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n ≥ 1

p, a prime

En is the Lubin-Tate spectrum, with
π∗(En) = W (Fpn)Ju1, ..., un−1K[u±1]. Here:

W (Fpn) is the ring of Witt vectors of the field Fpn

the complete power series ring is in degree zero
|u| = 2
(this is the “choice” Ausoni makes in his Inventiones paper)

Gn = Sn oGal(Fpn/Fp), the extended Morava stabilizer group

En, a commutative S–algebra

Gn acts on En by maps of commutative S–algebras.

(The preceding two points are an application of the
Goerss-Hopkins-Miller Theorem.)

Daniel G. Davis For the Ausoni-Rognes conjecture at n = 1, p > 3



Basic objects to be utilized; Description of Ausoni-Rognes Conj.
Our progress on this conjecture

Tools & theorems that played a role in the proof of Theorem 1
A “draft theorem” | What about for higher n?(
A, a commutative S–algebra

)
7→
(
K (A), the algebraic

K–theory spectrum of A, a commutative S–algebra
)

=⇒ K (En), a commutative S–algebra

By the functoriality of K (−), Gn acts on K (En) by maps of
commutative S–algebras.

LK(n)(S0), the Bousfield localization of the sphere spectrum
with respect to K (n), the nth Morava K–theory spectrum.

Gn, a profinite group (more: a compact p-adic analytic group;
finite v.c.d.)

The K (n)–local unit map of K (n)-local commut. S-algebras

LK(n)(S0)→ En

is a consistent profaithful K (n)–local profinite Gn–Galois
extension (due to Rognes, Behrens-D.).
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Vn, a finite p–local complex of type n + 1

v : ΣdVn → Vn, a vn+1–self-map (d , some positive integer)

Thus, v induces a sequence

Vn → Σ−dVn → Σ−2dVn → · · ·

of maps of spectra.

We set
v−1
n+1Vn = colim

j≥0
Σ−jdVn,

the colimit of the above sequence, the mapping telescope
associated to the vn+1–self-map v .
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Conjecture (Ausoni, Rognes)

The Gn–Galois extension LK(n)(S0)→ En induces a map

K (LK(n)(S0)) ∧ v−1
n+1Vn → (K (En))hGn ∧ v−1

n+1Vn

that is a weak equivalence, and associated with the target of this
weak equivalence is a homotopy fixed point spectral sequence that
has the form

E s,t
2 =⇒ (Vn)t−s((K (En))hGn)[v−1

n+1],

with
E s,t

2 = Hs
c

(
Gn; (Vn)t(K (En))[v−1

n+1]
)
.
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Remark

We supplement the statement of the conjecture with the following
comments:

the E2-term

E s,t
2 = Hs

c

(
Gn; (Vn)t(K (En))[v−1

n+1]
)

of its spectral sequence is given by continuous cohomology;

its object (K (En))hGn is a continuous homotopy fixed point
spectrum; and

the conjecture is actually just a piece of the family of
conjectures made by Ausoni and Rognes – we only stated the
part that we have been focusing on.
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For every integer t, there is an isomorphism

(Vn)t(K (En))[v−1
n+1] ∼= πt(K (En) ∧ v−1

n+1Vn).

=⇒ When the conjectured spectral sequence

E s,t
2 =⇒ (Vn)t−s((K (En))hGn)[v−1

n+1],

exists, since it is for homotopy fixed points, there should also
be an equivalence

(K (En))hGn ∧ v−1
n+1Vn ' (K (En) ∧ v−1

n+1Vn)hGn .

Obtaining this equivalence and a homotopy fixed point
spectral sequence

E s,t
2 = Hs

c (Gn;πt(K (En)∧v−1
n+1Vn)) =⇒ πt−s

(
(K (En)∧v−1

n+1Vn)hGn
)

immediately implies the existence of the conjectured spectral
sequence.
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To make progress on the conjecture, one obstacle that must
be overcome is that there are no known constructions of the
(continuous) homotopy fixed point spectra

(K (En))hGn , (K (En) ∧ v−1
n+1Vn)hGn

for any n and p.

Also, there are no known constructions of the two homotopy
fixed point spectral sequences that we have referred to.
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In this talk, we are reporting on progress on this conjecture for
n = 1, p ≥ 5, with

V1 = V (1), the type 2 Smith-Toda complex S0/(p, v1).

Thus, we have

E1 = KUp, p–completed complex K–theory,

G1 = Z×p ∼= Zp × Z/(p − 1).

N.B.

Henceforth, we will use the term “descent spectral sequence” in
place of “homotopy fixed point spectral sequence.”
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Theorem 1 (D.)

