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ABSTRACT

Efforts to validate the Tropical Rainfall Measuring Mission (TRMM) space-based rainfall products have
encountered many difficulties and challenges. Of particular concern is the quality of the ground-based radar
products—the main tool for validation analysis. This issue is addressed by analyzing the uncertainty in the maps
of rain rate provided by the ground-validation radar. To look closely at factors that contribute to the uncertain
performance of the radar products, this study uses high-quality rainfall observations from several surface sensors
deployed during the Texas and Florida Underflights (TEFLUN-B) field experiment in central Florida during the
summer of 1998. A statistical analysis of the radar estimates is performed by comparison with a high-density
rain gauge cluster. The approach followed in the current analysis accounts for the recognized effect of rainfall’s
spatial variability in order to assess its contribution to radar differences from independent reference observations.
The study provides uncertainty quantification of the radar estimates based on classification into light and heavy
rain types. The methodology and the reported results should help in future studies that use radar-rainfall products
to validate the various TRMM products, or in any other relevant hydrological applications.

1. Introduction

The main goal of the Tropical Rainfall Measuring
Mission (TRMM) is to provide accurate estimates of
global tropical rainfall (Simpson et al. 1996; Kumme-
row et al. 2000). Since its launch in 1997, TRMM’s
sensors, which include the precipitation radar and the
TRMM Microwave Imager, have provided a wealth of
information about rainfall in the Tropics. However, cal-
ibration and validation of the TRMM algorithms and
their products remains a crucial step toward the full use
of this data in water-cycle studies. This can be accom-
plished by comparing TRMM products with indepen-
dent observations available from surface sensors, es-
pecially radars and rain gauges, among others. The
Ground Validation Program (GVP) has been designed
to provide ground-based radar-rainfall products of suf-
ficient quality from a number of sites. A main product
is the TRMM Standard Product Number (TSPN) product
2A-53, which contains surface rain-rate maps with a
resolution of 2 3 2 km2 (Marks et al. 2000). These
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maps are to be used as a validation tool of the TRMM
satellite-rainfall products (e.g., Kummerow et al. 2000;
Adler et al. 2000; Schumacher and Houze 2000). How-
ever, it is well recognized that rainfall estimates from
ground-based radar have their own uncertainties and it
is imperative to quantify them before a meaningful com-
parison with the space-based TRMM products can be
made.

The task of quantifying radar-rainfall uncertainty has
proven to be difficult. The most fundamental obstacle
has been the lack of an adequate standard reference.
Traditionally, surface rainfall measurements available
from rain gauges are used as a standard reference. Nu-
merous studies compared radar and rain gauge data and
showed significant disagreement between the two sen-
sors. Austin (1987) found that for individual storms,
radar–gauge differences of a factor of 2 or more were
not unusual. Only when she lumped together 20 storms,
was the difference between gauges and radar reduced
to about 10%. Woodley et al. (1975) and Wilson and
Brandes (1979) reported similar results of radar–gauge
comparisons. In a recent study, Brandes et al. (1999)
found that radar-to-gauge ratios of storm totals were in
the range of about 0.7–1.9.

Despite the large number of studies that reported sig-
nificant discrepancy between radar and gauge obser-
vations, only a few attempted to explain or analyze such
differences. In an early study, Zawadzki (1975) argued
that the radar–gauge measurements being compared are



MAY 2002 559H A B I B A N D K R A J E W S K I

of different character: gauges give an almost near-point
rainfall rate while radar estimates correspond to a vol-
ume-averaged rainfall rate. He suggested searching for
an optimal averaging time of gauge measurements that
corresponds to spatial radar smoothing so that radar–
gauge differences are minimized. Since radar measures
rainfall at an appreciable height above the ground, Za-
wadzki (1975) also showed that a time delay between
radar and gauge observations might improve the com-
parison. Austin (1987) acknowledged the differences in
sampling properties of radars and rain gauges. She in-
dicated that spatial rainfall intensity gradients and the
inadequate spatial sampling of rain gauges are respon-
sible for the random disagreement between radar and
gauges.

Following a different approach, Kitchen and Blackall
(1992) focused on understanding the differences be-
tween point and areal rainfall and their relevance to
radar–gauge comparisons. They defined the so-called
representativeness error as the combination of two
sources of errors: the spatial representativeness error
associated with comparison between a point and an areal
average, and the temporal representativeness error as-
sociated with the comparison between an accumulation
and an integration of a set of instantaneous measure-
ments. Recently, Ciach and Krajewski (1999) revisited
the issue and formulated a statistical procedure—the
error variance separation method (EVSM)—that allows
practical assessment of the radar-rainfall error charac-
teristics. To address the implications of issues such as
radar–gauge scale differences and the small-scale var-
iability of rainfall, one needs information that charac-
terizes the complex structure of rainfall at scales smaller
than those of the grid of radar-rainfall products. Such
subgrid information is now available from a series of
field experiments designed to support the validation ef-
forts of TRMM.

Our purpose in the current study is to characterize
the uncertainty levels of the TRMM 2A-53 ground-
based radar-rainfall maps. We use surface rainfall ob-
servations collected during the Texas and Florida Under-
flights Experiment (TEFLUN-B), which was conducted
during August–September 1998 in central Florida. We
use data from several instruments, including rain gauges
and a vertical 915-MHz Doppler profiler in addition to
radar observations. Since our main focus is on quanti-
fication of radar-rainfall uncertainty, we first present ex-
ploratory analysis of the observations to shed light on
the observed rainfall variability. Then, we apply the
EVSM to the radar maps using independent gauge ob-
servations from a dense network deployed during the
same experiment. We conclude by discussing difficulties
encountered in the analysis and offering suggestions to
improve the estimation of the product errors.

