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1.1 Basic ideas 1

1 Introduction toc

1.1 Basic ideas toc

The entity of primary interest is a group

Statistical methods deal with properties of groups or aggregates. In many applications

the entity of primary interest is an actual, physical group (population) of objects. These

objects may be animate (e.g., people or animals) or inanimate (e.g., farm field plots, trees,

or days). We will refer to the individual objects that comprise the group of interest as

units. In certain contexts we may refer to the unit as a population unit, a sampling unit,

an experimental unit, or a treatment unit.

Information about a unit – variables

In order to obtain information about a group of units we first need to obtain information

about each of the units in the group. A variable is a measurable characteristic of an indi-

vidual unit. Since our goal is to learn something about the group, we are most interested

in the distribution of the variable, i.e., the way in which the possible values of the

variable are distributed among the units in the group.

The population and the sample

The population is the collection of all of the units that we are interested in. The sample is

the subset of the population that we will examine. (We will define a sample more precisely

when we discuss random sampling.)

Figure 1.1 Population (box of balls) and sample. A ball represents a population unit.

The balls removed from the box represent the sample.

population sample
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When the units are actual, physical objects we define the population as the collection of all

of the units that we are interested in. In most applications it is unnecessary or undesirable

to examine the entire population. Thus we define a sample as a subset or part of the

population for which we have or will obtain data. The collection of observed values of one

or more variables corresponding to the individual units in the sample constitute the data.

Once the data are obtained we can use the distributions of the variables among the units in

the sample to characterize the sample itself and to make inferences or generalizations about

the entire population, i.e., inferences about the distributions of these variables among the

units in the population.

In some applications, such as experimental studies, the population is best viewed as a

hypothetical population of values of one or more variables. For example, suppose that we

are interested in the effects of an alternative diet on weight gain in some population of

experimental animals. We might conduct an experiment by randomly assigning animals to

two groups; feeding one group a standard diet and the other group the alternative diet; and

then recording the weight gained by each animal over some fixed period of time. In this

example we can envision two hypothetical populations of weight gains: The population of

weight gains we would have observed if all of the animals were given the standard diet;

and, the population of weight gains we would have observed if all of the animals were given

the alternative diet.

Information about a group – parameters and statistics

Recall that a variable is a measurable characteristic of an individual unit. One way to

characterize a group of units is to examine the values of the variable corresponding to all of

the units in the group and determine one or more suitable summary values. For example,

given a group of adults, we might compute the average age of the group or the proportion

who have full–time jobs. A parameter is a numerical characteristic of the population. A

statistic is a numerical characteristic of the sample. That is, a parameter is a number

which characterizes a population and a statistic is a number which characterizes a sample.

An illustration is provided in Figure 1.2 for a population of 10 balls and sample of 3

balls. In this figure the characteristic of interest is the color of the ball and the color red

(darker shade) is of particular interest. The parameter is the proportion of red balls in the

population, 6/10, and the statistic is the proportion of red balls in the sample, 2/3.
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Figure 1.2 Parameter and statistic for a population of 10 balls and sample of 3 balls.

parameter p = 6/10 statistic p̂ = 2/3

(population proportion red) (sample proportion red)

Example 1.1 NHANES The National Health and Nutrition Examination Survey (NHANES)

is a program of studies designed to assess the health and nutritional status of adults and

children in the United States. The survey is unique in that it combines interviews and

physical examinations. We will use some data from the 2013–2014 NHANES to illustrate

the basic ideas we are discussing. For now we will concentrate our attention on some body

size measurements for the 5588 adults (age 20 and over) in the 2013–2014 NHANES.

For present purposes we will view this group of N = 5588 adults as the population. In the

original context of the survey this is a sample. Thus, for our purposes:

1. A unit is an individual adult.

2. The population is the collection of N = 5588 adults about whom we have information.

3. The sample is a collection of n = 50 individuals (units) which I selected at random from

the population of N = 5588 adults.

4. We will consider six variables:

The sex of the person (male or female);

The age of the person (years);

The weight of the person (pounds);

The height of the person (inches);

The BMI (body mass index) of the person (kg/m2); and,

The waist circumference of the person (inches).
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Table 1.1 contains the values of the six variables for the n = 50 people in the sample. The

values in a particular row correspond to an individual (one unit).

