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This study focuses on the evaluation of 3-hourly 0.25°×0.25° satellite-based rainfall estimates
produced by the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA). The evaluation is performed during six heavy rainfall events that were
generated by tropical storms passing over Louisiana, United States. Two surface-based rainfall
datasets from gauge and radar observations are used as a ground reference for evaluating the
real-time (RT) version of the TMPA product and the post-real-time bias adjusted research
version. The evaluation analysis is performed at the native temporal and spatial scales of the
TMPA products, 3-hourly and 0.25°×0.25°. Several graphical and statistical techniques are
applied to characterize the deviation of the TMPA estimates from the reference datasets. Both
versions of the TMPA products track reasonably well the temporal evolution and fluctuations of
surface rainfall during the analyzed storms with moderate to high correlation values of 0.5–0.8.
The TMPA estimates reported reasonable levels of rainfall detection especially when light
rainfall rates are excluded. On a storm scale, the TMPA products are characterized by varying
degrees of bias which was mostly within ±25% and ±50% for the research and RT products,
respectively. Analysis of the error distribution indicated that, on average, the TMPA products
tend to overestimate small rain rates and underestimate large rain rates. Compared to the real-
time estimates, the research product shows significant improvement in the overall and
conditional bias, and in the correlation coefficients, with slight deterioration in the probability
of detecting rainfall occurrences. A fair agreement in terms of reproducing the tail of the
distribution of rain rates (i.e., probability of surface rainfall exceeding certain thresholds) was
observed especially for the RT estimates. Despite the apparent differences with surface rainfall
estimates, the results reported in this study highlight the TMPA potential as a valuable resource
of high-resolution rainfall information over many areas in the world that lack capabilities for
monitoring landfalling tropical storms.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Flooding associated with extreme rainfall events, such as
hurricanes, can cause significant losses in human life and
economic infrastructure in the United States (Rappaport
2000) and over many parts of the world (Negri et al. 2004).
Accurate representation of spatial and temporal rainfall fields

associated with such events is critical for the successful
development of flood forecasting techniques and early
warning systems. The continuous temporal availability and
global coverage of satellites provide a valuable resource for
rainfall monitoring especially over regions that lack adequate
surface-based measuring techniques (e.g., rain gauges or
radar). However, the use of satellite-based rainfall estimates
in operational flood prediction and forecasting has not been
fully achieved in the past (Ebert et al., 2007) due to the
following reasons: (1) satellite estimates have been produced
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at rather coarse resolutions in space (2.5°×2.5° or 1°×1°) and
time (daily or monthly), which may not be adequate for
hydrologic analysis; (2) information on the perceived
uncertainty associated with satellite estimates is often
lacking, which hinders the full utilization of such estimates
in hydrologic and water resources management applications.

Recent years have witnessed significant developments in
the field of satellite rainfall estimation. Of particular interest is
the development of estimation algorithms that can generate
high-resolution rainfall products bymerging infrared (IR) and
microwave (MW) satellite observations (e.g., Vicente, 1994;
Turk and Miller, 2005; Kidd et al., 2003; Todd et al., 2001;
Huffman et al., 2001; Huffman et al., 2007; Bellerby et al.,
2000; Joyce et al., 2004; Sorooshian et al., 2000; Kuligowski
2002). The concept behind most of these algorithms is to use
the more accurate (but infrequent) MWestimates to calibrate
the more frequent (but indirect) IR estimates so that the
strengths of individual sensors are maintained and the
weaknesses are alleviated (Adler et al. 1994; Huffman et al.
2001). One recent algorithm, which is the focus of the current
study, was developed at the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC)
and is based on the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA; Huff-
man et al. 2007). The TMPA dataset consists of fields of 3-
hourly rainfall rates over a 0.25°×0.25° grid within the global
latitude belt ranging between 50° north and 50° south. The
algorithm derives its estimates primarily from MW informa-
tion from several low-orbiting satellites and uses MW-
calibrated IR data from geostationary satellites to fill MW
coverage gaps. The TMPA estimates are available in the form
of two products, a real-time version (3B42-RT) and a gauge-
adjusted post-real-time research version (3B42).

Due to the potential for a wide array of applications of the
TMPA and other similar products (Jiang et al. 2008; Curtis
et al. 2007; Artan et al. 2007; Hong et al., 2006a; Hong et al.
2007; Su et al., 2008; Harris et al., 2007; Hossain and
Anagnostou, 2004), efforts have been recently dedicated to
investigate their performance accuracy and quantify the
associated estimation uncertainties. Gottschalck et al.
(2005) evaluated the TMPA 3B42-RT product over the
contiguous United States (CONUS) at daily to seasonal time
scales and found that, compared to other products, 3B42-RT
estimates did not compare favorably in terms of bias and daily
correlations. Tian et al. (2007) evaluated the 3B42 research
version and another TRMM-based product against gauge and
radar-based reference datasets. They found that TMPA 3B42
estimates have lower bias and random errors at seasonal and
annual scales, but the performance is less satisfactory at
shorter time scales (daily), especially in terms of successful
rain detection. The correlation of the TMPA 3B42 product to
ground reference data was better in summer than in winter.
Tian and Peters-Lidard (2007) presented a comparative
evaluation of the 3B42 product between land and inland
water bodies and found increased false detections of rain over
water bodies. Villarini and Krajewski (2007) performed an
extensive evaluation of the TMPA 3B42 research version at its
raw temporal 3-hourly resolution using a high-quality high-
resolution rain gauge network in Oklahoma, United States.
Their analysis reported that compared to the gauge dataset,
the 3B42 product underestimates rainfall by ~10%, has a

larger percentage of zeros, and lacks sensitivity to lower
values of rainfall. The best performance of the 3B42was found
to be in the hot season. Their study gave insight on the
temporal interpretation of the product indicating that its
estimates should not be treated as instantaneous rain rates
but rather as a 100-minute rainfall accumulation.