2. Experimental setup and data
From the numerous surface instruments deployed dur-

ing the TEFLUN-B campaign, we used observations

from rain gauges, a vertical profiler, and the ground-
based Weather Surveillance Radar-1988 Doppler (WSR-
88D) radar located in Melbourne, Florida. The National
Aeronautics and Space Administration (NASA) in-
stalled a dense network of rain gauges (DRGN) about
40 km west of Melbourne. Fourteen gauges were ar-
ranged with separation distances ranging from a few
meters to about 8 km. Within the network, we also in-
stalled three dual-gauge platforms to provide rainfall
observations separated by distances as small as 1 m.
Figure 1 shows the layout of the network. The gauges
were tipping-bucket (TB) type with volume resolution
of 0.254 mm (0.01 in.), and were connected to data
loggers that were set to sampling resolutions of 5–10 s.
The gauges are manufactured by Qualimetrics (Model
6011-A) and dataloggers are manufactured by Unidata.
After downloading the recorded tips, we interpolated
them to obtain time series of rainfall rates for temporal
scales as short as 1 min. However, as we showed in a
separate study (Habib et al. 2001b), TB data result in
significant sampling errors for rainfall rates at scales
smaller than about 5 min. TB gauges also suffer from
other operational problems; however, the closely located
gauges and the dual-gauge setup at some sites enabled
us to perform a quality control (QC) of the collected
gauge observations. Quality-control analysis included
plotting double-mass curves of rainfall amounts of dual
gauges and pairs of gauges that were close to each other.
Our confidence in the data quality was lower for some
of the gauges that did not have other gauges nearby
(e.g., 110 and 116). In addition, we performed analysis
of some spatial statistics such as variation of correlation
coefficients with intergauge distances. We identified
possible malfunctioning periods of gauge observations
by detecting correlation values that were inconsistent
with the behavior of the spatial correlation pattern of
the rest of the network.

Besides rain gauges, we also used rainfall observa-
tions from a vertical pointing profiler that was located
within the dense gauge network (see Fig. 1). The profiler
measures the Doppler velocity of hydrometeors directly
overhead and provides estimates of the equivalent re-
flectivity at different altitudes ranging from 380 m to a
few kilometers with a resolution as high as 105 m.

The radar-rainfall products evaluated in this study are
the standard 2A-53 products of the TRMM-GVP. These
products have undergone several stages of development
and improvement (Robinson et al. 2000) and we use the
latest released version. The 2A-53 represent ‘‘instan-
taneous’’ rain-rate maps constructed from radar volume
scans collected at the WSR-88D radar at Melbourne.
The rain maps are available every about 5 min for the
2-month period with only few missing days. These prod-
ucts are developed entirely by the GVP and here we
briefly describe the procedure. The maps are 2 3 2 km2

Cartesian rainfall fields estimated at constant altitude of
1.5 km. They were created using a monthly based re-
flectivity–rain rate (Z–R) relation of the form Z 5 ARb
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FIG. 1. Layout of NASA’s DRGN cluster deployed during the TEFLUN-B field experiment. The inset in the figure shows the University
of Iowa’s three dual-gauge platforms, the 2D video disdrometer, and the 915-MHz Doppler profiler, as set up at the Tripple Ranch site in
Melbourne, FL. The 2 3 2 km2 grid (solid lines) shows the Cartesian pixels of the 2A-53 radar rain maps. The dashed boxes show areas
used for intermittence analysis.

where A and b are empirically fitted coefficients. GVP
used surface gauge observations from several opera-
tional networks for the adjustment analysis of the Z–R
relationship. While a value of 1.4 is always used for the
exponent b, the multiplier A was selected in such a way
to adjust the monthly accumulation of the radar pixels
above each gauge to the 7-min gauge accumulation. This
is done separately for two classes of rainfall: convective
and stratiform, which are determined according to a
classification scheme developed by Steiner et al. (1995).
GVP also applies an automated quality control proce-
dure using both radar and gauge data. Further details
about the development of the 2A-53 maps can be found
in Marks et al. (2000) and Robinson et al. (2000). The
GVP did not use data from the dense rain gauge network
we described earlier in developing the radar-rainfall
products. Thus, the current rain gauge data can be used
as an independent validation dataset.

Based on the measurements of the rain gauges, a total
rainfall depth of the 2-month experiment period ranged
from 350 to 450 mm within the DRGN. For illustration,
Table 1 gives a summary of 35 events recorded by one
of the gauges (gauge 101); for convenience, we defined

the start of a new event as occurring after any period
of at least 30 min without rain. The table shows that
most of the events had duration of less than 1 h, and
only a few lasted for about 2–4 h. Similarly, most events
had total rainfall accumulations less than 10 mm with
only five events exceeding 20 mm accumulation. Higher
accumulations were reported at other gauges within the
network. In general, the experimental period was char-
acterized by localized and short-lived intensive storms,
typical for summertime Florida rainfall. Visual inspec-
tion of observations from the profiler, which was located
close to gauge 101, enabled us to classify the rain type
as shown in Table 1. Most events were convective, a
few were stratiform, and the rest were mixed rain, where
strong localized convective cells were embedded within
or followed by widespread light rainy areas. For illus-
tration, Fig. 2 shows histograms of rain rates at three
integration timescales: 5, 15, and 60 min. The histo-
grams are constructed using observations from all gaug-
es. We used the 5 mm h21 bin and plotted the results
in a semilogarithmic scale for clarity; we point out that
the large mode at 0–5 mm h21 is affected by the TB-
gauge uncertainty in estimating low rain rates. A char-
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TABLE 1. Summary of rain events observed by gauge 101 during
the TEFLUN-B period of Aug–Sep 1998. Event type, indicated as
convective C, stratiform S, and mixed M, was done through visual
inspection of the images of a profiler located close to the gauge.

Date
Start time

(h:min)
Duration
(h:min)