Table 1.1 NHANES 2013-2014 simple random sample of n = 50.

line sex age weight height bmi waist

1 male 48 285.34 70.1181 40.9 48.8976
2 female 80 172.48 63.5433 30.1 41.6535
3 male 48 186.78 69.8819 26.9 37.5197
4 male 80 167.2 67.5591 25.8 37.0079
5 female 20 156.2 67.7953 23.9 32.2835
6 female 43 196.02 66.1811 31.5 46.8504
7 male 54 200.86 64.8425 33.7 42.5197
8 female 24 153.78 63.4252 26.9 40.7874
9 female 25 122.32 64.1732 20.9 29.0945

10 male 58 142.34 69.0157 21.1 34.252
11 female 74 154.22 63.1496 27.2 37.8346
12 female 74 173.8 61.378 32.5 45.3937
13 male 78 154.22 67.4016 23.9 33.4646
14 female 72 89.1 56.9291 19.4 29.1339
15 male 48 178.2 72.2835 24 36.811
16 male 64 231.66 62.874 41.3 51.7323
17 male 41 164.34 68.0315 25 36.7717
18 female 39 143.88 60.7874 27.4 33.7402
19 male 49 305.14 72.1654 41.3 missing
20 male 73 141.24 70.3937 20.1 37.4409
21 female 67 203.94 62.0079 37.4 44.7244
22 female 26 101.86 59.8031 20.1 29.0157
23 female 73 150.7 65.7087 24.6 38.189
24 male 60 199.32 72.1654 27 40.0394
25 male 40 206.58 67.4409 32 43.2677
26 male 27 181.94 67.3622 28.2 38.622
27 male 62 199.98 67.3622 31.1 43.3858
28 female 71 176.66 64.6063 29.8 42.9134
29 female 80 166.1 62.3228 30.1 39.3701
30 male 39 280.72 71.9291 38.2 52.0472
31 female 48 127.6 61.4173 23.8 31.2598
32 male 46 156.64 67.7953 24 missing
33 female 80 147.4 61.3386 27.6 40.7087
34 female 35 183.04 65.2362 30.3 41.2205
35 female 57 140.36 62.2047 25.6 34.9213

continued below
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Table 1.1 continuation of NHANES 2013-2014 simple random sample of n = 50.

line sex age weight height bmi waist

36 female 40 170.06 65.9055 27.6 35.748
37 female 56 182.6 59.685 36.1 39.4882
38 male 34 192.5 70.3937 27.4 37.9921
39 male 75 163.9 64.7244 27.6 48.8189
40 female 76 147.84 60.4724 28.5 36.6535
41 male 57 254.32 70.7087 35.8 43.8189
42 male 77 187.22 69.2126 27.5 40.1181
43 male 45 179.3 70.7087 25.3 36.5354
44 male 48 249.48 67.126 39 51.063
45 female 47 214.06 64.6457 36.1 42.5984
46 male 72 205.26 70.3543 29.2 42.8346
47 male 80 127.38 66.4567 20.3 missing
48 male 24 199.32 71.2205 27.7 40.6299
49 male 80 162.8 66.7323 25.8 39.4094
50 male 21 119.24 66.6929 18.9 26.3386

Some parameters and statistics (population and sample means) for the numerical variables

in this example are given in Table 1.2. With respect to the categorical variable sex of the

person; there are 2919 females and 2669 males in the population and there are 22 females

and 28 males in the sample. This gives the (parameter) population percentage female as

52.24% and the (statistic) sample percentage female as 44%.

Table 1.2 Population and sample means for the HANES example.

parameter statistic
variable population mean sample mean

age 49.15 54.70
weight 179.22 177.94
height 65.77 66.11

bmi 29.10 28.53
waist 39.05 39.47

Which direction? Probability versus statistics

Probability theory is used to model the outcomes of random processes. The basic proba-

bility situation is illustrated in Figure 1.3. Here we know all there is to know about the
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characteristics of the balls in the box and we want to make a statement about what will

happen when we select a ball at random from the box and examine it. For example, for

the box of Figure 1.2, where 60% of the balls in the box are red, if we select one ball at

random, there is a 60% chance (probability) that it will be red.

