelianization is itself. Thus, the comparison map
is the trivial map A3 → {e}. □
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