Total rain
(mm) Type

1 Aug
2 Aug
3 Aug
4 Aug
5 Aug
6 Aug
6 Aug
8 Aug

13 Aug
15 Aug

20:52
20:11

9:17
21:48
19:38
18:26
20:41
19:10

3:00
21:02

1:15
0:57
0:07
0:05
3:47
0:24
0:37
2:22
1:11
2:22

25.7
3.0
1.0
0.5

41.7
5.1
2.8

10.7
22.6

5.1

C
C
C
C
C
C
M
C
C
M

16 Aug
20 Aug
21 Aug
21 Aug
22 Aug
22 Aug
22 Aug
31 Aug

3 Sep
7 Sep

20:22
15:03

5:22
13:52

1:16
2:29

19:03
0:03

17:44
19:22

0:33
2.54
1:38
2:13
0:33
1:20
1:14
0:18
0:39
2:44

3.8
7.6

11.4
18.5

6.6
2.5
7.9
3.6
5.6
6.6

C
M
M
M
M
M
M
C
C
C

15 Sep
16 Sep
16 Sep
16 Sep
16 Sep
17 Sep
17 Sep
19 Sep
19 Sep
20 Sep

16:08
6:55

13:22
14:30
18:42
18:24
19:12

2:52
18:05
15:58

0:39
0:29
0:17
0:31
0:34
0:08
4:34
1:43
3:43
1:03

0.5
1.8
2.8
0.8
1.8
1.5

66.3
3.0
9.9
4.6

M
M
S
S
S
M
M
S
S
M

20 Sep
20 Sep
20 Sep
21 Sep
22 Sep

18:02
20:14
22:48
19:57
19:44

0:57
0:21
0:46
1:26
1:20

5.8
0.8
1.8
6.1

41.9

M
M
M
M
M

FIG. 2. Histograms of rainfall rates at three timescales of 5, 15,
and 60 min. Histograms are constructed using observations from all
gauges within the DRGN.

acteristic of the plotted histograms is the occurrence of
extreme rain rates, which are persistent even with high
integration timescales of 15 and 60 min.

3. Small-scale variability

Before analyzing the radar-rainfall products, we per-
form exploratory investigation of the observations pro-
vided by some of instruments deployed during the TE-
FLUN-B experiment such as the dense rain gauge net-
work and the vertical profiler. This will provide insight
into the relevant temporal and spatial scales over which
rainfall exhibits significant variability.

The dense rain gauge network with its high temporal
sampling resolution provides an opportunity to examine
rainfall variability over spatial and temporal scales as
small as a few meters and a few minutes. We compared
observations of three pairs of gauges separated by dis-
tances of 1 m, 0.85 km, and 2.88 km, for three different
timescales of 5, 15, and 60 min. We illustrate this in
Fig. 3. The selected scales are relevant to the resolution

of the 2A-53 maps: for example, the diagonal of the
2A-53 grid cell is about 2.8 km. The scatterplots show
significant differences among the observations of such
closely located gauges. Consider a 1-m separation dis-
tance: the two gauges still show instances of differences,
especially at small timescales. This is most likely a re-
flection of the random sampling and measurement error
of the TB gauges (Habib et al. 2001b). Even with larger
integration scales (e.g., 1 h), significant scatter still ex-
ists between gauges that are located within a typical
radar pixel.

An interesting and important characteristic of rainfall
is intermittence in space and time (Barancourt and Creu-
tin 1992; Georgakakos et al. 1994; Kumar and Foufoula-
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FIG. 3. Scatterplots of rain rates for three pairs of rain gauges separated by distances of (left to right) 1 m, 0.85 km, and 2.86 km for
three timescales of (top to bottom) 5, 15, and 60 min.

Georgiou 1994). Nonrainy areas may be embedded in
larger rainy areas of a size similar to a single radar pixel,
leading to problems in evaluating radar-rainfall esti-
mates. It is often observed that gauges, with their near-
point sampling volume, indicate zero rainfall while ra-
dar, which has a much larger sampling volume, reports
nonzero estimates. There is difficulty in defining ‘‘no
rain’’ in both gauge and radar observations. Gauges usu-
ally measure rainfall in discrete quantities that are de-
termined by the gauge volume resolution (e.g., bucket
size in the case of tipping-bucket gauges). Also, mini-
mum rainfall intensities provided by radar (0.1 mm h21

in the 2A-53 radar maps) are usually determined by an
arbitrary threshold set to the measured reflectivity.

We restrict our intermittence analysis to factors that
are related to the spatial variability of rainfall across the
radar pixel. Since there is more than one gauge inside
a single radar pixel (see Fig. 1), we performed a small-
scale intermittence analysis using only gauge observa-
tions. Consider comparing one gauge versus N gauges.
For a certain area size and time interval, we consider
conditional probability that, given a nonzero rainfall ob-
servation at any of the N gauges, one gauge among the
N gauges observed no rainfall. This is an approximation
of the probability of zero point-rainfall conditional on
nonzero area rainfall—the true value of such probability
could be obtained only if there were an infinite number
of gauges within the area. Given the arrangement of the
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FIG. 4. Description of rainfall intermittence as observed by closely
located gauges. Three gauges within 1 3 1 km2 (open circles) and
seven gauges within 3 3 3 km2 (filled circles) are considered. Gauge
zero-rain probability conditional on rain existence at any other gauge
within the area is plotted for different timescales. FIG. 5. Scatterplot of 1-min reflectivity observations obtained by

the 915-MHz profiler at two elevations, 380 m and 1.5 km.

gauges within the network layout, we chose areas that
are almost uniformly covered with more than one gauge.
Accordingly, we considered three areas of about 1 3 1
km2 each and we used three triangles of gauges to pro-
vide an approximate representation of rainfall occur-
rence (see Fig. 1). We also considered another area of
about 3 3 3 km2 with seven gauges. We computed the
conditional probability of zero-point rain for the two
area sizes and for three temporal scales: 5, 15, and 60
min. The results are shown in Fig. 4 where each point
represents the probability at a certain gauge computed
for each area size and timescale. Despite the dispersion
of the plotted points—caused by factors such as the
sampling variability and the gauge measurement er-
rors—we can make some interesting observations. In
general, the intermittence levels become lower for larger
timescales and smaller spatial scales. The computed val-
ues indicate the significance of the intermittence for
radar–gauge comparison studies. Consider a timescale
of 5 min, which is commensurate with the radar tem-
poral sampling (scanning) frequency: there is about a
30% probability that a single gauge will not observe
rain that falls within an area of about 1 km2. This prob-
ability increases to as high as 50% if the area increases
to 9 km2. One should keep in mind that these probability
values are likely conservative in the sense that higher
values may result if more gauges were available within
the areas under consideration. Nevertheless, the com-
puted values indicate the significance of rainfall inter-
mittence for analyses that involve radar–gauge com-
parisons where a statistic of interest is the probability
of zero gauge-rainfall conditioned on a nonzero radar
estimate.

Another statistical characteristic of rainfall that can
be obtained from our dense gauge observations is the

spatial correlation function. We will discuss it in section
4c.