Following on these recent efforts, the current study
provides an evaluation of the performance accuracy of the
TMPA products during six heavy tropical-related rain storms
in Louisiana, United States. The assessmentwill bemade at the
original resolution of the TMPA products (3-hourly) using a
suite of graphical and statistical methods. Two surface-based
rainfall datasets based on gauge and radar observations are
used as a reference for evaluating the TMPA estimates.
Continuous statistical measures (e.g., bias, standard deviation
of differences, correlation coefficient) as well as categorical
metrics (probability of detection) are used. The sensitivity of
these performance metrics to various rain rate thresholds will
be assessed. To gain further insight into the source of TMPA
estimation errors, the overall bias andmean-square-error will
be decomposed into sub-components that measure the
contribution of different error sources. The added value from
incorporating rain gauge information into the TMPA research
versionwill be assessed by comparing the performance of the
research product to the real-time TMPA product. In addition to
the individual storm analyses, we will also examine the
probability distribution of the TMPA error by pooling data
from all six storms and studying the conditional statistics of
the combined data. The study is intended to contribute to the
increasingly sought efforts on evaluation of multi-satellite
high-resolution rainfall products and should provide guidance
to both algorithm developers as well as to the end users of
such valuable datasets. The results also have implications for
research efforts concerned with developing satellite rainfall
error models (Hossain and Anagnostou, 2006). After the
Introduction section, the analyzed storms and dataset sources
are presented. This is followed by a section describing the
methodology and statistical metrics used in the TMPA
evaluation. Results will be presented including the marginal
and conditional statistics and error decomposition. The paper
closes with conclusions and final remarks.

2. Datasets and study area

2.1. Datasets

2.1.1. TRMM multi-satellite precipitation analysis (TMPA)
The TMPA precipitation estimates are based primarily on a

combination of MW and IR estimates from multiple satellites.
Microwave data, which are obtained from low earth orbit
(LEO) satellites, are recognized as having a strong relationship
to precipitation due to the physical nature of microwave
detection; however, these data are only available on coarse
temporal and spatial scales as a result of the infrequency of the
individual satellite sampling. In contrast, the IR data from
geosynchronous earth orbit (GEO) satellites produce esti-
mates on fine time-space scales, but lack the strong relation-
ship to rainfall associated with microwaves due to the
relatively poor correlation between cloud-top temperature
and precipitation (Arkin and Meisner, 1987). For this reason,
microwave and IR data are combined to form the best possible
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estimate for each location at each time step. The algorithm
derives its estimates primarily from microwave information
fromseveral low-orbiting satellites andusesMW-calibrated IR
data from geostationary satellites to fill gaps in MW coverage.
The product is 3-hourly, 0.25°×0.25° gridded dataset covering
the region bounded by the 50°N latitude and 50°S latitude
lines. In order to populate the gridded dataset with combined
data from both types of sensors, the microwave data are used
first, in the areas where it is available, while the IR data are
used to fill in the remaining areas. For a detailed description of
the TMPA data and estimation algorithms, the reader is
referred to Huffman et al. (2007).

The 3B42 TMPA dataset is available in two versions: a
research-quality product (3B42) released 10-15 days after
each month and a near-real-time product (3B42 RT), which is
released approximately 9 h after real-time. The main differ-
ence between the two versions is the use of the rain gauge
data for bias reduction, which are unavailable in real-time.
The gauge data used in the TMPA algorithm are based on the
Global Precipitation Climatology Project (GPCP) monthly rain
gauge analysis (Rudolf, 1993). The gauge adjustment process
involves aggregating both the gauge and the 3-hourly 3B42
estimates to a monthly scale and then applying the ratio of
the 3B42/gauge monthly totals to each 3-hourly time step.

2.1.2. NEXRAD multisensor precipitation estimates (MPE)
Validation of the 3B42 and 3B42 RT data was performed

using a radar-based multisensor precipitation product that is
based on the NEXRAD system of the NationalWeather Service
(NWS). This product is developed regionally at the NWS River
Forecast Centers (RFCs) for operational hydrologic forecasting
purposes. The area of the current study is fully within the
boundaries of the Lower Mississippi River Forecast Center
(LMRFC). Themultisensor estimates are produced by combin-
ing data from several Weather Surveillance Radar-1988
Doppler (WSR-88D) radars with real-time surface rain gauge
observations. Prior to August 2003, the multisensor estimates
were available as a Stage III product of hourly rainfall
accumulations over a grid of approximately 4 km×4 km
(known as the Hydrologic Rainfall Analysis Project, HRAP,
grid). As of 2003, the LMRFC began using a new algorithm
called the multisensor precipitation estimator (MPE) as a
replacement to the original Stage III processes (Fulton, 2002).
In a final stage of processing, the regional Stage III or the MPE
estimates are mosaicked from all the RFCs into a national
product known as the Stage IV hourly precipitation dataset,
which can be obtained from the National Center for Environ-
mental Prediction (NCEP). For further details on theWSR-88D
estimation and MPE processing algorithms, the reader is
referred to literature resources such as Fulton et al. (1998),
Seo et al. (1999), Breidenbach and Bradberry (2001) and Fulton
(2002), among others.

