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Chapter 6. Expectation for discrete random variables.

6.1 Expected value.

If X is a discrete r.v. with finite sample space ΩX = {x1, . . . , xN} and p.m.f. fX ,

then as the name suggests we can think of the probabilities fX(x1), . . . , fX(xN ) as masses

located at points x1, . . . , xN on a segment of the number line. With this interpretation the

center of gravity of the distribution of X is located at E(X) = x1fX(x1)+ · · ·+xNfX(xN )

(read this as the expected value of X), i.e., E(X) is the weighted average of the possible

values of X with weights given by their probabilities. If an individual is selected at random

from a population of people andX represents the individual’s height rounded to the nearest

whole inch so that ΩX represents the collection of distinct heights for this population and

fX(xi) is the proportion of individuals in the population with height xi, then E(X) is the

population mean (average) height. If we think of X as the winnings of a player (with a

negative value indicating a loss) in one play of a game of chance with fX indicating the

probabilities of the possible outcomes of the game, then E(X) is the player’s expected

winnings. For example in the game of craps discussed earlier if we let the dichotomous

variable X indicate the player’s winnings (X = 1 indicating the player wins $1 and X = −1

indicating the player loses $1), then the player’s expected winnings is E(X) = (1)
(

244
495

)

+

(−1)
(

251
495

)

= −7
495 ≈ −.01414. This means that on average in the long run the player loses

1.414 cents per game and the house (casino) wins an average of 1.414 cents per game.

Thus if the house offers equal odds on this bet at craps (meaning that if the player bets

$1 then he either wins $1 or loses $1), then the house can make money provided a large

number of such bets are made.

Definition. If X is a discrete r.v. with finite sample space ΩX = {x1, . . . , xN} and p.m.f.

fX , then the expected value of X is defined by

E(X) =
∑

xi∈ΩX

xifX(xi).

The expected value of X is also known as the mean of X and the expectation of X.

Furthermore, these terms are also applied to the distribution of X, e.g., E(X) is the mean

of the distribution of X.

If ΩX is countably infinite, then the series
∑

xi∈ΩX
xifX(xi) may not converge. Thus

some technicalities need to be considered before we provide a general definition of the

expected value of a discrete r.v. For example, it can be shown that
∑∞

x=1
1
x2 = π2

6 , thus

fX(x) =
6

π2x21{1,2,...}(x) is a valid p.m.f. on ΩX = {1, 2, . . .}. However, for this distribu-

tion the series
∑∞

x=1 x
6

π2x2 = 6
π2

∑∞
x=1

1
x
clearly diverges, since this is a multiple of the

harmonic series. If ΩX is countably infinite and ΩX contains positive and negative values,
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then the series
∑

xi∈ΩX
xifX(xi) may fail to exist because it is not well defined in the sense

that the value of the sum may depend on the order in which the terms are summed. An

infinite series
∑∞

x=1 ax is said to be absolutely convergent if
∑∞

x=1 |ax| exists. If the series
∑

xi∈ΩX
xifX(xi) is absolutely convergent, i.e., if

∑

xi∈ΩX
|xi|fX(xi) converges, then the

series
∑

xi∈ΩX
xifX(xi) is well defined and converges.

Definition. If X is a discrete r.v. with sample space ΩX and p.m.f. fX and if the series
∑

xi∈ΩX
xifX(xi) is absolutely convergent, then the expected value of X is defined by

E(X) =
∑

xi∈ΩX

xifX(xi).

If the series
∑

xi∈ΩX
xifX(xi) is not absolutely convergent, then the expected value of X

does not exist.

The definition of the expected value of X can be extended to expected values of

functions of X. If X is a discrete r.v. with sample space ΩX and g is a function mapping

ΩX onto ΩY , then Y = g(X) is a discrete r.v. and if E(Y ) exists, then it is easy to see

that

E(Y ) =
∑

y∈ΩY

yfY (y) =
∑

x∈ΩX

g(x)fX(x) = E(g(X)).

We can also consider expected values of functions of two or more r.v.’s. For example,

if X and Y are jointly discrete r.v.’s with joint sample space ΩX,Y and g is a function

mapping ΩX,Y onto ΩW , then W = g(X,Y ) is a discrete r.v. and if E(W ) exists, then it

is easy to see that

E(W ) =
∑

w∈ΩW

wfW (w) =
∑

(x,y)∈ΩX,Y

g(x, y)fX,Y (x, y) = E(g(X,Y )).

Theorem 6.1. If a is a constant, X and Y are discrete r.v.’s, and E(X) and E(Y ) exist,

then

1) E(a) = a, i.e., if Pr(X = a) = 1, then E(X) = a.

