Classifying spaces for commutativity in groups Lloyd Roeling Conference

Omar Antolín Camarena Institute of Mathematics, UNAM

Spaces of commuting elements

Spaces of commuting elements

For a topological group G consider:

$$\operatorname{Hom}(\mathbb{Z}^n,G)\cong\{(g_1,\ldots,g_n)\in G^n:g_ig_j=g_jg_i\}.$$

We will focus on Lie groups (usually compact ones) and countable discrete groups (usually finite ones).

Example: commutativity in SU(2)

- \triangleright SU(2) is the group of unit quaternions.
- We write a quaternion as a+u where $a \in \mathbb{R}$ is the real part, and $u=bi+cj+dk \in \mathbb{R}^3$ is the imaginary part.
- ▶ Multiplication is given by $uv = -u \cdot v + u \times v$.
- ▶ a + u and b + v commute if and only if u and v are parallel.

Example: commuting pairs in SU(2), I

$$p: S^2 \times S^1 \times S^1 \to \text{Hom}(\mathbb{Z}^2, SU(2))$$

 $(v, a_1 + a_2i, b_1 + b_2i) \mapsto (a_1 + a_2v, b_1 + b_2v)$

- ightharpoonup p is surjective and $p(v, a, b) = p(-v, \bar{a}, \bar{b})$.
- p descends to a map

$$\bar{p}: (S^2 \times S^1 \times S^1)/{\sim} \rightarrow \operatorname{\mathsf{Hom}}(\mathbb{Z}^2, SU(2)).$$

Example: commuting pairs in SU(2), II

- $p(v, a_1 + a_2i, b_1 + b_2v) = (a_1 + a_2v, b_1 + b_2v)$
- $\bar{p}([v,\pm 1,\pm 1]) = (\pm 1,\pm 1).$
- ightharpoons $ar{p}$ is an embedding when restricted to

$$S^2 \times (S^1 \times S^1 \setminus \{\pm 1\} \times \{\pm 1\}).$$

So $\operatorname{Hom}(\mathbb{Z}^2, SU(2))$ is obtained from $(S^2 \times S^1 \times S^1)/\sim$ by collapsing each of four copies of \mathbb{RP}^2 to a point.

Homotopical behavior of $\operatorname{Hom}(\mathbb{Z}^n,G)$

If $f: H \to G$ is both a group homomorphism and a homotopy equivalence, then $BG \simeq BH$.

But $\operatorname{Hom}(\mathbb{Z}^n,G)$ and $\operatorname{Hom}(\mathbb{Z}^n,H)$ need not even have the same number of connected components! Not even if G is a Lie group and H=K is its maximal compact subgroup.

Maximal compact subgroups

- A connected Lie group G always has a maximal compact subgroup K.
- ► All the maximal compact subgroups are conjugate to each other.
- ▶ G is homeomorphic to $K \times \mathbb{R}^d$ for some d, but not isomorphic as a group.
- ightharpoonup Even if G is a complex Lie group, K is a real Lie group.
- ▶ Basic examples: $G = GL(n, \mathbb{R})$, K = O(n); $G = GL(n, \mathbb{C})$, K = U(n).

Reductive algebraic groups

Pettet and Souto (2013): If G is the group of (complex resp. real) points of a (complex resp. real) reductive algebraic group, and K is its maximal compact subgroup, then the inclusion of $\operatorname{Hom}(\mathbb{Z}^n,K)$ into $\operatorname{Hom}(\mathbb{Z}^n,G)$ is a homotopy equivalence.

Examples of reductive algebraic groups: GL(n), SL(n), SU(n), SO(n), Sp(2n).

This result does not hold for non-algebraic groups!

The Heisenberg group

- $\begin{array}{c|c} \bullet & \begin{pmatrix} 1 & a & [c] \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & x & [z] \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \text{ commute if and } \\ \text{only if } ay bx \in \mathbb{Z}. \end{array}$
- Thus $Hom(\mathbb{Z}^n, G)$ has infinitely many connected components.
- The maximal compact subgroup is the $K = \mathbb{R}/\mathbb{Z}$ in the corner, so $\text{Hom}(\mathbb{Z}^n, K) = K^n$ is connected.

A source of commuting elements

Let G be a compact, connected Lie group, let T be its maximal torus, and W = N(T)/T be its Weyl group.

Consider the map

$$\varphi: (G/T \times T^n)/W \to \operatorname{Hom}(\mathbb{Z}^n, G)$$

given by

$$[gT, (t_1, \ldots, t_n)] \mapsto (gt_1g^{-1}, \ldots, gt_ng^{-1}).$$

It can be shown its image is the connected component of the trivial homomorphism, denoted by $\operatorname{Hom}(\mathbb{Z}^n,G)_1$.