2.1.3. HADS gauge dataset
The source of rain gauge data used in the evaluation of

TMPA estimates is the Hydrometeorological Automated Data
System (HADS). HADS is a real-time data acquisition and
distribution system operated by the NWSOffice of Hydrologic
Development (OHD) from over 13,000 in-situ rain and stream
gauges over the Continental U.S. (http://www.nws.noaa.gov/
oh/hads/WhatIsHADS.html). Raw data are continuously

obtained via geostationary satellites from Data Collection
Platforms operated by the NWS as well as other national,
state, and local offices. The HADS data used in this study are a
reprocessed product obtained from the National Climatic Data
Center (NCDC). The reprocessing effort includes consolidating
sub-hourly accumulations into hourly precipitation values,
distinguishing instances of no rain values that were initially
categorized as “missing”, and checking for erroneously high
precipitation values and other quality-control checks (Kim
et al., 2006). Since the LMRF uses original HADS gauge data
(prior to reprocessing) for bias correction of MPE estimates,
the gauge and MPE datasets used in this study cannot be
considered independent of each other. However, the HADS
gauge data are not used in developing the TMPA estimates.

2.2. Study area and storms

The area of focus in this study (Fig. 1) is the state of
Louisiana (LA) in the lower Mississippi River Valley, which is
frequently exposed to tropical cyclones due to its proximity to
the Gulf of Mexico. Six rainfall events, of either tropical storm
or hurricane intensity, which made landfall on or near the
Louisiana coastline from 2002 to 2005 (Fig. 2), were selected
for the study period, namely: Hurricane Lili, Tropical Storm
Bill, Hurricane Ivan, Tropical Storm Matthew, Hurricane
Katrina, and Hurricane Rita. The durations of the storms as
they passed over the study area varied from 2 days (Hurricane
Katrina) to 5 days (Tropical Storm Matthew).

The first storm, Hurricane Lili, made landfall near Inter-
coastal City, LA on October 3, 2002. Lili originated as a tropical
depression in the Atlantic on September 21 and became a
hurricane on September 30 while passing through the
Caribbean. After moving across the Gulf of Mexico, Lili
strengthened to a category 4 hurricane with wind speeds of
125 kt before being downgraded to a category 1 hurricane at
landfall 13 h later. The rainfall totals amounted to 4–8 in.
(100–200 mm) throughout southern Louisiana.

Tropical Storm Bill became a tropical cyclone at 1200 UTC
on June 29, 2003 in the Gulf of Mexico. It made landfall while
at its maximum intensity of a tropical stormwith 50 kt winds
on June 30. Bill came ashore near Cocodrie, LA and brought 5–
10 in. (120–250 mm) of rain throughout the southern U.S. as
it continued its path through Mississippi, Alabama, and
Georgia as a tropical depression.

Hurricane Ivan was a long-lived storm that developed on
September 2, 2004 as a tropical depression in the Atlantic. It
later made landfall as a category 3 hurricane on September 16
inGulf Shores, AL. After crossing through the southernU.S. and
returning to the Atlantic, Ivan took a southern turn and passed
over Florida as an extratropical low. By September 21, it began
to gain strength over the Gulf waters and made landfall again
in the U.S. along the southwestern Louisiana coast as a tropical
storm on the 24th of September, 22 days after is original
development. Ivan brought 3–7 in. (75–175 mm) of rain to
much of the southern states as well as much of the east coast.

Also occurring in 2004was Tropical StormMatthew,which
reached tropical depression conditions in the Gulf of Mexico
on October 8. Matthew strengthened to a tropical storm 6 h
later and made landfall on October 10 near Cocodrie, LA
bringing 4–8 in. (100-200 mm) of rain to parts of Louisiana.
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The 2005 hurricane season marked the year of Hurricanes
Katrina and Rita. Occurring less than onemonth apart, Katrina
and Rita brought much rain, flooding, and destruction to the
Louisiana coast. Katrina made landfall as a category 3
hurricane on August 29 near Buras, LA, bringing a total of
8–10 in. (200–250 mm) of rainfall. In 2005 Katrina was the
costliest hurricane to hit the U.S. and one of the five deadliest.

By September 18, Rita had formed as a tropical depression
in the Caribbean. It strengthened to hurricane status by
September 20 and reached its peak intensity on September 22
as a category 5 hurricane. Total rainfall accumulations reached
5–9 in. (120-230 mm) throughout Mississippi, Louisiana, and
Texas.

3. Methodology

The TMPA performance accuracy is assessed using two
reference datasets: the MPE Stage IV product and the HADS
gauge dataset. Both TMPA versions, 3B42 and 3B42 RT, are
considered for evaluation. For each of the above-mentioned
storms, between 3 and 6 TMPA pixels located near the track of
the stormwere chosen for the evaluation analysis (Fig. 1). The
gauge and MPE observations were aggregated in time and
space to match the scales of TMPA estimates (3-h and 0.25°).
This was done by averaging rain rates from the gauges within
each TMPA pixel spatially, over the area of the pixel, and
temporally, over a window of 3 h. Similar aggregation was
performed on the several 4×4 km2 MPE pixels located within
each TMPA pixel. The sample size for each two-way
comparison, which is based upon paired datasets where
either the reference value or the TMPA value is greater than
zero, varies for each storm depending on the number of pixels
analyzed and on the duration of the storm. On average, the
sample size for each storm was in the range of 36-42 for Bill,
55-64 for Lili, 63-70 for Ivan, 147-175 for Matthew, 72-85 for
Rita, and 63-74 for Katrina.