Besides surface variability, we also examine vari-
ability in the vertical direction. Several studies (e.g.,
Williams et al. 1995; Gage et al. 1994) analyzed mea-
surements of vertical profiles of reflectivity and Doppler
velocity signals and demonstrated the existence of sig-
nificant vertical variability. Herein, we only present an
illustrative example using the 915-MHz profiler de-
ployed during the TEFLUN-B campaign. Figure 5
shows a comparison of reflectivity measurements at two
altitudes: 380 m, which is the lowest reliable profiler
gate, and ;1.5 km, which corresponds to the height of
the 2A-53 maps. These elevations are also well below
the freezing level so that enhancement in the reflectivity
within the melting layer (brightband effect) is avoided.
The scatter indicates the significant variations in the
reflectivity that occur between the radar elevations and
the ground. As discussed in earlier studies (e.g., Austin
1987; Wilson and Brandes 1979; Joss and Waldvogel
1990) such variability at altitudes below typical radar
beam height is expected to introduce uncertainty into
the radar-rainfall estimates. However, quantifying the
contribution of the vertical variability to radar-rainfall
errors is beyond the scope of this study.

4. Uncertainty analysis of the 2A-53 radar-rainfall
maps

a. Basic radar–gauge comparison

As we explained in section 2, TRMM’s GVP adjusted
the radar maps to a set of operational gauges in such a
way that the long-term (monthly) bias—defined as the
ratio between radar and gauge total accumulations—is
removed. We used the TEFLUN-B gauges, which were
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TABLE 2. Total rainfall 2-month accumulations as estimated by
radar Rr and gauges Rg.

Gauge No.
S Rr

(mm)
S Rg

(mm)

101
101b
102
103
108a
108b
108c
109
110
112
113
114
115
116

242.3
242.3
242.3
131.3
287.9
205.0
287.9
255.7
234.6
239.9
211.0
248.0
127.4
318.4

250.3
249.6
239.5
125.6
307.2
196.1
274.3
243.2
243.1
249.4
216.1
269.5
132.9
335.4

FIG. 6. Scatterplots of instantaneous radar rain rates and 5-min
gauge observations centered at the time stamp of the radar map.

not included in producing the radar maps, to indepen-
dently evaluate the bias since it is a key factor that
determines the overall quality of any radar estimates.
We accumulated gauge observations over the 2-month
experiment period, whereas for the radar we first as-
signed ‘‘instantaneous’’ rain rates to 5-min intervals
(which correspond to the radar temporal sampling res-
olution), which we then accumulated. The choice of a
5-min interval, or an alternative one, will be discussed
later in section 4d. We show the results in Table 2. As
discussed earlier, we performed data quality control by
flagging and removing suspect data from each gauge
separately. This explains why some of the closely lo-
cated gauges in Table 2 report different accumulations
(e.g., gauge 103 vs gauge 102). Since the GVP team
already inspected the radar products during the product
development stage, our QC analysis focused mainly on
the gauge data. However, we point out that the QC-
flagged periods of gauge observations were also flagged
in the radar data. This resulted in different radar ac-
cumulations at the same pixel when compared with dif-
ferent gauges within that pixel (e.g., gauges 101, 101b,
102, and 103). In general, there is good agreement be-
tween radar and gauges; most of the differences in the
total accumulations did not exceed a few millimeters
over the 2-month period. Based on the analyzed radar–
gauge pairs, the overall bias over the 2-month period
did not exceed 2%. This indicates that the long-term
bias is not a significant source of uncertainty for the
examined 2A-53 rain maps. We point out that further
analysis concerning the error variance statistic implicitly
removes the overall bias.

To further examine the differences between gauge and
radar estimates, we considered pairs of concurrent ra-
dar–gauge observations and plotted them in a scatter
form in Fig. 6. The figure is based on instantaneous
radar rates from the 2A-53 maps and average 5-min
gauge rate centered at the time stamp of the radar maps.
Significant scatter characterizes the plotted pairs both
at low and high rain rates. Despite the careful quality

control, the scatterplot shows some instances where the
two estimates differ by as high as 50–100 mm h21. The
correlation coefficient between radar and gauge pairs
for all the gauges is about 0.78; however, as argued by
Kessler and Neas (1994), this value may be inflated due
to the wide range of the values of the radar–gauge pairs.
The standard deviation of the radar–gauge differences—
conditional on nonzero rain at either—is about 5.9 mm
h21. If normalized by the mean of about 2.7 mm h21,
coefficient of variation of the differences becomes about
2.14 indicating significant difference between concur-
rent radar and gauge estimates.

b. Error variance separation method

As we discussed earlier, direct comparisons of gauge
and radar estimates are problematic because of the huge
difference in their sampling volumes. With a 20-cm-
diameter orifice, a gauge samples a near-point fraction
of the radar pixel area, which is 2 3 2 km2 in the case
of 2A-53 maps. Because of this scale mismatch, one
should expect that the high spatial variability of rainfall,
which we discussed in section 3, would contribute to
the radar–gauge discrepancy. Therefore, since gauge
data are the basis for analysis of radar uncertainties, we
use a procedure that allows filtering out the uncertainty
of gauge observations that is due to their lack of areal
representativeness. This general concept was first sug-
gested by Kitchen and Blackall (1992) and was fully
formulated as a statistical methodology in a recent study
by Ciach and Krajewski (1999). The key concept of this
technique, the EVSM, is based on the partitioning of
the radar–gauge difference variance into the radar-rain-
fall estimation error variance and the gauge represen-
tativeness error variance.
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Denote radar-rainfall estimates over a given area as
Rr and the gauge rainfall at a certain point within the
area as Rg. We now define the radar error as the dif-
ference between Rr and the unknown true areal average
rainfall R over the same area. The variance of radar–
gauge difference is

var(R 2 R )r g

5 var(R 2 R) 2 2 cov[(R 2 R), (R 2 R)]r r g

1 var(R 2 R). (1)g

The quantities (Rr 2 R) and (Rg 2 R) represent the
radar estimation error and the gauge representativeness
error, respectively. If we assume these two errors to be
uncorrelated [see Ciach and Krajewski (1999) for dis-
cussion], then the covariance term vanishes and the ra-
dar error variance can be written simply as

var(R 2 R) 5 var(R 2 R ) 2 var(R 2 R).r r g g (2)