Let p ≥ 5. Given any closed subgroup K of Z×p , there is a strongly
convergent descent spectral sequence

E s,t
2 =⇒ πt−s

((
K (KUp) ∧ v−1

2 V (1)
)hK)

,

where
E s,t

2 = Hs
c (K ;πt(K (KUp) ∧ V (1))[v−1

2 ]),

with E s,t
2 = 0, for all s ≥ 2 and any t ∈ Z. Also, there is an

equivalence of spectra(
K (KUp) ∧ v−1

2 V (1)
)hK ' colim

j≥0
(K (KUp) ∧ Σ−jdV (1))hK .
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Remarks about the theorem

Each subgroup K is a profinite group.

Both occurrences of (−)hK in the theorem are for the
application of the (continuous) K–homotopy fixed points
functor for the category of discrete K -spectra.

The term “spectrum” means symmetric spectrum: the
theorem, its proof, and the underlying theory are worked out
in the setting of symmetric spectra of simplicial sets.

Letting K = Z×p gives some progress on the Ausoni-Rognes
conjecture: for n = 1, p ≥ 5, and V1 = V (1), we have
obtained the desired descent spectral sequence

Hs
c (Gn;πt(K (En)∧ v−1

n+1Vn)) =⇒ πt−s
(
(K (En)∧ v−1

n+1Vn)hGn
)
.

The construction of K (KUp)hZ
×
p remains open.
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Theorem 2 (D.)

For p ≥ 5, there is a canonical map of symmetric spectra

η : K (LK(1)(S0)) ∧ v−1
2 V (1)→

(
K (KUp) ∧ v−1

2 V (1)
)hZ×p .

Remark

It is easy to see that if η is a weak equivalence and if

(K (KUp) ∧ v−1
2 V (1))hZ

×
p ' K (KUp)hZ

×
p ∧ v−1

2 V (1),

then there would be an equivalence

K (LK(1)(S0)) ∧ v−1
2 V (1) ' K (KUp)hZ

×
p ∧ v−1

2 V (1),

which would be close to proving part of the Ausoni-Rognes
conjecture in the n = 1, p ≥ 5 case.
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For the next result ...

Let G be a profinite group, with N = {Nα}α∈Λ an inverse system
of open normal subgroups of G that satisfies

(a) the maps in the diagram N (indexed by the directed poset Λ)
are given by inclusions (that is, α1 ≤ α2 in Λ if and only if
Nα2 is a subgroup of Nα1), and

(b) the intersection
⋂
α∈ΛNα is the trivial group {e}.

Also, let X be a G–spectrum such that the G–module πt(X ) is a
discrete G–module, for every t ∈ Z.
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Theorem (D.)

Let G and X be as on the previous slide. Suppose that the map

λsπt(X ) : Hs
c (Nα;πt(X ))→ Hs(Nα;πt(X ))

is an isomorphism for all s ≥ 0, every integer t, and each α ∈ Λ. If

there exists a natural number r , such that for all integers t
and every α ∈ Λ, Hs

c (Nα;πt(X )) = 0, for all s > r ; or

there exists some fixed integer l , such that πt(X ) = 0, for all
t > l ,

then there is a zigzag of G–equivariant maps

X
'−→ holim

∆
Sets(G •+1,Xf )

'←− X dis
N

that are weak equivalences in SpΣ, with X dis
N ∈ ΣSpG .
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For Theorem 1, we didn’t need the full power of the preceding
theorem; we only needed a simpler version ...
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Definition

A spectrum X is an f –spectrum if π∗(X ) is degreewise finite.

Theorem (D.)

Let p be any prime and let H be any finite discrete group. If X is a
(Zp × H)–spectrum and an f –spectrum, then there is a zigzag

X
'−→ X ′

'←− X dis
N

of (Zp ×H)–spectra and (Zp ×H)–equivariant maps that are weak
equivalences of symmetric spectra, and X dis

N is a discrete
(Zp × H)–spectrum.

X = X dis
N =⇒ X h(Zp×H) := (X dis

N )h(Zp×H)
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The construction of X dis
N is elementary!:

X dis
N

is equal to

colim
m≥0

holim
[n]∈∆

(
Sets(Zp × H, · · · , Sets(Zp × H,︸ ︷︷ ︸

(n+1) times

Xf ) · · ·)︸ ︷︷ ︸
(n+1)
times

)(pmZp)×{e}
,

where each (pmZp)× {e} is an (open normal) subgroup of Zp ×H
and pmZp has its usual meaning.
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Now we build on these tools for the situation of filtered colimits.
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Let G be any profinite group and X any G–spectrum.