We acknowledge that both reference datasets (gauge and
MPE) are not error-free and are subject to uncertainties that are
rather difficult to characterize. Gauges are limited by their lack

of areal representativeness and the effect of sub-pixel
variability. Ideally, a large number of gauges should be available
and distributedwithin a TMPA pixel area. For example, Villarini
and Krajewski (2007) relied on 23 gauges located within a
single TMPA pixel in Oklahoma. This rather ideal sampling
situation is not available in the current study area. Therefore, in
an attempt to alleviate the effect of gauge uncertainties, the
pixels considered for our analysis were those containing a
minimum of 3 rain gauges. Unlike the gauge data, MPE
estimates are available at a high spatial resolution (4×4 km2)
and therefore do not suffer from spatial under-sampling over
the scale of a single TMPA pixel. However, MPE products are
subject to errors associated with rainfall estimation from radar
observations. Recent studies have examined the accuracy of
Stage IV MPE products (e.g., Westcott et al., 2008; Young and
Brunsell, 2008; Wang et al., 2007; Habib et al., 2009) and
reported varying degrees of both over- and under-estimation
biases, and rather significant random errors at the hourly 4-km
resolution. While it is not fully understood how MPE
uncertainties scale up at the TMPA resolution (3-hourly and
0.25°), it is expected that the random component of the MPE
error will be smoothed out significantly when a large number
of MPE pixels (more than 50 in this study) are spatially
averaged to produce an estimate over the TMPA pixel.

Several metrics and techniques have been proposed to
evaluate andverify satellite rainfall estimates and forecasts (e.g.,
Gebremichael et al., 2005, Hong et al., 2006b, Ebert et al. 2007,
Hossain and Anagnostou 2006, Hossain and Huffman 2008). In
this study, we assess the performance of the twoTMPA product
versions using both graphical and statistical methods. Graphical
comparisons include time series plots of rainfall rates for gauge,
MPE, 3B42 and 3B42-RT datasets over the duration of each
storm. Scatter plots are generated to visually inspect how TMPA
estimates compare against gauge and MPE estimates. The
probability distributions of TMPA rainfall estimates are com-
pared to those of MPE and gauge by analyzing the probability of
exceedance of each dataset. To quantify systematic and random
differences between TMPA and the reference datasets, we
applied a suite of statistical techniques that include continuous

Fig. 1. Study site, Louisiana, US, with the TMPA 0.25°×0.25° pixels (squares) and the HADS rain gauges (filled circles) selected for evaluation of TMPA products.
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Fig. 2. Tracks of the six tropical storms used in the evaluation of the TMPAproducts (a)Hurricane Lili, (b) Tropical StormBill, (c) Hurricane Ivan, (d) Tropical StormMatthew,
(e) Hurricane Katrina, and (f) Hurricane Rita. The storm trackswere redrawnusing information from theNational Hurricane Center Tropical Prediction Centerweb page. The
intensities of the storms are categorized as hurricane (H), tropical storm (TS), and tropical depression (TD), with the land fall location indicated by LF.
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and categorical measures, unconditional and conditional
metrics, decomposition of bias and mean squares of errors,
and an analysis of TMPA error distributions.

3.1. Categorical statistics

The categorical statistics (Wilks 2006) used in the current
analysis are the probability of detection (POD) and the pro-
bability of false detection (POFD). The POD represents the ratio
of the number of correct identifications of rainfall to the total
number of rainfall occurrences, as indicated by the reference,
while the POFD represents the ratio of the number of false
identifications of rainfall to the total number of non-rainfall
occurrences, as indicated by the reference. Both POD and POFD
range from 0 to 1, with 1 being a perfect POD and 0 being a
perfectPOFD. ThePODandPOFDare calculatedbothona storm-
by-storm basis, as well as on an overall combined-storm basis.
The combined-storm POD and POFD are further broken down
through conditioningonvarious rain thresholds of the reference
data. The volumes of rainfall correctly and incorrectly detected
by TMPA are also observed as an indication of the significance of
either probability in the overall performance of the TMPA.

3.2. Continuous statistics

The continuous statistics used to quantify the differences
between the TMPA and the references datasets are the mean
difference and relative mean difference (a measure of the

bias), and the relative standard deviation of differences (a
measure of the random error):

Mean difference = ð RPS− R
P

RÞ ð1Þ

Relative mean difference =
ðRPS− R

P
RÞ

R
P

R

ð2Þ

Relative standard deviation of difference =
σðRS−RRÞ

R
P

R

; ð3Þ

whereRS is the rainfall value of the satellite-basedTMPAdataset
and RR is the corresponding gauge or MPE reference value.
The overbar and σ symbols denote the mean and standard
deviation, respectively, estimated over the available sample
size.Wealso computed thePearson's correlation coefficient as a
measure of linear association. These statistics will be presented
on a storm-by-storm basis and for all storms combined.

3.3. Error decomposition

The bias and random error measures defined in Eqs. (1)
and (2) can be further decomposed as follows:

(a) Bias decomposition.

The bias calculated using Eq. (1) is based on aggregation of
differences in rainfall depth over the sample of each storm

Fig. 3. Time series of 3-hourly rain rates of HADS gauges (thin solid line), MPE (thick solid line), TMPA-Research (dash-dotted line) and TMPA-RT (dashed line). The
plotted MPE and HADS values represent 3-hourly rain rates averaged over the size of a certain 0.25°×0.25° TMPA pixel selected for every storm.
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Fig. 4. (a) Scatter plots of 3-hourly 0.25°×0.25° rain rates of the TMPA research product (circle symbol) and the TMPA-RT product (cross symbol) against the
corresponding average measurements from HADS gauges within all analyzed TMPA pixels. (b) Same as Fig. 4(a) but using MPE as the reference.
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and does not provide information on the source of such
differences. Therefore, it is desirable to break down the total
bias into three components consisting of the bias during
successful detections (hits), bias due to rainfall misses, and
bias due to false detections:

Hit bias ðHBÞ = ∑ðRSðRS N 0&RR N 0Þ−RRðRS N 0&RR N 0ÞÞ
ð4Þ

Missed rain bias ðMBÞ¼∑RRðRS = 0& RR N 0Þ ð5Þ

False rain bias ðFBÞ¼∑RSðRS N 0 & RR = 0Þ: ð6Þ

Such decomposition can distinguish among the three
possible bias sources, whose values can be cancelled by
opposite signs if only the total bias is evaluated. The
summation of these three components adds up to the total
bias (TB=∑(RS-RR)). The proportion of total bias that is
attributed to each bias source can be described by the ratio of
the particular bias component to the total bias (e.g., HB/TB,
MB/TB, and FB/TB), with the three ratios adding up to 1.

