
July 17, 2005

Dear Mike,

This note consists of some questions about your work on the problem of realizing
En as a Gn-spectrum with a continuous structured action. The note also contains
a discussion of my work on this problem.

1. Trying to understand your approach to this problem

Mark Behrens sent me a sketch of a proof, based on your argument, that the
pro-object {LnMI}I is an H∞ object in the category of pro-spectra, where I =

(pi0 , vi11 , ..., v
in−1

n−1 ) ⊂ BP∗, MI is the corresponding generalized Moore spectrum,

and {I} is a cofinal collection of ideals such that LK(n)S
0 = holimI LnMI . My

understanding is that your actual argument was that En is a continuous Gn-E∞
ring spectrum, in some sense, by using pro-spectra.

I have been thinking about how to realize En as a continuous Gn-A∞ ring spec-
trum since 2000. Thus, I am very interested in learning more about what your
ideas are regarding this problem. Also, because this problem is important to me, I
am eager to learn what progress you have made on this problem.

Based on the above result that Mark told me, one might hope to argue in the
following way. (Thus, if a step has not been rigorously verified, then it seems
plausible.) The speculative argument begins with some definitions.

Definition 1.1. Let G be a profinite group. If S is a G-set, then S is a discrete
G-set if the action map G × S → S is continuous, where S is given the discrete
topology. If X is a (naive) G-symmetric spectrum of simplicial sets, such that, for
each k ≥ 0, Xk is a simplicial discrete G-set, then X is a discrete G-spectrum.

We need the following categories.

Definition 1.2. Let SptG denote the category of discrete G-spectra. Let SptaG be
the category of discrete G-spectra that are symmetric ring spectra (that is, A∞ ring
spectra in symmetric spectra) such that the G-action is through maps of symmetric
ring spectra. Also, let (pro−SptG)C∞ be the category of objects in pro−SptG, the
category of pro-objects in SptG, that are C∞ objects, where C is H or E.

Let {Ui}i≥0 be a descending chain of open normal subgroups of Gn, such that⋂
i Ui = {e}. Let E∞ be the category of commutative S-algebras. By [7], the

Gn/Ui-action on EhUin is given by a functor

the groupoid {Gn/Ui} → E∞, Gn/Ui 7→ EhUin .

Composing this functor with the functor {(−) ∧MI} yields a functor

the groupoid {Gn/Ui} → (pro−SptGn/Ui)H∞ , Gn/Ui 7→ {EhUin ∧MI}.
By the projection Gn → Gn/Ui, for each i,

{EhUin ∧MI} ∈ (pro−SptGn)H∞ .

Without loss of generality, one can assume that certain cofibrancy conditions are
satisfied so that

{colim
i

(EhUin ∧MI)} ∈ (pro−SptGn)H∞ ,
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where the colimit is formed in SptGn (which is formed in symmetric spectra).

By [7], En∧MI ' colimi(E
hUi
n ∧MI). Since holimI(En∧MI) is the Gn-spectrum

En, holimI colimi(E
hUi
n ∧MI) ' En is a weak equivalence that respects the Gn-

actions. Thus, one can say that En is a continuous Gn-H∞ spectrum, where this
terminology indicates precisely that

{colim
i

(EhUin ∧MI)} ∈ (pro−SptGn)H∞ .

Thus, the diagram {colimi(E
hUi
n ∧MI)} has enough structure so that

holim
I

colim
i

(EhUin ∧MI)

is an H∞ spectrum such that the Gn-action is through H∞ maps of spectra. (If
there’s not enough structure, for this to be true, then perhaps one can show that

holim
I

colim
i

(EhUin ∧MI)

is an A∞ spectrum with a Gn-action through A∞ maps.) Recall from [4] that
En ' holimI colimi(E

hUi
n ∧MI) makes En a continuous Gn-spectrum. Similarly,

the fact that holimI colimi(E
hUi
n ∧ MI) is H∞ makes En a continuous Gn-H∞

spectrum (or hopefully, at least a continuous Gn-A∞ spectrum).
The above argument is what I’ve guessed might be your strategy for producing

a continuous structured action. In addition to what Mark told me about your
argument, I’ve seen Rognes’s comment that “Hopkins has suggested that a weaker
form of structured commutativity, in terms of pro-spectra, may instead be available”
[9, pg. 25].

Given the above, I’m wondering: is the above argument the kind of argument
that you have in mind? Is your actual argument that it should all go through in
the E∞ setting, and not just in the H∞ setting; that is, are you able to show that

{colim
i

(EhUin ∧MI)} ∈ (pro−SptGn)E∞?

