A LYNDON-HOCHSCHILD-SERRE-TYPE SPECTRAL SEQUENCE FOR DISCRETE G-SPECTRA

DANIEL G. DAVIS

ABSTRACT. These are some notes for my talk in the bell show at the conference Structured Ring Spectra – TNG, on August 4th, 2011, in Hamburg, Germany.

1. Notation for the talk

- G is a profinite group with finite vcd (that is, finite virtual cohomological dimension): there exists some $U <_o G$ and some natural number l such that $H^s_c(U; M) = 0$, for all $s > l$ and all discrete U–modules M.
- Note: in practice, the above is not too restrictive a hypothesis because it is satisfied by many of the profinite groups that one cares about, such as any compact p-adic analytic Lie group.
- H and K are closed subgroups of G, with $H \triangleleft K$. This implies that K/H is a profinite group.
- Spt_G is the model category of discrete G–spectra.

2. Motivation for our theorem

Let

$$G = G_n,$$

$$= S_n \rtimes \text{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p),$$

= the extended Morava stabilizer group

and let Z be any finite spectrum.

Work of Ethan Devinatz, Mike Hopkins, Mark Behrens, and myself shows that there is a strongly convergent descent spectral sequence that has the form

$$E_2^{s,t} = H^s_c(K/H; \pi_t((E_n \wedge Z)^{hH})) \Rightarrow \pi_{t-s}(X^{hK}).$$

This is referred to as a “Lyndon-Hochschild-Serre spectral sequence” because the abutment is the total right derived functor of K–fixed points and the E_2–term is the K/H–continuous cohomology of the total right derived functor of H–fixed points.

Now let $X \in \text{Spt}_G$. The above spectral sequence leads one to ask if there is a descent spectral sequence that has the form

$$H^s_c(K/H; \pi_t(X^{hH})) \Rightarrow \pi_{t-s}(X^{hK}).$$
3. Dog-gone-it, back to reality

When \(X \) is a totally hyperfibrant discrete \(G \)-spectrum and \(K/H \) has finite vcd, then it is known that the desired descent spectral sequence exists. But, in general, we are not able to say that this spectral sequence exists.

For example:
- there are cases where \(X^{hH} \) is not a discrete \(K/H \)-spectrum;
- in general, it is not known how to view \(\pi_t(X^{hH}) \) as a topological \(K/H \)-module; and
- in general, it is not known how to define
 \[(X^{hH})^{hK/H}, \]
 which is the way one expects to build the above spectral sequence if it exists.

Nevertheless, it is still possible, in general, by using the speaker’s framework of delta-discrete \(K/H \)-spectra, to build a descent spectral sequence for

\[(X^{hH})^{b_{K/H}} \xrightarrow{\simeq} X^{hK} \]

that is a Lyndon-Hochschild-Serre-type spectral sequence.

4. Two definitions to help state our result

Definition 4.1. Let \(P = \lim_{\alpha} P_{\alpha} \) be a profinite set, so that each \(P_{\alpha} \) is a finite set. Then let

\[\text{Map}_c(P, X) := \colim_{\alpha} \prod_{\alpha} X, \]

where the colimit and product are formed in \(\text{Spt}_G \) (and hence, in this case, in the category of spectra). Thus, \(\text{Map}_c(P, X) \in \text{Spt}_G \).

Definition 4.2. Let \(\hat{X} = \colim_{N \to \hat{O}_G} (X^N)_f \), where \((-)_f \) denotes fibrant replacement in the category of spectra. Then \(\hat{X} \in \text{Spt}_G \) and there is a map \(X \to \hat{X} \) that is a weak equivalence in \(\text{Spt}_G \).

5. Our result

Theorem 5.1. There is a conditionally convergent descent spectral sequence

\[E_{2}^{s,t} = H^s\left[\pi_t(\text{Map}_c(K/H^s, \hat{X})^{hH}) \right] \implies \pi_{t-s}(X^{hK}), \]

with

\[E_{2}^{s,t} = H^t\left[\pi_t(X^{hH}) \to \pi_t(\text{Map}_c(K/H, \hat{X})^{hH}) \to \cdots \right]. \]

This spectral sequence has the desired abutment and the \(E_2 \)-term involves the total right derived functor of \(H \)-fixed points and an expression that is related to the continuous cochains for \(K/H \) of continuous cohomology, so this spectral sequence is of Lyndon-Hochschild-Serre-type.

This is the nicest way I know to write the general spectral sequence, but its form is not meant to imply that the cochain complex above comes from the usual simplicial object \(K/H^\bullet \), because it does not, and the definition of the cochain complex does (as it should) involve the \(K/H \)-action on the discrete \(K/H \)-spectra \(\text{Map}_c(G^\bullet, \hat{X})^H \).
Remark 5.2. One can ask: if X^{hH} is a discrete K/H–spectrum and K/H has finite vcd, which is what happens in the cases of interest in chromatic stable homotopy theory, then is the above spectral sequence isomorphic to the usual descent spectral sequence

$$H^s_c(K/H; \pi_t(X^{hH})) \Longrightarrow \pi_{t-s}(X^{hH})^{hK/H}.$$

I expect to be able to show that in the main case when this happens (that is, when X is a totally hyperfibrant discrete G–spectrum), this is indeed correct, but this is work in progress.