(b) Decomposition into systematic and randomcomponents.

Besides using the mean bias (Eq. (1)) and standard
deviation (Eq. (2)), the differences between TMPA estimates
and reference values can be alternatively (and sometimes
more commonly) described by the mean-square difference
(MSD), which provides a measure of the average difference.
According toWillmott (1981), MSD can be decomposed into a
systematic component (MSDs) and a random component
(MSDu):

MSD = MSDs + MSDu ð7Þ

∑
n

i=1
ðRS;i−RR;iÞ2

n
=

∑
n

i=1
ðR̂S;i−RR;iÞ2

n
+

∑
n

i=1
ðRS;i−R̂S;iÞ2

n
ð8Þ

Where R̂S is defined by the least-square linear regression
relationship R̂S=a+bRR, with a and b as the intercept and
slope. The advantage of this decomposition is that the
proportion of MSD that is attributed to systematic errors
can be described by (MSDs/MSD) while the random con-
tribution can be described by (MSDu/MSD) or (1–MSDs/
MSD).

3.4. Error Distribution

This analysis examines the distribution of the TMPA
estimation error by constructing histograms of the differences
(RS–RR). To investigate whether the TMPA error depends on
rainfall magnitudes, the error distribution and its statistical
properties will be assessed conditionally for various ranges of
the reference rainfall. To maintain a reasonable sample size
for constructing error distribution, this analysis was con-
ducted based on combining all storms into one large sample.

4. Results and discussions

Time series of rainfall rates during the lifespan of each
storm are plotted for selected pixels (Fig. 3) where it is
noticed that TMPA estimates track reasonably well the overall

pattern of MPE and HADS gauges for most of the time.
However, significant deviations are noticed in themagnitudes
of 3-hourly rainfall rates (e.g., the later part of storm Bill and
the earlier part of stormMatthew). This behavior was variable
across different pixels within the same storm (not shown). It
is likely that spurious or incorrect data were present during
the TMPA-RT processing of Bill (indicated by two observa-
tions of very high values, whichwere probably replaced when
data were re-processed after the storm). Therefore, these two
time steps will be excluded in the calculation of the statistics
considered in this study. It is also noticed that MPE and HADS
show reasonable agreement to each other for most of the
storms, which may be attributed partly to the fact that HADS
data were used in the development MPE products. Point-by-
point comparisons of TMPA estimates versus MPE and HADS
are shown in the form of scatter plots (Fig. 4). Each point
represents the average rainfall rate over a 3-h duration and a
spatial domain of 0.25°. These graphs are generated by
pooling data pairs from all pixels considered in each storm
into one scatter plot. Large scatter exists between the TMPA
products and the corresponding reference, whether it is MPE
or HADS. Similar degrees of scatter were reported in Villarini
and Krajewski (2007) in their analysis of the TMPA research
version over Oklahoma. When aggregated to daily scale, the
standard deviation of differences was reduced to 76% and 90%
for the research and the RT products, respectively. It should be
noted that the significant scatter observed at the native TMPA
temporal resolution is partly attributed to the fact that the
TMPA do not actually represent 3-hourly average rain rates
(Villarini and Krajewski, 2007), but rather a sort of quasi-
instantaneous rain rate at some point during the 3-h period
(at the variable time of satellite overpass).

The marginal distribution of the TMPA products compared
to the reference datasets is examined by calculating the
probability of exceedance (Fig. 5) of each dataset. The
probability of exceedance (sometimes referred to survival
function) is defined and calculated as the probability that an
estimate exceeds a certain threshold. For the lower range of

Fig. 5. Probability of exceedance plots for the TMPA products compared with
those of the two reference datasets, MPE and HADS gauges.
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the distributions (rain rate threshold of 1.5 mm/h and lower)
both products have exceedance probabilities that are close
to that of the reference. For larger thresholds and at the
extreme tail of the distribution, the RT product still follows
the reference but the research version has smaller frequencies
of high rain rates compared to the reference. It is possible that,
although, in general, the bias removal technique using
monthly gauges reduces the overall bias, in the case of some
heavy rain situations, it may lead to reducing high rain rates. If
this effect is proven persistent in other validation cases, the
procedure may need to be revised to fix this undesirable
behavior.

4.1. Analysis of bias

The overall total bias between the TMPA products and the
reference rain is quantified by calculating the difference
between their arithmetic means, expressed in absolute and

relative units (Eq. (1) and (2)); Fig. 6. For the researchproduct,
the relative bias showed signs of both underestimation and
overestimation, but was mostly bounded by ±25% based on
using either MPE or HADS gauges as a reference. The RT
product shows higher bias levels than the research product for
all storms (except Katrina).