I really would like to learn about your ideas for this problem, because this kind
of realization problem is difficult and I don’t want to pursue a strategy that is
erroneous or inefficient - in §3, I explain where I am at in my own approach to
this problem, which was, for the most part, done while I was doing my Ph.D. with
Paul.

2. Useful observations regarding this problem

The following definition is useful.

Definition 2.1. Let
Fn = colim

i
EhUin .

After trying various realization strategies, I decided that the best route was to
try to realize (En)∗/I by a discrete Gn-symmetric ring spectrum En/I, that is, by
a spectrum En/I ∈ SptaGn .

Before describing my work on this problem in §3, below I make a series of remarks
that help to frame the problem.

(2.2) By taking cofibrant replacements and working with cofibrations, as needed,
the discrete Gn-spectrum Fn is a commutative symmetric ring spectrum such that
the discrete Gn-action is by maps of commutative symmetric ring spectra. (Jeff
Smith explained to me that there is a model category structure on commutative
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symmetric ring spectra that makes this work.) Thus, the interesting spectrum Fn
is a discrete Gn-commutative symmetric ring spectrum; the continuous action on
Fn is E∞.

(2.3) By [6], the diagram {MI} can be assumed to be a diagram of homotopy
ring spectra. Then, by [8, Lemma 2.2], the pro-object {Fn ∧MI)} is a diagram of
discrete Gn-spectra that are homotopy ring spectra.

Therefore, presumably after running through the above arguments (including
those in Remark (2.2)) with a little care, one obtains that the discrete Gn-action
on Fn∧MI is through maps of homotopy ring spectra, so thatEn∧MI ' Fn∧MI is a
discreteGn-homotopy ring spectrum. However, though this would give a continuous
weakly structured action, we really only care about structure that occurs on the
point-set level, so that this is not really interesting.

(2.4) It has been known for a long time that En∧MI almost definitely is an A∞
ring spectrum, since its close relative E(n)/Ikn is A∞, by [2]. Now, by [1], it is a
theorem that En ∧MI is an A∞ ring spectrum. However, this is far from knowing
that Gn acts discretely on Fn ∧MI by maps of A∞ ring spectra.

(2.5) I am excited about the idea that there is a spectrum En/I ∈ SptaGn ,
because this result should have a surprising consequence (first observed by Charles
Rezk). Suppose that En/I ∈ SptGn . Then the forgetful functor

U : SptaGn → symmetric ring spectra

should be well-behaved enough, so that the construction

holim
∆

Mapc(G
•+1
n , (En/I)f,Gn)Gn ' (En/I)hGn

can be done entirely in SptaGn , so that (En/I)hGn ' EhGnn ∧MI is an A∞ ring

spectrum. This implies that EhGnn ∧MI ' LK(n)MI is A∞.
Paul, Charles, and Jeff have told me that it would be quite interesting if LK(n)MI

turns out to be A∞. More generally, (En/I)hG ' EhGn ∧MI , for any closed G in
Gn, would be A∞.

(2.6) The implications of the conjecture that En/I is a discrete Gn-symmetric
ring spectrum for Rognes’s Galois extensions and associative Galois extensions are
explored in my manuscript [5].

(2.7) Jim and Haynes told me that it is very doubtful that En ∧MI has the
homotopy type of an E∞ ring spectrum. Charles sketched for me an argument
that seems to imply that, for all n, p, and I, En ∧MI fails to have the homotopy
type of an E∞ ring spectrum. (Charles said this argument was yours; Jim said the
argument has an important antecedent in work of Mark Steinberger.)

There is no reason to hope that En/I is a discrete Gn-commutative symmetric
ring spectrum. Thus, the only way to show that holimI(En/I) makes En a con-
tinuous Gn-E∞ ring spectrum is to show that, thanks to enough structure being
present in each En/I, the homotopy limit holimI(En/I) yields a Gn-action through
E∞ maps. Over the years, I have tried to set up various obstruction theoretic ma-
chines, in the spirit of Hopkins-Miller and Goerss-Hopkins, and I believe that the
machinery required for the type of realization problem described in the preceding
sentence would be extremely technically formidable.

The fact that {En/I} cannot be E∞ has the effect of making our problem more
well-defined, and, together with Remark (2.4), it indicates that trying to show that
En/I ∈ SptaGn is a plausible first step in producing a continuous structured action.
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(2.8) Jeff has done work leading him to believe that, roughly speaking, some-
thing like the following theorem is true: “Let C be a symmetric monoidal model
category of R-modules, where R is a monoid (in a symmetric monoidal model cat-
egory D). If [ΣnR,R]Ho(C) = 0, whenever n is odd, and if α ⊂ π∗(R) is a regular
sequence, then R/α is also a monoid in C.”

