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1. Exercise 9.3:3 (partial)

(i) Show that a free Ω-algebra is free on a unique set of generators. That is, if (F, u) is a free
Ω-algebra, then the image in |F | of the set map u is determined by the Ω-algebra structure
of F .

Proof. Suppose that (F, u) is a free Ω-algebra on X, and that u′ : X → |F | is a set map
such that (F, u′) is also a free Ω-algebra on X. We wish to show that u(X) = u′(X) as sets.

We know that F is an Ω-term algebra on X using u, and also using u′. In particular, it
satisfies the definition of “Ω-term algebra” given in Definition 9.3.1, relative to both u and
u′. Explicitly:

(1) The map u and all the maps sF are one-to-one; they have pairwise disjoint images; and
F is generated as an Ω-algebra by u(X).

(2) The map u′ is also one-to-one; it has pairwise disjoint image with all sF ; and F is
generated as an Ω-algebra by u(X).

Let S(α) be the sets defined as in Section 9.2 with S(0) = u(X); and let T (α) be the corre-
sponding sets with T (0) = u′(X). We know that, taking γ to be the least infinite regular
cardinal that is strictly larger than the arities of all s ∈ |Ω|, we have |F | = S(γ) = T (γ).

Let x ∈ X. Then u′(x) lies is |F | = ∪β<γS
(β), so let α be the least ordinal such that

u′(x) ∈ Sα. Note that α cannot be a nonzero limit ordinal, because if δ is a nonzero limit
ordinal, then S(δ) = ∪β<δS

(β), so there exists β < δ such that u′(x) ∈ S(β). Thus, if α ̸= 0,
then α = β + 1 for some ordinal β, hence

u′(x) ∈ S(β+1) = S(β) ∪ {sF ((yi)) | s ∈ |Ω|, yi ∈ S(β) for all i ∈ ari(s)}.

By choice of β, it must be the case that u′(x) = sF ((yi)) for some suitable s ∈ Ω and tuple
(yi). But because (F, u′) is an Ω-term algebra on X, we know that the images of u′ and sF
are disjoint, so we cannot have u′(x) = sF ((yi)). Thus, we have a contradiction.

The contradiction arose from assuming that α ̸= 0. Thus, α = 0, so u′(x) ∈ S(0) = u(X).
This proves that u′(X) ⊆ u(X). A symmetric argument shows that u(X) ⊆ u′(X), proving
that u(X) = u′(X), as desired. □

(ii) Is the analogous result true for free groups? Free monoids? Free rings?

Answer. The analogous result is not true for free groups. For example, let X = {x}, and
let F = Z. Let u, u′ : X → |F | be given by u(x) = 1 and u′(x) = −1. Then (F, u) and (F, u′)
are both free on X, but u(X) ̸= u(X ′).

Similarly, the result is not true for free rings. If R = Z[y] is the polynomial ring in y over
the integers, and u : X → |R| is given by u(x) = y, then (R, u) is a free ring on X. If we
define u′ : X → |R| by u′(x) = −y, then (R, u′) is also a free ring on X (the unique morphism
F : R → S induced by f : X → |S| with Fu′ = f is the unique morphism R → S such that
y 7→ −f(x)). Here again we have u(X) ̸= u(X ′).

The result is true for monoids, however. Recall that the free monoid on a set X can be con-
structed as the collection of all reduced (monoid) words on X; that is, almost null sequences
(x0, x1, . . .) of elements of X ∪ {e}, with the property that if xi = e for some i, then xj = e
for all j ≥ i. The expression is unique, and the operation is concatenation (as usual).

If we define the length of such an element to be

length(x0, x1, . . .) = min{k | xk = e}.
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Note that here we have that if w and w′ are words, then length(ww′) = length(w)+length(w′),
because in a free monoid no identity allows us to “cancel” letters in the free words. In
particular, no element of length 1 can be obtained as a product of two nontrivial words.

Let X be a set, let M be the free monoid described above, and let u : X → |M | be the
embedding sending x ∈ X to (x, e, e, e, . . .), which makes (M,u) into a free monoid in X.
If u′ : X → |M | is a map such that (M,u′) is also free monoid in X, then u(X) ⊆ u′(X),
because no element of u(X) can be obtained as a nontrivial word in the elements of u′(X)
that has length greater than 1. And if u′(y) has length greater than 1 for any y ∈ X, then
y can be obtained in terms of the elements of u(X), which would mean that (M,u′) is not
free on X (since there is a monoid relation between u′(y) and u′(X)− {u(y)}). Thus, every
element of u′(X) has length 1, and thus u′(X) ⊆ u(X), giving equality. □

2. Exercise 9.3:4

(i) Show that every subalgebra of a free Ω-algebra F is free.

Proof. Let X be a set and u : X → |F | be a set map such that (F, u) is a free Ω-algebra
on X; note that this means that F is an Ω-term algebra on X. Let γ be an infinite regular
cardinal that is strictly larger than the arities of all s ∈ |Ω, and let S(α), α ≤ γ, be the sets
defined as in Section 9.2 with S(0) = u(X). Let A be a subalgebra of F .

We recursively define set Y (α) and T (α) as follows:

(1) Y (0) = A ∩ S(0); T (0) = Y (0).