Definition

If G , X , and N (an inverse system of open normal subgroups of
G ) satisfy the hypotheses of either of the last two theorems, then
we say that the triple (G ,X ,N ) is suitably finite.

Definition

Let G be a profinite group with N a fixed inverse system of open
normal subgroups of G , and let {Xµ}µ be a filtered diagram of
G–spectra such that for each µ, (G ,Xµ,N ) is a suitably finite
triple and Xµ is a fibrant spectrum. We refer to (G , {Xµ}µ,N ) as
a suitably filtered triple.
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Let (G , {Xµ}µ,N ) be a suitably filtered triple. There is a zigzag of
G–equivariant maps

colim
µ

Xµ
'−→ colim

µ
holim

∆
Sets(G •+1, (Xµ)f )

'←− colim
µ

(Xµ)disN

that are weak equivalences in ΣSp. The composition

colim
µ

πt(Xµ)
∼=−→ πt(colim

µ
(Xµ)disN )

∼=−→ colim
µ

πt((Xµ)disN )

consists of two isomorphisms in the category of discrete
G–modules (in particular, each of the above abelian groups is a
discrete G–module).
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Definition

Given a suitably filtered triple (G , {Xµ}µ,N ), we have seen that
the G–spectrum colimµ Xµ can be identified with the discrete
G–spectrum colimµ(Xµ)disN . Thus, it is natural to define

(colim
µ

Xµ)hG =
(
colim
µ

(Xµ)disN
)hG

.

We can extend this definition to an arbitrary closed subgroup K in
G : since the K–spectrum colimµ Xµ can be regarded as the
discrete K–spectrum colimµ(Xµ)disN , we define

(colim
µ

Xµ)hK =
(
colim
µ

(Xµ)disN
)hK

.
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We say that a profinite group G has finite virtual cohomological
dimension (“finite v.c.d.”) if G contains an open subgroup that
has finite c.d.

Theorem (D.)

Let G be a profinite group with finite v.c.d. If (G , {Xµ}µ,N ) is a
suitably filtered triple and K is a closed subgroup of G , then there
is a conditionally convergent descent spectral sequence E ∗,∗r (K )
that has the form

E s,t
2 (K ) = Hs

c (K ;πt(colim
µ

Xµ)) =⇒ πt−s
(
(colim

µ
Xµ)hK

)
.

Daniel G. Davis For the Ausoni-Rognes conjecture at n = 1, p > 3



Basic objects to be utilized; Description of Ausoni-Rognes Conj.
Our progress on this conjecture

Tools & theorems that played a role in the proof of Theorem 1
A “draft theorem” | What about for higher n?

An almost complete sketch of the proof of this theorem ...

Let U be an open subgroup of G that has finite c.d. Then U ∩ K
is an open subgroup of K , and since U has finite c.d. and U ∩K is
closed in U, there exists some r such that for any discrete
(U ∩ K )–module M,

Hs
c (U ∩ K ;M) ∼= Hs

c (U;CoindUU∩K(M)) = 0, whenever s > r ,

by Shapiro’s Lemma. This shows that K has finite v.c.d.

Then, as a special case of a result due to [Behrens-D., D.], we
obtain the conditionally convergent spectral sequence

E s,t
2 = Hs

c (K ;πt(colim
µ

(Xµ)disN )) =⇒ πt−s

((
colim
µ

(Xµ)disN
)hK)

,

and this is the desired spectral sequence.
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A little more useful detail ...

Since K has finite v.c.d.,(
colim
µ

(Xµ)disN
)hK ' holim

∆
Γ•K colim

µ
(Xµ)disN ,

and for each m ≥ 0, the m-cosimplices of the cosimplicial
spectrum Γ•K colimµ(Xµ)disN satisfy the isomorphism(

Γ•K colim
µ

(Xµ)disN
)m ∼= colim

VCoKm

∏
Km/V colim

µ
(Xµ)disN ,

where Km is the m-fold Cartesian product of K (K 0 is the trivial
group {e}, equipped with the discrete topology).
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Our spectral sequence is the homotopy spectral sequence for the
spectrum

holim
∆

Γ•K colim
µ

(Xµ)disN .

Based on [Behrens-D., D.], one might expect us to instead
form the homotopy spectral sequence for

holim
∆

Γ•K
(
colim
µ

(Xµ)disN
)
fK
.

But since each (Xµ)disN is a fibrant spectrum, colimµ(Xµ)disN is
already a fibrant spectrum, so that we do not need to apply
(−)fK to it (so that we are taking the homotopy limit of a
cosimplicial fibrant spectrum).