Rational cohomology of $Hom(\mathbb{Z}^n, G)_1$

▶ Baird (2007) proved φ induces an isomorphism on rational cohomology, so

$$H^*(\operatorname{Hom}(\mathbb{Z}^n,G)_1)\cong (H^*(G/T)\otimes H^*(T)^{\otimes n})^W.$$

Ramras and Stafa (2021) gave a formula for the Poincaré series of $\text{Hom}(\mathbb{Z}^n,G)_1$, that is, the generating function of the Betti numbers: if $H^*(G)$ is an exterior algebra on generators in degrees $2d_i - 1$, the Poincaré series is

$$\frac{1}{|\mathcal{W}|}\prod(1-t^{2d_i})\prod_{w\in\mathcal{W}}\frac{\det(1+tw)^n}{\det(1-t^2w)}.$$

Torsion in the homology of $\text{Hom}(\mathbb{Z}^n, G)_1$

Kishimoto and Takeda (2022) showed that the integral homology of $\text{Hom}(\mathbb{Z}^n,G)_1$ has p-torsion if and only if p divides |W| for $G=SU(n),G_2,F_4,E_6$.

Homotopy groups of $\text{Hom}(\mathbb{Z}^n, G)$

Let G be a compact, connected Lie group.

- ▶ Gómez, Pettet and Souto (2012) proved that $\pi_1(\operatorname{Hom}(\mathbb{Z}^n,G)_1) \cong \pi_1(G)^n$.
- Adem, Gómez, Gritschacher (2022) computed $\pi_2(\operatorname{Hom}(\mathbb{Z}^n,G))$ for G=SU(m),Sp(m).
- ▶ Jaime García Villeda computed $\pi_3(\operatorname{Hom}(\mathbb{Z}^n,G))\otimes \mathbb{Q}$ for G=SU(m),Sp(m).

Classifying spaces for

commutativity

The classifying space for commutativity

For a fixed G, as you vary n, the spaces $\text{Hom}(\mathbb{Z}^n,G)$ assemble to form a simplicial subspace of the usual model for the classifying space of G, namely, $BG := |G^{\bullet}|$.

$$B_{\mathsf{com}}G := |\mathsf{Hom}(\mathbb{Z}^{\bullet}, G)|$$

$E_{com}G$

We can define a $E_{com}G$ to go with $B_{com}G$, as a simplicial subspace of a model for EG:

$$E_{\text{com}}G:=|X_{\bullet}|$$
, where $X_n=\{(g_0,\ldots,g_n)\in G^{n+1}:g_0^{-1}g_1,\ldots,g_{n-1}^{-1}g_n \text{ commute pairwise}\}$

Affinely commuting elements

The following are equivalent:

- $ightharpoonup g_0^{-1}g_1,\ldots,g_{n-1}^{-1}g_n$ commute pairwise,
- ightharpoonup all quotients $g_i^{-1}g_j$ commute pairwise,
- ▶ there is some abelian subgroup A of G such that $g_i \in g_0A$.

We say g_0, \ldots, g_n are affinely commutative.

The commutator map

Consider the following map from the space of affinely commutative (n+1)-tuples in G to $[G,G]^n$:

$$c_n(g_0, g_1 \dots, g_n) = ([g_0, g_1], [g_1, g_2], \dots, [g_{n-1}, g_n])$$

This gives a simplicial map between the simplicial models for $E_{\text{com}}G$ and B[G,G], whose geometric realization is called the *commutator map* $\mathfrak{c}: E_{\text{com}}G \to B[G,G]$.

The existence of $\mathfrak c$ is a bit of a miracle. The space $E_{\text{com}}G$ is part of a family E(q,G) defined in terms of nilpotent subgroups of class less than q. For q>2 we don't know how to define something like $\mathfrak c$.

When is $E_{com}G$ contractible?

If G is abelian, then $E_{\text{com}}G = EG$ is contractible. And for $G = SL(2,\mathbb{R})$, we have that $E_{\text{com}}G \simeq E_{\text{com}}SO(2)$ is also contractible.

A., Gritschacher, Villarreal (2021): For a compact Lie group the following are equivalent:

- \triangleright G is abelian.
- \triangleright $E_{com}G$ is contractible.
- $ightharpoonup c: E_{com}G o B[G,G]$ is null-homotopic.
- $\pi_k(E_{com}G) = 0$ for k = 1, 2, 4.

Homotopy-abelian groups

For compact connected Lie groups, the implication

" \mathfrak{c} null-homotopic $\Longrightarrow G$ is abelian",

can be deduced from a classic theorem of Araki, James and Thomas: If G is a compact connected Lie group, and the algebraic commutator map $G \times G \to G$, $(g,h) \mapsto [g,h]$ is null-homotopic, then G is a torus.

The proof relies on the classification of Lie groups.

Warning: This is false for disconnected groups!

Does $B_{com}G$ classify some kind of bundle?

 $B_{com}G$ classifies principal G-bundles with a transitionally commutative structure.

To specify such a structure on a G-bundle $Y \to X$, pick an open cover of X on which there are local sections for which the corresponding transitions functions commute pairwise.

Equivalence of TC-bundles

Giving such an open cover lets you factor the classifying map $X \to BG$ through $B_{\text{com}}G$ up to homotopy. We say two transitionally commutative bundles are equivalent if their classifying maps $X \to B_{\text{com}}G$ are homotopic.