2) If Pr(X ≥ a) = 1, then E(X) ≥ a. Similarly, if Pr(X ≤ a) = 1, then E(X) ≤ a.

3) E(aX) = aE(X).

4) E(a+X) = a+ E(X).

5) E(X + Y ) = E(X) + E(Y ).

Proof. Let a, X, and Y as specified be given.

1) Assume that Pr(X = a) = 1. Then ΩX = {a} and E(X) = afX(a) = a.

2) Assume that Pr(X ≥ a) = 1. Then E(X) =
∑

x∈ΩX
xfX(x) ≥

∑

x∈ΩX
afX(x) = a.
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3) E(aX) =
∑

x∈ΩX
axfX(x) = a

∑

x∈ΩX
xfX(x) = aE(X).

4) E(a+X) =
∑

x∈ΩX
(a+ x)fX(x) =

∑

x∈ΩX
afX(x) +

∑

x∈ΩX
xfX(x) = a+ E(X).

5) E(X + Y ) =
∑

(x,y)∈ΩX,Y
(x+ y)fX,Y (x, y)

=
∑

(x,y)∈ΩX,Y
xfX,Y (x, y) +

∑

(x,y)∈ΩX,Y
yfX,Y (x, y)

=
∑

x∈ΩX
x
∑

y∈ΩY
fX,Y (x, y) +

∑

y∈ΩY
y
∑

x∈ΩX
fX,Y (x, y)

=
∑

x∈ΩX
xfX(x) +

∑

y∈ΩY
yfY (y) = E(X) + E(Y ). ut

6.2 Moments.

For a r.v. X and a nonnegative integer k, the kth (raw) moment of X (kth moment of

the distribution of X) is E(Xk), and the kth factorial moment of X is E[X(X−1) · · · (X−

k+1)] provided these expectations exist. If µX = E(X) exists, then the kth central moment

of X is E[(X − µX)
k] provided this expectation exists.

Definition. If X is a discrete r.v. with sample space ΩX and p.m.f. fX , then for a non-

negative integer k:

1) If the indicated expectation exists, then the kth raw moment of X is

E(Xk) =
∑

x∈ΩX

xkfX(x);

2) If the indicated expectation exists, then the kth factorial moment of X is

E[X(X − 1) · · · (X − k + 1)] =
∑

x∈ΩX

x(x− 1) · · · (x− k + 1)fX(x);

3) If µX = E(X) exists and the indicated expectation exists, then the kth central moment

of X is

E[(X − µX)
k] =

∑

x∈ΩX

(x− µX)
kfX(x).

Note that if the kth moment (raw,factorial or central) exists, then every moment of

lower order also exists.

For a nonnegative integer valued r.v. X there is an interesting and useful connection

between the factorial moments of X and the p.g.f. of X. Recall that, letting px = fX(x)

for x = 0, 1, . . ., the probability generating function of the nonnegative integer valued r.v.

X is

PX(t) =

∞
∑

x=0

txpx = p0 + tp1 + t2p2 + · · ·
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and this series converges absolutely at least for −1 ≤ t ≤ 1. Note that PX(t) = E(tX)

and, as mentioned earlier, the derivative of this series is

P ′X(t) =

∞
∑

x=1

xtx−1px = p1 + 2tp2 + 3t2p3 + · · ·

and P ′X(1) =
∑∞

x=1 xpx. If E(X) exists, then this series expansion of P ′X(t) is a continuous

function of t for −1 ≤ t ≤ 1 and P ′X(1) = E(X). If E(X) does not exist, then the series

P ′X(1) diverges. The second derivative of PX(t) is

P ′′X(t) =
∞
∑

x=2

x(x− 1)tx−2px = 2p2 + 6tp3 + 12t3p4 + · · ·

and if E[X(X − 1)] exists, then P ′′X(1) = E[X(X − 1)]. This differentiation process

leads to the following result. If the kth factorial moment E[X(X − 1) · · · (X − k + 1)]

exists, then P
(k)
X (1) = E[X(X − 1) · · · (X − k + 1)]. This approach to computing factorial

moments from the p.g.f. is often the easiest way to compute the moments and related

expectations of positive integer valued X. For example, E[X(X − 1)] = E(X2) − E(X)

thus E(X2) = P ′′X(1) + P ′X(1).