This completes our sketch-proof.
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Theorem (D.)

Let G be a profinite group with finite v.c.d., let (G , {Xµ}µ,N ) be
a suitably filtered triple such that {µ}µ is a directed poset, and let
K be a closed subgroup of G . If there exists a nonnegative integer
r such that for all t ∈ Z and each µ, Hs

c (K ;πt(Xµ)) = 0 whenever
s > r , then descent spectral sequence E ∗,∗r (K ) is strongly
convergent and there is an equivalence of spectra

(colim
µ

Xµ)hK ' colim
µ

(Xµ)hK .
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We give the complete proof of this result ...

For all t ∈ Z, when s > r , we have

E s,t
2 (K ) = Hs

c (K ;πt(colim
µ

Xµ)) ∼= colim
µ

Hs
c (K ;πt(Xµ)) = 0,

so that the spectral sequence is strongly convergent, by
[Thomason’s Lemma 5.48].
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If V is an open normal subgroup of Km, where m ≥ 0, then Km/V
is finite, and hence, an earlier isomorphism implies that(

Γ•K colim
µ

(Xµ)disN
)m ∼= colim

µ
colim
VCoKm

∏
Km/V (Xµ)disN

∼= colim
µ

(
Γ•K (Xµ)disN

)m
,

so that there is an isomorphism

Γ•K colim
µ

(Xµ)disN
∼= colim

µ
Γ•K (Xµ)disN

of cosimplicial spectra.
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Therefore, we have(
colim
µ

(Xµ)disN
)hK ' holim

∆
Γ•K colim

µ
(Xµ)disN

∼= holim
∆

colim
µ

Γ•K (Xµ)disN ,

which gives

(colim
µ

Xµ)hK ' holim
∆

colim
µ

Γ•K (Xµ)disN ←− colim
µ

holim
∆

Γ•K (Xµ)disN

' colim
µ

(
(Xµ)disN

)hK
= colim

µ
(Xµ)hK ,

and the canonical colim/holim exchange map above is a weak
equivalence if there exists a nonnegative integer r such that
for every t and all µ,

Hs
[
πt
(
Γ∗K (Xµ)disN

)]
= 0, when s > r .

Daniel G. Davis For the Ausoni-Rognes conjecture at n = 1, p > 3



Basic objects to be utilized; Description of Ausoni-Rognes Conj.
Our progress on this conjecture

Tools & theorems that played a role in the proof of Theorem 1
A “draft theorem” | What about for higher n?

The proof is completed by noting that there are isomorphisms

Hs
[
πt
(
Γ∗K (Xµ)disN

)] ∼= Hs
c (K ;πt((Xµ)disN ))

∼= Hs
c (K ;πt(Xµ)),

for all s ≥ 0.
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Ausoni showed that K (kup) ∧ V (1) is an f –spectrum.

=⇒

K (KUp) ∧ V (1) is an f –spectrum.

Then our tools give

K (KUp) ∧ v−1
2 V (1) = colim

j≥0

((
K (KUp) ∧ Σ−jdV (1)

)
f

)dis
N ∈ ΣSpZ×p

and(
K (KUp) ∧ v−1

2 V (1)
)hK

=
(
colim
j≥0

((
K (KUp) ∧ Σ−jdV (1)

)
f

)dis
N

)hK
.
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We have not constructed (K (KUp))hZ
×
p for any p. Nevertheless,

we have a “draft result” related to this conjectural object ...

A Recollection

If G is any profinite group and X is a (naive) G–spectrum, then G
can be regarded as a discrete group and one can always form the
“discrete homotopy fixed point spectrum”

X h̃G = MapG (EG+,X ).

“Draft theorem”

When p ≥ 5, there is an equivalence of spectra(
K (KUp) ∧ v−1

2 V (1)
)hZ×p ' (K (KUp))h̃Z

×
p ∧ v−1

2 V (1).
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Does this work shed any light on the
Ausoni-Rognes Conjecture for higher n?

For any n and p: there exists K Cc Gn, with Gn/K ∼= Zp.

I believe it is reasonable to think that there exists an
equivalence

(K (En) ∧ v−1
n+1Vn)hGn '

(
(K (En) ∧ v−1

n+1Vn)hK
)hZp

.
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Also, if

K (En) ∧ Vn can be shown to be an f -spectrum, and

(K (En) ∧ Vn)hK can be constructed as an f -spectrum,

then I believe that the tools and techniques of this work will yield a
construction of (

(K (En) ∧ v−1
n+1Vn)hK

)hZp

.
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