Warnings

- ➤ A single principal *G*-bundle can have many different inequivalent transitionally commutative structures or none at all!
- Even the trivial bundle usually has many inequivalent transitionally commutative structures, which are in bijection with homotopy classes of maps $X \to E_{\text{com}} G$.

$B_{com}G_1$ and $E_{com}G_1$

Corresponding to the connected component $\text{Hom}(\mathbb{Z}^n,G)_1$ of $(1,1,\ldots,1)$ of the space of commuting n-tuples, we can define:

$$B_{\mathsf{com}}G_1 := |\mathsf{Hom}(\mathbb{Z}^{\bullet}, G)_1|$$

and $E_{\text{com}}G_1 := |Z_{\bullet}|$ where Z_n is the connected component of $(1, \ldots, 1)$ in the space of affinely commuting (n+1)-tuples.

Rational cohomology results

Let G be a compact, connected Lie group, let T be its maximal torus, and W = N(T)/T be its Weyl group.

- ► Classical: $H^*(BG) \cong H^*(BT)^W$.
- ► Adem and Gómez (2015):

$$H^*(B_{com}G_1) = (H^*(BT) \otimes_{\mathbb{Q}} H^*(G/T))^W$$

 $H^*(E_{com}G_1) = (H^*(G/T) \otimes_{\mathbb{Q}} H^*(G/T))^W$

Some specific calculations

A., Gritschacher, Villarreal (2019) computed for the low-dimensional Lie groups SU(2), U(2), O(2), $SO(3)^1$:

- \triangleright the integral cohomology ring of $B_{com}G$,
- ▶ the mod 2 cohomology ring of $B_{com}G$ and the action of the Steenrod algebra on it,
- \triangleright the homotopy type of $E_{com}G$.

Jana (2023) computes the mod 2 and mod 3 cohomology groups of $E_{com}U(3)$.

¹For SO(3) the calculations are only for $B_{com}G_1$ and $EcomG_1$.

Homotopy type of $E_{com}G$ for Lie groups

Gritschacher (2018): For the infinite unitary group we have $E_{\text{com}}U\simeq BU\langle 4\rangle\times BU\langle 6\rangle\times BU\langle 8\rangle\times\cdots$ and $B_{\text{com}}U\simeq BU\times E_{\text{com}}U$, where $BU\langle 2n\rangle$ is the (2n-1)-connected cover of BU. Thus, $\pi_{2n}(B_{\text{com}}U)=\mathbb{Z}^n$ and $\pi_{2n+1}(B_{\text{com}}U)=0$.

A., Gritschacher, Villarreal (2019): $E_{\text{com}}O(2)\simeq S^3\vee S^2\vee S^2$ and $E_{\text{com}}SU(2)\simeq S^4\vee \Sigma^4\mathbb{RP}^2$. Thus, for example, $\pi_{10}(E_{\text{com}}SU(2))=\mathbb{Z}/4\oplus (\mathbb{Z}/24)^2$ and $\pi_{10}(E_{\text{com}}O(2))=\mathbb{Z}/4\oplus (\mathbb{Z}/25)^4\oplus (\mathbb{Z}/25)^4\oplus (\mathbb{Z}/24)^{34}$

Homotopy type of $E_{com}G$ for discrete G

Several people independently showed that when G is discrete $E_{\text{com}}G$ has the homotopy type of the order complex of the poset of cosets of abelian subgroups of G.

Okay (2014): If G is an extraspecial group of order 32, then $\pi_1(E_{\text{com}}G) = \mathbb{Z}/2$ and the universal cover of $E_{\text{com}}G$ is homotopy equivalent to $\bigvee^{151} S^2$.

Thus, for example, $\pi_2(E_{\text{com}}G) \cong \mathbb{Z}^{151}$, and $\pi_3(E_{\text{com}}G) \cong \mathbb{Z}^{11476}$. (!)

Geometric 3-manifolds

A model geometry is a simply connected manifold X with a transitive action of a Lie group with compact stabilizers; it is called maximal if G is maximal among groups acting transitively on X with compact stabilizers.

A geometric manifold is a manifold of the form X/Γ where (G,X) is some maximal model geometry and Γ is a discrete subgroup of G that acts freely on X.

Classification of geometric 3-manifolds

Thurston showed that there are eight 3-dimensional maximal model geometries for which some compact geometric manifold exists: S^3 , \mathbb{R}^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, $\widetilde{PSL}_2(\mathbb{R})$, Nil, and Sol.

$E_{com}G$ for geometric 3-manifold groups

A., García-Hernández, Sánchez-Saldaña (2023): Let G be the fundamental group of an orientable geometric 3-manifold. Then $E_{\text{com}}G$ is homotopically equivalent to $\bigvee_I S^1$, where I is a (possibly empty) countable index set.

- ightharpoonup I is empty if and only if G is abelian.
- ► I is finite and non-empty if and only if G is non-abelian and is the fundamental group of a spherical 3-manifold.
- I is infinite if and only if G is infinite and nonabelian.