As described earlier, the total bias can be decomposed into
three components: hit bias (HB), missed-rain bias (MB), and
false-rain bias (FB); Fig. (7). Comparison with HADS gauges
showed similar behavior and is not presented. It should be
noted that these volumes are combined totals from the
individual pixels analyzed for every storm. It is clear that HB is
the dominant component that contributes the most to the
overall bias during all storms. The HB is significantly reduced
in TMPA-research compared to TMPA-RT (except in Katrina).
The next significant component is the MB which shows
similar magnitudes in both versions with slightly higher
values for the TMPA-research product. This indicates that

Fig. 6. Summary statistics of the six analyzed storms (from top to bottom): size of joint TMPA-reference samples, total rainfall accumulation for each dataset, TMPA
bias, and TMPA relative bias. The relative bias is calculated by normalizing with the mean of the reference. Statistics are based on combined data from all individual
pixels analyzed for every storm.
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during the bias-adjustment process of the research product,
some rainy intervals were set to zero-rain rates. The average
value of missed rainfall was ~0.5 mm/h with about 85% of the
values less than 1 mm/h,10% between 1 and 3 mm/h and ~5%
larger than 3 mm/h but not exceeding 6 mm/h. The contribu-
tion of the false-rain bias (FB) is negligible for the research
product, indicating the successful removal of false alarms in
the TMPA research algorithm. The FB was also minimal for
MPA-RT, except during Matthew, where the mean of falsely
detected rain rate was 0.26 mm/h and with few rates ranging
between 2 to 5 mm/h.

4.2. Analysis of TMPA detection

To further characterize the detection limitations of TMPA
products we examine two probabilities: probability of detec-
tion, POD, and probability of false detection, POFD. The use of
the HADS gauges as a reference in detection assessment is
problematic due to the limited number of gauges within each
pixel; therefore, only MPE data were used as a reference in
calculating POD and POFD. The two probabilities are assessed
for both TMPAversions on an individual stormbasis and for all
storms combined (Fig. 8). Consider first the POD results.
Conditioned on MPE larger than zero, the two TMPA products
show POD levels in the range of 0.4 to 0.7. When pooled
together, the six storms have a POD of slightly lower than 0.6
for both products. It is interesting to note that POD values of
TMPA-RTare higher than those of the TMPA-research product,
which in turn results in larger amounts of missed rain for the
research product (see results on bias components in Fig. 7).
This reiterates the earlier observation about settingwhat seem
to be actual rainy intervals into zero-rain rates when going
from the TMPA-RT to the research product.

Results on the POFD (Fig. 8) show that the problem of false
detection of rainfall by TMPA products is rather minimal,
especially for the research product, which reported POFD

values of zero for all storms except Matthew. Even during
Matthewwhere POFD was ~15%, it appears that most of these
false detections were associated with very light rain as
reflected in the small amount of falsely detected rain (~1.5
% of the total storm rainfall depth). The TMPA-RT product
showed low POFD values (zero for three storms and 3–6% for
two storms) with minimal false rainfall depths except for
storm Matthew (~17% of the total storm rainfall depth). The
differences in POFD statistics between the two products
indicate a successful removal of false rainfall detections from
the real-time product. To analyze the detection sensitivity of
TMPA estimates, the POD and PODF were recalculated by
conditioning on various rain rate thresholds after pooling all
storms together (Fig. 9). The results indicate that the rather
low POD values in both products are caused by lack of
detection of small rainfall intensities in the MPE reference
dataset (POD increases to 0.8 when MPE exceeds 0.2 mm/h).
Similarly, the POFD values decline rapidly, especially for the
research product, with the increase of the threshold con-
sidered as a false detection.

4.3. Analysis of Agreement and Disagreement Statistics

The agreement between TMPA and the reference rainfall is
assessed using the Pearson's correlation coefficient (Fig. 10).
Correlation results based on using either MPE or HADS gauges
as a reference are quite similar, except for Rita, which shows
correlations toMPE are higher by about 0.2. Overall, the TMPA
research product shows moderate to high correlation values
for most storms (0.5 to 0.8). Lower correlation values are
reported with the RT product in Ivan and Matthew. The
correlation values are higher than those reported in previous
studies (Villarini and Krajewski, 2007) and reflect a reason-
able skill for the TMPA products in reproducing the temporal
fluctuations of the reference rainfall during the analyzed
tropical-related storms. However, it should be noted that the

Fig. 7. Decomposition of the total bias of the TMPA products (using MPE as a reference): bias during successful hits, bias due to missed rain, and bias due to false
detections. Bias values are based on combined data from individual pixels.
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Pearson's correlation coefficient can be significantly affected
by the presence of extreme rain rates, which can be dominant
in the case of tropical storms.

Now we turn to statistics that focus on assessing dis-
agreement between TMPA and reference rainfall using the
standard deviation of differences expressed in absolute units
(mm/h) and also as a ratio relative to mean rainfall rate
(Fig. 10). For most storms, the range of this statistic was 1 to 2
times of the average rain rate during each storm. The research
product has noticeably lower values during two storms (Ivan
and Matthew), with the other storms showing comparable
results to the real-time product. We also assessed the average
difference using the mean of squares of differences (MSD)
and its two components (systematic, MSDs, and unsystematic
or random, MSDu) as defined in Eqs. (7) and (8). The
decomposition is performed on the TMPA-MPE sample but
includes only successful hit pairs in the sample. The resulting
values of the two components are presented in relative units

(MSDs/MSD and MSDu/MSD); Table 1. In comparing the two
components for either the TMPA-research or the RT product,
it appears that the random component is clearly dominant in
three storms (Lili, Bill and Matthew), the systematic compo-
nent is more dominant in two other storms (Ivan and
Katrina), and the two components are about the same for
Rita. In comparing the two TMPA products, the research
product has a smaller (larger) systematic (random) compo-
nent during storms Lili and Bill and a larger (smaller)
systematic (random) component during Matthew and
Katrina, with the two other storms (Ivan and Rita) showing
similar values for both MSDu and MSDs.