According to (2), the radar–gauge differences are not
entirely attributed to the radar estimation error; instead,
a certain part of the disagreement arises due to the gauge
deficiency in representing true areal rainfall. Gauge er-
ror contribution, the third term in (2), depends on how
strongly the rainfall natural variability is exhibited
across the area of radar pixels. While the second term
in (2) can be easily determined through the pairs of
radar–gauge observations, the quantity var(Rg 2 R),
usually referred to as area–point variance, needs a spe-
cial treatment. Assuming second-order stationarity with-
in the areal domain, and following Bras and Rodriguez-
Iturbe (1993), the third term can be expressed in terms
of the correlation function:

2
2 2var(R 2 R) 5 s 1 2 r(x , x) dxg g E g[ A A

1
2 21 r(x, y) dx dy , (3)E E2 ]A A A

where sg is the variance of point gauge measurement,
r( · , · ) is the spatial correlation function, A is the areal
domain with coordinates x and y, and xg denotes the
location of the gauge within the area. The quantity with-
in the braces on the right side of (3) is referred to as
the variance reduction factor (VRF) and describes the
point–area variance with respect to the point variance.

c. Correlation estimation

A key factor in implementing the EVSM is the es-
timation of the correlation function over the radar pixel
scale. Correlation has been widely used to characterize
spatial variability of rainfall (e.g., Huff and Shipp 1969;
Huff 1970; Sharon 1972; see Krajewski et al. 2001,
manuscript submitted to Hydrol. Sci. J., for more ref-
erences). The dense arrangement of the DRGN gauges
allows estimating correlation levels at scales smaller

than the 2-km radar resolution. Based on the assumption
of second-order stationarity, and assuming an isotropic
correlation field, we obtain an approximation of the cor-
relation function. For each pair of gauges, we computed
the correlation coefficient using the standard Pearson
product-moment formula. The results are shown in the
left panels of Fig. 7, in which each point represents the
correlation coefficient between time series of rainfall
rates observed by two gauges separated by a certain
distance. We computed the correlation coefficients for
accumulation timescales ranging from 1 min up to 1 h.

A clear feature in Fig. 7 is the significant scatter of
the correlation coefficients computed for a certain sep-
aration distance. Despite the extensive use of the cor-
relation coefficient in rainfall research, problems asso-
ciated with its estimation are still not fully resolved. For
example, Berndtsson (1987) used 5 yr of daily rainfall
to show the sensitivity of correlation estimation to the
sample size. Young et al. (2000) showed that confidence
intervals constructed using normal sampling theory
could not explain the observed scatter of hourly rainfall.
Kessler and Neas (1994) showed that the correlation
coefficient tends to increase with the range over which
the variables are measured; this is relevant to rainfall
data that include low rain rates associated with infre-
quent but extreme rates. Besides the sample size effect,
it has also been argued that the estimation of population
correlation coefficient using Pearson’s formula is non-
robust in cases of nonnormal distributions (e.g., Ko-
walski 1972). This is relevant since rainfall data are far
from normally distributed especially at small timescales
(Kedem and Chiu 1987; Shimizu 1993). In a recent
study, Lai et al. (1999) showed that for lognormal dis-
tributions, the correlation coefficient estimation using
Pearson’s formula suffers from severe overestimation
bias that depends on the data’s degree of skewness. Ste-
dinger (1981) showed that estimating the correlation
using logarithms of the observations results in better
estimates of the true correlations than does the Pearson’s
formula. Habib et al. (2001a) further investigated this
concept and its suitability for the analysis of rainfall
spatial correlation. In their investigation, rainfall ob-
servations at two gauges are fitted to a bivariate inter-
mittent lognormal distribution developed by Shimizu
(1993). This distribution accounts for the intermittent
behavior of rainfall since it allows representing cases
with zero rain at either or both of the two gauges. Using
the parameters of the fitted distribution, a sample version
of the population correlation coefficient can be obtained.
Further details about this transformation-based estima-
tion procedure and its implementation using both sim-
ulations and actual rainfall data can be found in the
references mentioned above.

Using the transformation-based estimation approach,
Habib et al. (2001a) reported correlation estimates with
negligible bias and smaller mean square errors when
compared to those obtained using the traditional Pear-
son’s formula. Therefore, we decided to implement this
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FIG. 7. Spatial correlation function estimated from the rain gauge cluster for 5-, 15-, and 60-min timescales. (left) Correlation estimates
using the standard Pearson’s formula. (right) Adjusted estimates based on a transformation-based procedure.

approach to obtain more robust estimates of the cor-
relation function. Accordingly, we recomputed the cor-
relation coefficients and plotted them in the right panels
of Fig. 7. As expected, the modified correlation coef-
ficients corrected for the bias of the corresponding Pear-
son’s estimates by as much as 0.1–0.15 depending on
the timescale. In addition, our procedure provides cor-
relation coefficients and their associated uncertainty
bounds. In Fig. 7 we show these as vertical bars denoting
62 standard deviations. The plotted bounds and larger
ones (e.g., 10% and 90% of the distributions, not plotted
for clarity) explain most of the scatter of the computed
coefficients.

To approximate the spatial correlation function over

separation distance, we choose to use the following ex-
ponential model with three parameters:

S0r(d) 5 r exp[(2d/d ) ],0 0 (4)

where d is the distance between any two points (gauges),
r0 is the local decorrelation that can be caused by mi-
croscale variability or by random instrumental errors,
d0 is the correlation distance, and S0 can be called the
shape parameter. Using the modified correlation coef-
ficients along with their uncertainty information, we
used the Levenberg–Marquardt algorithm (Press et al.
1988) to obtain the function parameters. A general char-
acteristic of the shape of the plotted correlation func-
tions is the significant decay in the correlation levels at
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relatively short distances; a characteristic of the tropical
convective localized rainfall systems. In relevance to
the radar–gauge comparison problem, small accumu-
lation times of a few minutes are of more interest. Con-
sidering a separation distance in the size of the radar
map of 2 km, the rainfall field observed by the rain
gauges decorrelates to about 0.6 for a 5-min accumu-
lation time. It is also less than 0.7 for 15-min accu-
mulations, and only when the rainfall quantities are ac-
cumulated over 60 min does the function attain levels
of about 0.8 over 2 km.