6.3 Variance.

Letting E(X) = µX (the mean of the distribution of X) and assuming that this mean

exists, the random variable g(X) = (X−µX)
2 (the squared deviation of X from the mean

of the distribution of X) can be used as a measure of the variability in the distribution

of X. For example, in our example with X denoting the height of an individual selected

at random from a finite population of people the r.v. (X − µX)
2 is one way to measure

the extent to which the individual’s height differs from the population mean height. The

expected value of this r.v. is the variance of the distribution of X which is defined more

formally below. Note that the variance of the distribution of X is the second central

moment of the distribution of X.

Definition. IfX is a discrete r.v. with sample space ΩX , p.m.f. fX , and mean µX = E(X),

then the variance of X is defined by

var(X) =
∑

x∈ΩX

(x− µX)
2fX(x),

provided this series converges. If the series does not converge, then the variance of X does

not exist. The principal square root of var(X) is know as the standard deviation of X.

Note that, if var(X) exists, then var(X) = E(X2)− [E(X)]2.
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Theorem 6.2. If a is a constant, X is a discrete r.v., and var(X) exists, then

1) var(a) = 0, i.e., if Pr(X = a) = 1, then var(X) = 0.

2) var(aX) = a2var(X).

3) var(a+X) = var(X).

4) var(X) = 0 if and only if there is a constant a such that Pr(X = a) = 1.

Proof. Let a and X as specified be given.

1) Since E(a) = a we have var(a) = E[(a− a)2] = E(0) = 0.

2) Since E(aX) = aE(X) we have var(aX) = E([aX − aE(X)]2) = E(a2[X − E(X)]2) =

a2var(X).

3) Since E(a + X) = a + E(X) we have var(a + X) = E[(a + X − [a + E(X)])2] =

E([X − E(X)]2) = var(X).

4) Suppose that there is a constant a such that Pr(X = a) = 1, then var(X) = var(a) = 0

by part 1). Now suppose that var(X) = 0, then
∑

x∈ΩX
[x − E(X)]2fX(x) = 0 but this

requires that x = E(X) for all x ∈ ΩX which is equivalent to saying that the only value

of x for which fX(x) > 0 is E(X). This clearly implies that Pr[X = E(X)] = 1 and the

result holds with a = E(X). ut

6.4 Examples.

Binomial distribution. If X ∼ binomial(n, p), then

E(X) = np and var(X) = npq.

Geometric distribution. If X ∼ geometric(p), then

E(X) = q
p
and var(X) = q

p2 .

Negative binomial distribution. If X ∼ negative binomial(n, p), then

E(X) = rq
p
and var(X) = rq

p2 .

Hypergeometric distribution. If X ∼ hypergeometric(N1, N2, n), then

E(X) = n
(

N1

N1+N2

)

and var(X) = n
(

N1

(N1+N2)

)(

N2

(N1+N2)

)(

N1+N2−n
N1+N2−1

)

.

Discrete uniform distribution. If X ∼ uniform({1, 2, . . . , N}), then

E(X) = N+1
2 and var(X) = N2−1

12 .

Poisson distribution. If X ∼ Poisson(λ), then

E(X) = λ and var(X) = λ.

6.5 Covariance.

We begin by defining the covariance of the r.v.’s X and Y , cov(X,Y ) = cov(Y,X),

which arises in the computation of the variance of their sum X + Y .
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Definition. If X and Y are discrete r.v.’s for which var(X) and var(Y ) exist, then the

covariance of X and Y is

cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY ,

where µX = E(X) and µY = E(Y ).

Theorem 6.3. If X and Y are independent discrete r.v.’s for which var(X) and var(Y )

exist, then cov(X,Y ) = 0.

Proof. Let X and Y as specified be given. It is easy to see that W = X − µX and

Z = Y − µY are also independent. Therefore cov(X,Y ) = E(WZ) = E(W )E(Z) = 0. ut

It is important to note that the converse of this theorem is not true, i.e., in general

cov(X,Y ) = 0 does not imply that X and Y are independent.

Theorem 6.4. If X and Y are discrete r.v.’s for which var(X) and var(Y ) exist, then

var(X + Y ) = var(X) + 2cov(X,Y ) + var(Y ).

Proof. Let X and Y as specified be given. Then

var(X + Y ) = E([(X + Y )− (µX + µY )]
2) = E([(X − µX) + (Y − µY )]

2)

= E[(X − µX)
2] + 2E[(X − µX)(Y − µY )] + E[(Y − µY )

2]

= var(X) + 2cov(X,Y ) + var(Y ).ut

Theorem 6.5. If X1, . . . , Xn are discrete r.v.’s with variances σ21 , . . . , σ
2
n, then

var(X1 + · · ·+Xn) =
n
∑

i=1

σ2i + 2
∑

i<j

cov(Xi, Xj).