(2) If Y (α) and T (α) have been defined, we define

T (α+1) = T (α) ∪ Y (α) ∪ {sF ((xi)) | s ∈ |Ω|, xi ∈ T (α) ∪ Y (α) for all i ∈ ari(s)},

Y (α+1) =
(
A ∩ S(α+1)

)
− T (α+1).

(3) If δ is a nonzero limit ordinal, then let T (δ) = ∪β<δT
(β) and Y (δ) = ∪β<δY

(β).

Note that T (γ) = A ∩ S(γ) = A. Let Y = Y (γ), and let i : Y ↪→ |A| be the embedding of Y
into A.

I claim that (A, i) is a free Ω-Algebra. To prove this, we can equivalently prove that (A, i)
is an Ω-term algebra on Y .

Because i is an embedding, it is one-to-one. And because A is a subalgebra of F , we also
know that its operations sA (which are the restrictions of the operations sF ) are one-to-one.

The images of the sA are pairwise disjoint, because the image of sA is contained in the image
of sF . And the construction of Y ensures that if a ∈ Y , then a is not equal to sA of any
tuple of elements of A (again invoking the fact that the maps sF are one-to-one with disjoint
images). So, the image of u is disjoint from the image of any sA.

Finally, we must show that A is generated as an Ω-algebra by Y . Let B = ⟨Y ⟩Ω. We show
that T (α) ⊆ B for all α ≤ γ. Indeed, T (0) = Y (0) ⊆ Y ⊆ B.

Assuming T (α) ⊆ B, let a ∈ T (α+1). If a ∈ T (α), theN a ∈ B by assumption. If a ∈ Y (α),
then a ∈ Y ⊆ B by construction. And if a = sF ((xi)) with each xi in either T (α) (hence
in B) or in Y (α) (hence also in B), then a ∈ B because B is a subalgebra of F . Thus,
T (α+1) ⊆ B. And if δ is a nonzero limit ordinal and T (β) ⊆ B for all β < δ, then trivially
T (δ) ⊆ B. Thus, inductively, A = T (γ) ⊆ B ⊆ A, proving that A is generated by Y .

Thus, A is an Ω-term algebra on Y , and hence is free, as required. □

(ii) Is the analogous statement true for monoids?

Answer. The analogous statement is not true for monoids. Let M be the free monoid on
x, written multiplicatively, and consider the submonoid {x2, x3}. It is not free in a single
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generator, for that generator would have to be x2, and ⟨x2⟩ does not contain x3; and any
subset that contains more than one nontrivial element cannot freely generate ⟨x2, x3⟩ because
there are nontrivial monoid relations between any two distinct nontrivial elements of M . So
⟨x2, x3⟩ is not a free monoid. □

3. Exercise 9.3:6 (partial)

(i) Show that every functor A : Set → Set sends surjective maps to surjective maps and injective
maps with nonempty domain to injective maps.

Proof. Recall that in Set, a function is surjective if and only if it has a right inverse (recall
that we always assume the Axiom of Choice). Thus, if f : X → Y is surjective, and g is a
right inverse of f , then

idA(Y ) = A(idY ) = A(fg) = A(f)A(g),

hence A(f) has a right inverse, and thus is surjective.

Likewise, in Set, a function f : X → Y with nonempty domain is injective if and only if it
has a left inverse. Given such an f , if h is a left inverse to f , then

idA(X) = A(idX) = A(hf) = A(h)A(f),

so A(f) has a left inverse and therefore is injective. □

(ii) Show that the second clause of (i) becomes false if the qualification about nonempty domains
is omitted.

Proof. Let A be the functor that sends every nonempty set to Y = {∅}; sends ∅ to
X = {∅, {∅}}; sends every arrow between nonempty sets to idY ; sends the unique element
of Set(∅,∅) to idX ; and for any nonempty set S, sends the unique element of Set(∅, S) to
the unique function f : X → Y . Note that if S is nonempty, then Set(S,∅) is empty, so this
describes the values of A at every object and every arrow. Then A is a functor, but it sends
every injection with empty domain to the non-injective function f . □

(iii) Show that if A has the form UF , where U : C → Set is some functor from a category C, and
F is a left adjoint of U , then A carries maps with empty domain to injective maps.

Proof. Note that because ∅ is initial in Set and F is a left adjoint, it follows that F (∅) is
an initial object of C. We will use the following Lemma:

Lemma. Let D be a category, I,X ∈ Ob(D). If I is initial and D(X, I) ̸= ∅, then the
unique arrow u : I → X is left invertible, and in particular is a monomorphism.

Proof. Let g : X → I. Then gu ∈ D(I, I) = {idI}, so g is a left inverse for u, as desired. □

Let f : ∅ → X. We wish to show that A(f) is one-to-one.

If Set(X,A(∅)) is empty, then we must have A(∅) = ∅, and there is nothing to do. If
Set(X,A(∅)) is nonempty, then since

Set(X,A(∅)) = Set(X,UF (∅)) ∼= D(F (X), F (∅)),

it follows that the unique arrow F (f) : F (∅) → F (X) is a monomorphism, by the Lemma.
Since U is a right adjoint, it carries monomorphisms to monomorphisms (as it respects pull-
backs), so A(f) = UF (f) is a monomorphism in Set; that is, A(f) is injective, as desired. □
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