An interesting observation from the correlation plots
is the value of the correlation coefficient at near-zero
separation distances represented in the exponential mod-
el by the parameter r0. A value of r0 less than unity
may arise due to microscale variability, but also due to
gauge measurement errors. If we consider timescales of
15 min or longer, where random measurement errors
become less significant (Habib et al. 2001b), the esti-
mated r0 attains a value of about 0.95–0.97: this rep-
resents the natural variability at these very small scales.
Note that the use of the Pearson’s correlation estimates
results in a value of r0 5 1. An accurate estimate of r0

is crucial for reliable evaluation of uncertainty levels of
radar-rainfall estimates (Young et al. 2000; Anagnostou
et al. 1999).

d. Implementation and discussion

With the present formulation of the area–point vari-
ance of (3), in which r(xg, x) is gauge-location depen-
dent, we perform the variance partitioning analysis on
a gauge-by-gauge basis. However, before we proceed
with the evaluation of the different variance compo-
nents, we have to decide on the timescale at which to
analyze the radar–gauge observations. The 2A-53 radar
rain maps provided by the TRMM GVP are instanta-
neous estimates sampled about every 5–6 min. Since
our main interest is in evaluating the current TRMM
products with their original resolution, we limit our
analysis to the resolution of the radar maps. The ques-
tion then is, What is the timescale for accumulation of
the gauge observations corresponding to radar-rainfall
map products? Since radar-derived estimates correspond
to a volume-averaged rainfall, gauge point observations
need to be accumulated over a certain timescale. Based
on a Taylor’s hypothesis argument, Zawadzki (1975)
suggested that an optimal value for the gauge accu-
mulation timescale should be related to the size of the
radar domain under consideration. A second issue re-
garding the comparison framework is whether a time
shift between radar and gauge observations is needed.
This arises because radar measures rainfall at a certain
height above the ground where the gauges are located.
The time shift accounts for travel time of raindrops and/
or drifting of rainfall caused by low-level winds.

Because of the difficulty associated with defining the
integration timescale DT and the time shift t, we decided

to perform an extensive error analysis across the broad
range of both parameters. Specifically, we explored the
variance partitioning (2) across a range of 1 min to 1 h
for DT, and 220 to 20 min for t. This implies that we
evaluated each variance component in (3) using gauge
data processed for every possible combination of DT
and t and radar products at their original resolution. We
also computed the correlation coefficient between radar
and gauge pairs, r[Rr, Rg(DT, t)], across the full DT–
t domain. This correlation coefficient, in addition to the
variance component var(Rr 2 Rg), will indicate the pres-
ence of an optimal region for DT–t, if there is any. As
we mentioned earlier, the variance component, var(Rr

2 Rg), can be easily computed by evaluating the radar–
gauge differences for each DT and t. The area-point
variance component, var(Rg 2 R), was also computed
by substituting the exponential approximation (4)—
evaluated for each value of DT—into (3) and numeri-
cally performing the required integrations. Clearly, this
variance component depends on both the relative gauge
location inside the radar pixel and the gauge integration
timescale but does not depend on the selected time shift
of gauge observations. Last, the radar error variance,
var(Rr 2 R), could be obtained as the difference between
the two computed variance components according to (2).
The results are shown in Fig. 8 in the form of contour
plots of each variance component in addition to the
correlation coefficient of radar–gauge pairs. For illus-
tration, we also show the radar error variance as a ratio
of the total radar–gauge difference variance.

As we indicated before, the plots in Fig. 8 correspond
to radar maps evaluated at a certain gauge; results for
other gauges showed similar features. Consider the first
two panels of the figure, which show the variance of
radar–gauge differences and the correlation coefficient
of radar–gauge pairs; these two quantities can be con-
sidered as objective criteria for evaluation of radar–
gauge agreement. The behavior of both quantities is
similar and shows an optimal region of DT and t where
radar–gauge observations exhibit their lowest levels of
disagreement. However, the optimal region of DT is
relatively wider than that of t, which is more defined
for both panels. In general, the results indicate that,
based on variance and correlation measures, instanta-
neous radar estimates show better agreement with gauge
observations if the latter were averaged over time in-
tervals ranging from 5 to 15 min, and time delayed by
about 2–5 min. The optimal range of DT is in accordance
with the gauge-averaging time of 7 min that was applied
by the GVP team in constructing the 2A-53 maps
(Marks et al. 2000); note that they did not apply any
time shift. We point out that the determined optimal
values of DT and t, as well as other radar–gauge sta-
tistics in our study, are likely to vary with factors such
as the size of the radar pixel (2 km in this study) and
the range of gauges from the radar (;40 km in this
study). For example, with the increase of pixel sizes,
larger integration timescales may become needed while
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FIG. 8. Results of the various statistics used in the error separation analysis. (top left) Variance of radar–gauge difference (mm h 21)2. (top
right) Correlation coefficient of radar and gauge pairs. (bottom left) Radar error (mm h21)2. (bottom right) Radar error as a percentage of
the variance of radar–gauge difference (i.e., percentage of lower left panel to upper left panel).

introducing a time shift becomes less important. Similar
argument can be made regarding the range of the gauges
from the radar—the height of the radar beam is low for
gauges with short ranges, making the time shift less
significant. The other two panels in Fig. 8 describe the
radar error expressed by its variance and variance ratio.
The results indicate that, within the predefined region
of best agreement, the radar error variance is about 30%
of the total variance of radar–gauge differences. Results
associated with the other gauges showed the corre-
sponding values ranging from 20% to 60%. In other
words, the areal representativeness error of the gauge
rainfall observations is responsible for about 40%–80%
of the total disagreement between the radar and gauge
estimates. We point out that the variation in the results
from one gauge to another is caused by 1) sampling
variability (2-month field experiments are not long
enough!), and 2) the variation in the relative location
of the gauge within the radar pixel (gauges located near
the center ‘‘represent’’ the true areal rainfall across the
pixel size better than do those near the corners or edges).