4.4. Analysis of TMPA error distribution

Now we turn to the distribution of the differences
between each TMPA product and the reference dataset (for
space limitations we only present results based on using MPE
as the reference). Fig. 11 shows frequency histograms (plotted
using lines for clarity) of TMPA-reference differences calcu-
lated for various ranges of the difference. The histogram is
symmetrical around the central bin, indicating that most
differences are within the range of -0.5 to 0.5 mm/h. The
distribution of the error of the research product has thinner
tails, especially on the positive side (N2 mm/h), which
indicates that several of the large errors were reduced to
smaller values as evident by the higher frequency at the
central bin. To examine whether the error distribution is
dependent on the rain rate magnitude, the differences were
plotted in the form of scatter points as a function of the MPE
rain rate (Fig. 12). The figure clearly shows the mean and
variance of the TMPA-MPE difference vary with the MPE rain
rate. To quantify such dependence, the full sample was
divided into sub-samples based on different ranges of the
MPE rain rate and the conditional mean, standard deviation
and two quantiles (0.1 and 0.9) were calculated and plotted
(Fig. 13). Despite the relatively small sample size of some of
the categories (in the order of 100 points), some useful
remarks can be made. It is clear that the error statistics

Fig. 8. Probabilities of detection (successful, top panel, and false, lower panel) of the two TMPA products using MPE as a reference.

Fig. 9. Conditional probability of detection (lines with triangles; left y-axis)
and probability of false detection (lines with circles; right y-axis) for the
TMPA-Research product (solid line) and the TMPA-RT product (dashed line).
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depend on the magnitude of the rain rate. The error tends to
be positive for the lower range of MPE rates and becomes
negative for higher MPE rates, which indicates that, on
average, both products tend to overestimate small rain rates
and underestimate large rain rates. With the exception of the
last category (MPEN5 mm/h), the degree of underestimation
or overestimation is higher for the real-time product than for
the research product. It is also observed that the RT errors
have a wider distribution for all ranges of the MPE rain rate,

especially on the positive side of the error as evident in the
calculated 0.90 quantiles.

5. Summary and conclusions

This paper evaluated a high-resolution satellite rainfall
product (TMPA-3B42) during six tropical-related rainfall
events with the objective of providing the user community
and the algorithm developers with some insight on its

Fig. 10. Correlation coefficient (top panel) and standard deviation of differences (lower two panels) between TMPA products and the reference datasets. The
relative standard deviation is calculated by normalizing with the mean of the reference.

Table 1
Decomposition of the mean square difference (MSD) between TMPA and MPE estimates into systematic (MSDs) and unsystematic (MSDu) components.

Lili Bill Ivan Matthew Katrina Rita

3B42 3B42 RT 3B42 3B42 RT 3B42 3B42 RT 3B42 3B42 RT 3B42 3B42 RT 3B42 3B42 RT

MSD 13.58 9.53 8.27 7.38 5.36 9.14 4.56 8.55 19.24 12.74 10.19 8.48
MSDs/MSD 0.13 0.37 0.10 0.49 0.63 0.66 0.32 0.17 0.95 0.70 0.53 0.45
MSDu/MSD 0.87 0.63 0.90 0.51 0.37 0.34 0.68 0.83 0.05 0.30 0.47 0.55

Results are based on TMPA–MPE pairs classified as successful hits.
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accuracy in comparison to surface reference rainfall. Two
versions of the TMPA product were considered for evaluation:
a real-time version and gauge-adjusted post-real-time
research version. Due to the anticipated hydrologic potential
of TMPA data, the evaluation was conducted at the native
resolution of the product (3-hourly and 0.25°) during six
tropical-related heavy rainfall storms over Louisiana, United
States. Two surface-rainfall datasets (gauge-based and radar-
based) were used as independent reference for evaluating the
satellite product. However, given the spatial under-sampling of
gauge-based estimatesmore emphasis is given to the radardata
as a reference. A suite of statistical measures and techniques
were implemented to characterize the differences and agree-
ment between TMPA estimates and the reference values. Based
on the results of this study, the following conclusions and
remarks about the two TMPA products can be made:

(1) The TMPA estimates reported reasonable levels of
rainfall detection for both products (~0.7 for all storms
combined). The detection probability increases to 80-
90% when light rain cases (b1 mm/h) are excluded.

(2) The TMPA products are characterized with varied
degrees of bias across the different analyzed storms
(within ±25% for the research product and ±50% for
the RT version). Decomposition of the total bias
indicated that the bias during successful detections is
the dominant component, with the next significant
component being the missed-rain bias. The research
product was associated with slightly worse missed-
rain bias than the RT product which indicates that
some rainy intervals were incorrectly set to zero-rain
rates during the bias-adjustment process of the
research product. False detections by the RT estimates
are observed in one storm only, and are completely
eliminated in the research version estimates, indicat-
ing the successful removal of false alarms in the TMPA
research product.

(3) Overall, the TMPA products track reasonably well the
temporal evolution and fluctuations of surface rainfall
during the tropical-related storms analyzed in this
study as reflected in the moderate to high correlation
values during most storms (0.4-0.8 and 0.6-0.8 for the
RT and research products, respectively).

(4) Point-by-point comparison between TMPA and the
reference estimates shows a significant degree of
scatter, which resulted in rather large values of the
relative standard deviation of the differences (100-
150% for the research product and up to 200% for the RT
estimates). The standard deviation was reduced was
reduced to 76% and 90% for the research and the RT
products, respectively, when aggregated to a daily
scale. We note that the significant scatter at the 3-
hourly native resolutionmay be partly attributed to the
ambiguity associated with defining the temporal
representativeness of “instantaneous” TMPA estimates
(Villarini and Krajewski, 2007). Further analysis may

Fig. 11. Frequency distribution of TMPA errors (calculated as differences
between TMPA and the reference dataset, MPE in this plot).

Fig. 12. Scatter plot of the TMPA errors (calculated as differences between
TMPA and the reference dataset, MPE in this plot) as a function of MPE rain
rates.