Jeff and I have talked about how this theorem could be useful for the problem
of constructing a continuous structured action. (An easy corollary of this theorem
is that En/I is A∞, which, as noted earlier, is already known.) For example, let
C be the category FnSptaGn of discrete Gn-symmetric ring spectra that are twisted
Fn-modules (that is, the module structure map Fn ∧ Fn → Fn is Gn-equivariant,
where the source has the diagonal action). However, π∗(F

hGn
n ) is not known, so

that the hypotheses of the theorem cannot be verified to conclude that Fn/I '
En/I ∈ SptaGn . Thus, this theorem is not known to be helpful. (Also, it not known
that I is a regular sequence in π(Fn).)

(2.9) The previous remark points out that it might be useful to know what
π∗(Fn) is. Paul computed this in the case n = 1 and p = 2 and obtained that

π∗(F1) =


Z/p∞ ∗ = odd, 6= −1,

Zp ∗ = 0,

Qp ∗ = −1,

0 otherwise.

This computation led Paul to suspect that Fn and the spectrum En/I
∞
n (which

plays a role in Neil Strickland’s proof of Gross-Hopkins duality [10, pp. 1029-1031])
are closely related to each other. (Jeff also thinks that Fn and En/I

∞
n seem to be

close to each other.) Note that Fn and En/I
∞
n cannot be identical to each other,

because the identify MnEn = Σ−nE/I∞n (by [10, pg. 1030]) shows that E/I∞n is
K(n)-local, whereas Fn is not K(n)-local (see [4]).

In this context, it is natural to compute π∗(F
hGn
n ) using its descent spectral

sequence. Also, I have wondered if FhGnn is closely related to LnS
0. I think that a

close relationship between FhGnn and LnS
0 would be the discrete analogue of the

equivalence that comes from this relationship’s In-adic completion

LK(n)(LnS
0) = LK(n)S

0 = EhGnn = LK(n)(F
hGn
n ),

where the last identity is shown in [4]. Once, Paul quickly did a descent spectral
sequence computation and concluded that, for n = 1 and p > 2, FhGnn and LnS

0

are probably not the same.
(2.10) In trying to realize En/I ∈ SptaGn , most of the time when one wants to (a)

prove something about the Gn-action on En ∧MI , one can just as well obtain the
desired result by instead (b) proving the analogous thing about the Gn/Ui-action
on EhUin ∧MI , for each i.

An advantage of (a) is that Gn/Ui is a finite discrete group, so that its topology
is simpler. For example, in (b) one simply asks for a finite group to act by A∞-
maps, but in (a), the A∞-action must also respect the discrete topology on all the
(En/I)k and the profinite topology of Gn. Also, conceptually, it is easier to work
with the category of modules over π∗(E

hUi
n )[Gn/Ui] than with (En)∗[[Gn]], because

with the former twisted group ring, one can ignore the topology. This makes the
homological algebra involved in (b) simpler than the homological algebra for (a).
When working with the homological algebra for (a), I often was forced to work
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with an Ext, whose topological algebra was so complicated that I never succeeded
in getting it to behave as needed.

However, a disadvantage of (b) is that, in general, π∗(E
hUi
n ∧MI) is not explicitly

known, whereas, in (a), π∗(En ∧MI) is complete known. In trying (b), I almost
always find myself in a situation where I cannot proceed beyond the first step, due
to the lack of computational knowledge about π∗(E

hUi
n ∧MI). This disadvantage

of (b) has always meant that I have to proceed with (a), and abandon (b).

3. My approach to this problem

Now I briefly describe my work in trying to realize En/I as a discrete Gn-
symmetric ring spectrum. For simplicity, let’s view the Hopkins-Miller and Go-
erss/Hopkins machinery for constructing A∞ and E∞-actions of Gn on En as
consisting of a universal coefficient spectral sequence and an obstruction theory
for realizing F over an Adams spectrum E. For example, in the Hopkins-Miller
theorem, E = F = En.

I have made two major efforts towards obtaining En/I ∈ SptaGn . In both efforts,
F = En/I. In the first attempt, I let E = En and tried for a long time to build a
universal coefficient sequence for SptGn of the form

Ext∗,∗(En)∗[[Gn]](Mapc(Gn, (En)∗/I, (En)∗)⇒ π∗MapGn(En/I, En/I).

But I never succeeded in constructing this spectral sequence because I could not
get the requisite homological algebra of topological modules to work out.