Corollary 6.5. If X1, . . . , Xn are independent discrete r.v.’s with variances σ21 , . . . , σ
2
n,

then

var(X1 + · · ·+Xn) =

n
∑

i=1

σ2i .

Theorem 6.6 (Schwarz inequality). If X and Y are discrete r.v.’s for which E(X2)

and E(Y 2) exist, then

[E(XY )]2 ≤ E(X2)E(Y 2)

with equality if and only if there is a constant c such that Pr(Y = cX) = 1.

Proof. Let X and Y as specified be given. Let g(t) = E[(tX − Y )2]. Since g(t) ≥ 0

for all t the discriminant of the quadratic g(t) = t2E(X2) + 2tE(XY ) + E(Y 2) must be
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nonpositive, i.e., we must have [E(XY )]2 ≤ E(X2)E(Y 2). Furthermore, since g(t) ≥ 0 for

all t, there is a t0 for which g(t0) = 0 if and only if the discriminant is zero, i.e., if and only

if [E(XY )]2 = E(X2)E(Y 2). This establishes the result since g(t0) = E[(t0X − Y )2] = 0

if and only if Pr(Y = t0X) = 1. ut

Theorem 6.7. If X and Y are discrete r.v.’s for which var(X) and var(Y ) exist, then

|cov(X,Y )| ≤
√

var(X)var(Y ).

Proof. This follows from the Schwarz inequality applied to X − µX and Y − µY . ut

If we standardize the r.v.’s X and Y to have mean zero and variance one (by subtract-

ing the mean and dividing by the standard deviation) and then compute the covariance

between these standardized r.v.’s we obtain the correlation of X and Y

ρ(X,Y ) = E

[(

X − µX

σX

)(

Y − µY

σY

)]

.

Note that −1 ≤ ρ(X,Y ) ≤ 1. The r.v.’s X and Y are said to be uncorrelated when

ρ(X,Y ) = 0, which is equivalent to cov(X,Y ) = 0. When ρ(X,Y ) = 1, X and Y are

said to be perfectly positively correlated and when ρ(X,Y ) = −1, X and Y are said to be

perfectly negatively correlated.

Theorem 6.8. (Markov inequality) If a is a positive constant and X is a positive valued

discrete r.v. for which E(X) exists, then

Pr(X ≥ a) ≤
E(X)

a
.

Proof. Let X and a which satisfy the hypothesis be given. Then

E(X) =
∑

{x∈ΩX :x<a}
xfX(x) +

∑

{x∈ΩX :x≥a}
xfX(x) ≥

∑

{x∈ΩX :x≥a}
xfX(x)

≥
∑

{x∈ΩX :x≥a}
afX(x) = aPr(X ≥ a), since x ≥ a on this region.

Thus Pr(X ≥ a) ≤ E(X)
a

. ut

Theorem 6.9 (Chebyshev’s inequality). If a is a positive constant and X is a discrete

r.v. for which E(X) = µX and var(X) = σ2X exist, then

Pr (|X − µX | ≥ a) ≤
σ2X
a2

.

Proof. Let X and a which satisfy the hypothesis be given and let Y = (X − µX)
2. Note

that Y is a positive valued r.v., E(Y ) = σ2X , and

Pr(Y ≥ a2) = Pr
(

(X − µX)
2 ≥ a2

)

= Pr (|X − µX | ≥ a)
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Thus Theorem 6.8 implies that

Pr (|X − µX | ≥ a) ≤
E(Y )

a2
=

σ2X
a2

. ut

Theorem 6.10 The weak law of large numbers. Let X1, X2, . . . denote a sequence of

independent discrete r.v.’s with a common distribution for which the mean µ and variance

σ2 exist. Let Sn = X1+ · · ·+Xn denote the sum of the first n r.v.’s. Then, for any ε > 0,

as n→∞

Pr

(∣

∣

∣

∣

Sn

n
− µ

∣

∣

∣

∣

< ε

)

→ 1.

In words this indicates that by increasing the number of terms n in the average Sn

n
, the

probability that this average is arbitrarily close to the mean µ approaches one.

Proof. Let Sn =
∑n

i=1Xi denote the sum of the first n terms of the sequence {Xi} of

independent discrete r.v.’s with a common distribution for which the mean µ and variance

σ2 exist and let ε > 0 be given. Since E(Sn) = nµ and var(Sn) = nσ2 application of the

Chebyshev inequality with a = ε yields

Pr

(∣

∣

∣

∣

Sn

n
− µ

∣

∣

∣

∣

≥ ε

)

≤
σ2

nε2
.

The result follows from the fact that the bound σ2

nε2
tends to zero as n tends to infinity. ut