Fig.13. Conditional distribution of the TMPA errors as a function of MPE rain
rates. The lines represent mean of the error and the bars represent the 10 and
90% quantiles.
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be required to quantify the contribution and effect of
differences in temporal sampling characteristics
between TMPA and reference estimates used in the
validation assessment.

(5) The TMPA RT product agrees reasonably well with the
reference estimates in terms of the probability of
exceedance of various surface rainfall thresholds.
Overall, the research version of the product tends to
show lower exceedance probabilities compared to the
reference estimates, especially at high threshold
values. This may be attributed to effects of the monthly
bias removal procedure which may lead to reducing
high rain rates. If this effect is shown in additional
studies, the procedure may need to be revised to
prevent this from happening.

(6) Examination of the conditional distribution of TMPA
errors indicates that, on average, both products tend to
overestimate low rain rates and underestimate high
rain rates. The estimation errors associated with the
research product have a narrower conditional distribu-
tion (especially on the positive side of the error) for all
ranges of the reference rain rate.

The statistical metrics used in the product evaluation
showed mixed behavior across the different storms analyzed.
For example, bias was reported as both overestimation and
underestimation. The improvement in the research product
performance over that of the real-time product was more
noticeable in certain storms than in others, with some storms
showing deterioration in performance for the research
product. At the current level of our analysis, these inter-
storm differences are considered random. Physical explana-
tion of such varying behavior across storms, if it exists, will
require more analysis on the rainfall characteristics during
these tropical storms and also on the product development
details for each storm separately, which is beyond the scope of
this study. The analysis reported in this study can be further
extended to examine other performance aspects of the TMPA
products. For example, it should be interesting to examine
how the performance varies when the tropical storms move
from over the Gulf towards inland (i.e., water versus land
pixels). Some physical insight can be gained by keeping track
of the product accuracy during various growth and decay
stages of each tropical storm.

It is noted that, overall, the real-time version of the TMPA
product performed less favorably than the research-quality
post-real-time version. While the research product (available
several days after the end of the month) may be suitable for
post-type analysis, it is the real-time product (available few
hours after observation time) that is of most interest to end
users especially during the occurrence of extreme events and
their associated hazards. Examples of TMPA real-time desired
applications include global landslide detection system (e.g.,
Hong et al., 2007) and operational flood prediction and
forecasting systems (e.g., Li et al., 2008). In this regard, it
should be noted that there are on-going efforts to improve the
RT version so that it has statistical characteristics closer to the
research product. For example, a recent upgrade of the real-
time version (Huffman et al., in press) incorporates several
additional satellite data sources and employs monthly
climatological adjustments to approximate the bias charac-

teristics of the research quality product. This improvement
may alleviate some of the limitations noted in this study for
the real-time version of the satellite precipitation data.

An outstanding challenge in satellite rainfall validation
efforts that has not been addressed in the current study is
related to uncertainties in the datasets used as a ground
reference. In this study, and in other recent related investiga-
tions, radar-based rainfall datasets (e.g., Stage IV product)
were used as a validation reference due to their full coverage
of the scale of a typical satellite pixel. An implicit assumption
is that the greater part of deviations of satellite estimates from
the radar dataset is attributed to the satellite error. Such an
assumption is not fully justified given the inherent uncer-
tainty of radar-based estimates. The MPE Stage IV product is
relatively new and, to the best of the authors' knowledge, the
literature does not include validation studies on assessing the
performance of Stage IV estimates during the landfall of
tropical storms. Using an independent small-scale dense rain
gauge network, Habib et al. (2009) found that the MPE
product was biased with respect to the total surface rainfall
volume during tropical storms Matthew and Rita by -8% and
18%, respectively. Such event-scale biases were obtained over
one MPE pixel (4×4 km2) and may not fully represent the
bias over the TMPA pixel scale; however, they indicate the
potential problems associatedwith usingMPE-like datasets to
validate TMPA and other similar products. In a recent study,
Villarini et al. (2009) presented an approach to account for
radar-rainfall conditional and unconditional biases and
indicated that the presence of errors in ground-based radar
could significantly affect the results of satellite evaluations.
Gebremichael et al. (2005) presented a framework for
addressing the contribution of the reference error and
separating its effect. Given the increasing interest in using
radar-based datasets as a reference for validating the satellite
products, further investigations are required to better under-
stand and characterize the behavior of the radar error and
how it scales up when aggregated to the satellite pixel scale.

With all this kept in mind, the analysis shows that the
TMPA data set, especially the research version, is potentially
useful for examining rainfall events and statistics for land-
falling tropical storms, especially in areas–most of the world–
that do not have coastal radars. The apparent advantage of
TMPA products is the quasi-global coverage at relatively fine
scales; however, the analysis reported in this paper indicated
that this may come at the expense of relatively large errors. In
this regard, users of the TMPA-like datasets can anticipate
more improvements in future satellite-based precipitation
estimates. Besides the improvements in the real-time TMPA
version s noted above, an upgrade (expected in late 2009) for
the research product is designed to provide a variety of
improvements in input datasets and to address several
algorithmic issues. Other future enhancements for the TMPA
product (Huffman et al., in press) are expected to focus on
extension to higher latitudes and a shift to a Lagrangian time
interpolation scheme. On the long term, the anticipated
Global Precipitation Mission (GPM) (Smith et al., 2007),
which is a successor to TRMM, is designed to provide high-
resolution (~10 km) measurements of global precipitation
from a deployed constellation of remote sensing satellites and
will have 3-h average revisit time over 80% of the globe. More
importantly, GPMwill also provide a TRMM-like core satellite
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to better calibrate all of the microwave estimates on a
continuous basis, which will eventually lead to more accurate
precipitation estimates that may address the relatively large
errors observed in the current study. The analysis presented
in this paper provides a baseline for assessment of such
anticipated improvements in future satellite-based products
and their potential for hydrologic applications.
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