e. Uncertainty according to rainfall type

The results we discussed above characterize the over-
all uncertainty levels of the radar products averaged over

the entire sample. However, it is expected that radar
errors depend on the magnitude of rainfall. One way to
address this issue would be a conditional EVSM. How-
ever, implementing such conditioning is not possible
with TEFLUN-B data because of their limited sample
size. Instead, we used a rather simple approach, dividing
the data into two types of rain: light and heavy. We
classified each radar pixel, with its concurrent gauge
observation, either as heavy rain if the radar rain rate
is greater than 10 mm h21, or as light rain if 0 , Rr ,
10 mm h21. With this classification, the mean of radar
rain rates at each gauge location ranged from 2.5 to 3.1
mm h21 for light rain and from 26.1 to 30.6 mm h21

for heavy rain; see Tables 3a and 3b for a summary of
our results. Next, we estimated the correlation function,
using the procedure described earlier, for each rainfall
regime separately. In Fig. 9 we show an example of the
computed conditional correlation for an accumulation
timescale DT of 15 min. As expected, the two rainfall
types showed quite different behavior in the decay of
correlation. For separation distances smaller than the
radar pixel size (;1 km), heavy rain shows higher cor-
relation levels than those of light rain. With slight in-
crease in distance, correlation of heavy rain drops at a
much faster rate when compared with light rain that
maintained significant correlation levels at large sepa-
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FIG. 9. Spatial correlation for light and heavy rain samples. Trans-
formation-based adjusted correlation estimates are shown for the 15-
min timescale.

ration distances. This is reflected in the parameters of
the approximate formula (4) for which we obtained r0

of 0.90 and 0.97, and d0 of 4.6 and 2.5 km, for light
and heavy rain, respectively. Using these conditional
correlation functions, we performed the variance anal-
ysis of (2) to evaluate the radar uncertainty for each
rainfall regime separately; the results are summarized
in Tables 3a and 3b for each gauge within the network.
As before, we explored the full domain of both DT and
t parameters; however, in the tables we show results
only for DT 5 15 min and for t at which highest cor-
relation between radar and gauge pairs was obtained.
The statistics reported in Tables 3a and 3b were de-
scribed earlier, except the last column referred to as the
coefficient of variation CV of radar error and defined
as the ratio of standard deviation of the estimated radar
error to the mean of the radar estimates. The tables also
show the sample sizes that were used in the analysis.

Let us make several observations about these statis-
tics. Within each rainfall class, the statistics, such as
radar mean and gauge standard deviation, showed some
variation from gauge to gauge. The variation is more
significant for heavy rain type where the sample is rel-
atively small and characterized by higher natural vari-
ability. Few gauges (e.g., 102 and 116 with light rain;
109, 115, and 116 with heavy rain) showed significantly
different results in comparison with the rest of gauges
and we do not consider their statistics to be represen-
tative. Consider the comparison between radar and
gauge pairs. The standard deviation of the differences,
[var(Rr 2 Rg)]1/2, is higher for heavy rain than for light
rain, which is understandable. However, normalized by
the mean, the coefficient of variation of the differences
for the light-rain subsample becomes more than twice
as much as that of the heavy rain. This is also manifested
by the cross-correlation coefficient r[Rr, Rg(DT, t)],
which is relatively lower for light than heavy rain. As

we pointed out earlier, the correlation coefficient could
be overestimated if the radar–gauge pairs have a rela-
tively wide range of values, which is more pronounced
in the sample of heavy rain. The variance of point–area
differences with respect to point variance, which is ex-
pressed in the table by VRF, is 10%–30% higher for
heavy rain as compared with light rain. This is due to
the significant spatial variability that characterizes
heavy rain as described by the faster decay of its spatial
correlation as shown in Fig. 9. Accordingly, it is ex-
pected that the spatial variability, characterized by
point–area difference, will have more significant influ-
ence in the case of heavy rain than in light rain. The
contribution of natural spatial variability to the radar–
gauge discrepancy, expressed by the variance ratio
var(Rg 2 R)/var(Rr 2 Rg), is larger for heavy rain
(;40%–75%) than for light rain (;30%–45%). Con-
sider now the radar error, described by its standard de-
viation [var(Rr 2 R)]1/2. Excluding the few gauges that
resulted in significantly different results from the rest,
this statistic ranges from about 2.4 to 3.1 mm h21 for
light rain that has a mean of 2.5–3.1 mm h21, and from
6.4 to 15 mm h21 for heavy rain that has a mean of
26.1–30.6 mm h21. In normalized measures, CV varied
from 0.95 to 1.10 for light rain and from 0.20 to 0.40
for heavy rain.

5. Summary and discussion

We presented an exploratory analysis of uncertainty
estimates of the TRMM ground-validation standard ra-
dar-rainfall maps. In comparison with gauge observa-
tions, our results showed that despite low levels of long-
term bias, significant random errors of the instantaneous
radar-rainfall estimates exist. In contrast to earlier stud-
ies (see introduction for numerous examples), our ap-
proach distinguishes the radar error from the radar–
gauge differences. In this sense, to the best of our knowl-
edge, this work is the first study that in a rigorous way
attempts to quantify random error of radar-rainfall prod-
ucts. The approach we followed in the analysis allowed
us to account for the effect of the spatial natural vari-
ability of surface rainfall. The variability, expressed as
variance ratio, contributed about 30%–45% for light
rain and 40%–75% for heavy rain to the differences of
radar–gauge pairs. Equivalently, the radar error, ex-
pressed by the ratio of its standard deviation to its mean,
was as high as 90%–120% for light rain and 20%–40%
for heavy rain. We point out that our results are based
on summer rainfall events in Florida. Different rainfall
regimes that are characterized by different levels of
small-scale variability may yield different radar error
statistics.

Let us discuss the current results with respect to some
previous relevant studies. Kitchen and Blackall (1992)
and Anagnostou et al. (1999) quantified the contribution
of gauge representativeness error; however, their anal-
yses were based on logarithmic transformations of ratios
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TABLE 3a. Summary of radar error analysis for heavy rainfall. Instantaneous radar maps and 15-min gauge rain rates are used. Statistics
at each gauge location are as follows: radar mean, std dev of gauge observations, std dev of radar–gauge differences, correlation coefficient
of radar–gauge pairs, variance reduction factor, variance of point (gauge) error as a percentage of variance of radar–gauge differences, std
dev, and coefficient of variation of radar error.