Then I tried a different strategy: build the obstruction theory for E = F = En/I.
To begin with a (partly) developed a version of André-Quillen cohomology for
twisted discrete associative R-G-algebras, where R is a twisted discrete commu-
tative G-ring. The Hopkins/Miller and Goerss/Hopkins machinery and [3] imply
that the obstructions to the existence of En/I ∈ SptaGn are in

Rt+2DerGn(En)∗/I
((En/I)∗(En/I), En,∗+t/I), t ≥ 0.

I tried to compute these obstructions for the case n = 1 and p > 2, but I never
succeeded in this.

Since finishing my Ph.D. two years ago, I have not tried to take the two efforts
above any further. Regarding the second effort, I concluded that (En/I)∗(En/I)
is probably too nasty to work with successfully. Regarding the first effort, at one
point, I thought that I had succeeded in getting the requisite homological algebra
to work out, but I did not have time to work through it carefully. The constraints
of time during my Ph.D. forced me to stop the first effort completely and work on
the second one.

In the past two years, I have primarily taken a step back and tried to reflect on
what is the best strategy for tackling this problem. I have decided that the best
way to proceed is to go back to effort one, where E = En and F = En/I, and see
if I was correct about finally getting the homological algebra to work out. This
way seems best because it seems that it would be closest to the Hopkins/Miller and
Goerss/Hopkins approaches. Unfortunately, the level of difficulty of this approach
seems such that it would be unwise to take a major chunk of time and pursue it, at
this stage of my career. Instead, I believe that I should instead focus on my other
projects, which are easier and which allow me to have publications.
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Sometime after making this (disappointing) decision, Mark Behrens told me
about your alternative strategy of producing a continuous structured action. As far
as I can tell your strategy does not help with the problem of realizing En/I ∈ SptaGn ,
but it does seem to be a doable approach for obtaining an interesting result about
En.

Because I love this problem and your strategy offers a way of making progress
in the immediate future, I am very interested in learning about it.

Sometimes I wonder if the following approach to En/I ∈ SptaGn offers a better

way than that given by E = En, F = En/I. Since En ∧MI is an LK(n)S
0-module

and LK(n)S
0 is a trivial discrete Gn-spectrum, let E = LK(n)S

0 and F = En/I.

Ignoring the fact that I don’t know if LK(n)S
0 is an Adams spectrum (it needs to

be one), the obstructions to the existence of En/I ∈ SptaGn are in

Rt+2DerGnπ∗(LK(n)S0)((En)∗/I, (En)∗+t/I), t ≥ 0.

If we can let E = LK(n)S
0 in the Hopkins/Miller and Goerss/Hopkins machinery,

and if one is in the range where π∗(LK(n)S
0) is computationally accessible, then

I wonder if these obstruction groups might be computable; because the action on
π∗(LK(n)S

0) is trivial, its profinite topology should not present as many problems
when one tries to work out the homological algebra. I wonder if you have any
thoughts about whether or not this approach might be a good one.

Note that E
hUi+j
n is an EhUin -module, for any j ≥ 0. Combining Remark (2.10)

with the above strategy, leads one to note that another strategy, which depends
on whether or not EhUin is an Adams spectrum to just get off the ground, is to let

E = EhUin and F = E
hUi+j
n /I, where j ≥ 0. In this case, the obstructions are

Rt+2Der
Ui/Ui+j

π∗(E
hUi
n )

(π∗(E
hUi
n ∧ EhUi+jn ∧MI), π∗+t(E

hUi+j
n /I)),

where Ui/Ui+j is a finite group.
Another approach, which might computationally be the best, but which techni-

cally would be the most difficult to construct, is to apply the “look at the associated
Morava module” technique. If X → Y is a map between K(n)-local spectra, often
it is easiest to prove that this is a weak equivalence by showing that the associated
map of Morava modules LK(n)(En ∧X) → LK(n)(En ∧ Y ) is a weak equivalence.
Thus, one might redo the Hopkins/Miller machinery for realizing F by working over
E, so that the machinery realizes F by looking at LK(n)(En ∧ F ), while working
over LK(n)(En ∧ En). Then the obstruction groups might look like

Rt+2DerGnMapc(Gn,(En)∗)
(Mapc(G

2
n, (En)∗/I),Mapc(Gn, (En)∗+t/I) and

Rt+2Der
Ui/Ui+j∏
Gn/Ui

(En)∗
(Mapc(Gn/Ui ×Gn/Ui+j, (En)∗/I),

∏
Gn/Ui+j

(En)∗+t/I),

depending on which strategy is chosen.

Sincerely,
Daniel
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