Gauge No. Sample size
R̄r

(mm h21)
sg

(mm h21)
Ïvar (Rr 2 Rg)

(mm h21) r(Rr,Rg) VRF

var (R 2 R )g

var (R 2 R )r g

(%)
Ïvar (Rr 2 R)

(mm h21) CV

101
101b
102
103
108a
108b
108c
109
110
112
113
114
115
116

64
64
64
40
89
61
89
74
71
66
59
68
36
92

30.6
30.6
30.6
29.0
27.0
30.8
27.0
26.6
26.1
29.7
26.5
30.1
29.6
29.7

22.5
23.9
24.5
22.9
27.7
31.1
28.2
15.7
14.7
21.5
18.1
22.8
14.5
24.5

12.3
12.9
19.2
16.2
17.1
19.1
17.7
22.4
15.9
16.0
12.5
16.1
17.6
24.3

0.84
0.84
0.65
0.71
0.79
0.79
0.78
0.42
0.42
0.71
0.82
0.73
0.37
0.47

0.22
0.22
0.39
0.35
0.22
0.26
0.30
0.26
0.22
0.22
0.23
0.36
0.35
0.35

73
75
63
70
58
68
76
13
18
39
49
71
24
35

6.4
6.5

11.6
8.9

11.0
10.7

8.7
20.9
14.4
12.5

8.9
8.6

15.4
19.5

0.21
0.21
0.38
0.31
0.41
0.35
0.32
0.79
0.55
0.42
0.34
0.29
0.52
0.66

of radar–gauge pairs, which makes it difficult to com-
pare their results with the ones of our study. As com-
pared with our results, Ciach and Krajewski (1999) re-
ported relatively lower levels of radar error. For accu-
mulation times of 5–30 min, the ratio of radar error
variance to the total radar–gauge difference variance
was in the order of 30%–40% (20%–60% in the current
results). However, because of the lack of gauge obser-
vations on the scale of radar subpixel, Ciach and Kra-
jewski (1999) used a rather crude approximation of the
correlation function, resulting in overestimation of the
point–area variance component. Young et al. (2000) in-
vestigated the sensitivity of the results to the correlation
parameters, especially the parameter r0. They showed
that the estimated radar error variance is highly sensitive
to the value of r0. Such sensitivity is less relevant to
our results since we used more robust and accurate cor-
relation estimates, especially at small separation dis-
tances. In a recent study, Adler et al. (2000) compared
some TRMM space-based estimates with ground-vali-
dation radar maps from the Melbourne radar and re-
ported significant biases and scatter levels. We were
unable to assess the impact of the current estimated
uncertainties on their results because of differences in
the temporal and spatial scales used. However, given
the significant radar uncertainties indicated above, we
recommend taking these into account in future radar-
based validation studies.

When using the results of the current study, one
should keep in mind some of the issues and difficulties
that affected the implementation of the uncertainty es-
timation methodology. The dense rain gauge network
used in the validation of radar maps was only available
for the 2-month period of the experiment; to our knowl-
edge, the network is not in full operation anymore. In
addition, most of the other operational gauge networks
that have sufficient sampling requirements and quality

were used in the development stage of the radar maps,
leaving few independent gauge observations for vali-
dation studies. The current results also show the need
for longer deployment of experimental gauge networks
of the kind used in this study. The limited sample size
of concurrent radar and gauge observations made it dif-
ficult to perform a more extensive validation investi-
gation. The statistics needed for the error variance sep-
aration showed some instability as reflected in their var-
iability from one gauge to another. The expected de-
pendence of the radar–gauge difference and radar error
on the gauge location inside the radar pixel is masked
by the small sample size and by possible navigation
uncertainty in locating the gauges. In addition, we were
able to estimate the radar errors by conditioning on only
two classes of rain. A more useful and practical analysis
where radar errors are described for each radar rain rate
necessitates much larger samples. In addition, the cur-
rent study characterized the radar uncertainty in terms
of its variance only; further analysis is under way to
develop parallel approaches where the full distribution
of radar error can be described.

Last, the current analysis has accounted for natural
variability only at the surface. Preliminary analysis of
other ground-based observations collected during the
experiment (e.g., profiler and disdrometer) showed sig-
nificant variability in the vertical direction. Profiler ob-
servations showed both systematic-like and random dif-
ferences in reflectivity profiles at altitudes close to the
surface (about few hundred meters), which is different
from other commonly observed and accounted-for fea-
tures such as the brightband effect. Investigating the
significance of this kind of variability may help to better
explain the radar–gauge differences and provide reliable
quantification of the uncertainty of radar estimates of
surface rainfall. We hope that our results will contribute
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TABLE 3b. Same as in Table 3a but for the case of light rain.

Gauge No. Sample size
R̄r

(mm h21)
sg

(mm h21)
Ïvar (Rr 2 Rg)

(mm h21) r(Rr, Rg) VRF

var (R 2 R )g

var (R 2 R )r g

(%)
Ïvar (Rr 2 R)

(mm h21) CV

101
101b
102
103
108a
108b
108c
109
110
112
113
114
115
116

325
325
325
151
360
199
360
365
334
328
329
330
137
370

2.6
2.6
2.6
2.5
2.8
2.8
2.8
2.8
2.7
2.5
2.6
2.6
3.1
2.7

4.0
4.0
5.7
4.3
4.2
3.7
3.9
4.0
4.0
4.0
4.2
4.3
5.3
5.3

3.0
3.0
4.9
3.4
3.3
3.1
3.2
3.3
3.2
2.9
3.5
3.4
4.1
4.7

0.68
0.69
0.51
0.62
0.65
0.56
0.57
0.56
0.60
0.69
0.57
0.63
0.65
0.50

0.20
0.20
0.29
0.27
0.20
0.22
0.24
0.22
0.19
0.20
0.20
0.27
0.27
0.26

34
35
38
41
33
32
35
32
30
36
30
43
44
35

2.5
2.4
3.9
2.6
2.7
2.5
2.6
2.8
2.7
2.4
2.9
2.6
3.1
3.8

0.95
0.92
1.51
1.04
0.98
0.90
0.94
0.98
0.99
0.93
1.12
1.01
1.01
1.38

to the objectives of TRMM by providing a means for
more meaningful evaluation of its space-based products.
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