Figure 1.3 Probability: What will happen when we select a ball at random?

If we know all about the balls in the box,

then we can assign probabilities to the

outcomes we may observe when we select

a ball at random.

the population

Statistical theory is used to make inferences from a random sample to a population. The

basic statistics situation is illustrated in Figure 1.4. Here we know all there is to know about

the characteristics of the balls in the random sample and we want to make a statement

about what we would find if we examined all of the balls in the box (the entire population).

Figure 1.4 Statistics: What can we say about the balls in the box?

If we know all about the balls in the random

sample, then we can use statistics to make

inferences about the balls in the box.

the random sample
the population

1.2 Sampling toc

A sampling study is conducted by selecting a random sample of units from a population,

observing the values of a variable for the units in the sample, and then making inferences

or generalizations about the population. More specifically, the distribution of the values
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of the variable among the units in a random sample is used to make inferences about the

distribution of the variable among the units in the population. The first consideration in

planning or interpreting the results of a sampling study is the determination of exactly

which units could be in the sample. The second consideration concerns the proper selection

of the units which constitute the sample. We will discuss these considerations in more depth

in the rest of this section.

Sampling is the process of obtaining a sample from a population. Our ultimate goal is to

use the sample (which we will examine) to make inferences about the population (which

we will not examine in its entirety). If the sample is selected from the population in an

appropriate fashion, then we can use the information in the sample to make reliable and

quantifiable inferences about the population. When the sample is obtained we will use

the distribution of the variable among the units in the sample to make inferences about

the distribution of the variable among the units in the population. If the distribution of

the variable in the sample was exactly the same as the distribution of the variable in the

population, then it would be easy to make inferences about the population; but, this is

clearly too much to ask. Therefore we need to determine how to select a sample so that

the sample is representative of the population.

The first step in deciding whether a method of choosing a sample will yield a representative

sample requires a distinction between two populations. Before we obtain a sample we need

to decide exactly which population we are interested in. The target population is the

collection of all of the units that we want to make inferences about. We then need to

determine which population our sample actually comes from. The sampled population

is the collection of all of the units that could be in the sample. Notice that the sampled

population is determined by the method used to select the sample.

Ideally the sampling method is chosen so that the sampled population is exactly the same

as the target population and we can refer to this collection as the population. In practice,

there may be some differences between the target population and the sampled population.

When the sampled population is not identical to the target population we cannot be

confident that the sample (which comes from the sampled population) will be representative

of the target population. Furthermore, we cannot be confident that the statistic (which is

based on a sample from the sampled population) will be suitable for inference about the

parameter (which corresponds to the target population).
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If there is a difference between the sampled population and the target population, in the

sense that the distribution of the variable in the sampled population is different from

the distribution of the variable in the target population, then a sample (obtained from

the sampled population) is said to be biased for making inferences about the target

population. If we use a biased sample to make inferences about the target population, the

resulting inferences will not be appropriate. For example, a statistic based on a biased

sample, may provide a suitable estimate of the corresponding parameter in the sampled

population; but, it may not provide a suitable estimate of the corresponding parameter

in the target population. Therefore, if the sampled population is different from the target

population, then we must modify our goals by redefining the target population or we

must change the sampled population by modifying our sampling method, since we want

these two populations to be the same so that our inferences will be valid for our target

population. It may be possible to change the method of obtaining our sample so that all

of the units in the target population could be in our sample and these two populations are

the same. If it is not possible to change the sampling method, then we must change our

goals by restricting our inferences to the sampled population. In any case, once a sampling

method has been chosen, the sampled population is determined and we should restrict

our inferences to this sampled population. In conclusion, when making inferences from a

sample we must carefully consider the restrictions imposed by the sampling method, since

statistical theory can only justify inferences about the sampled population.

Assuming that we have defined a method of selecting a sample so that the sampled popula-

tion is the same as the target population, we next need to consider exactly how we should

select the units that constitute the sample. Since we are assuming that the sampled and

target populations are the same, we do not need to worry about the type of bias described

above. However, we might introduce bias if we do not select the units for the sample in

an appropriate fashion. The approach to sampling that we will adopt is called random

sampling. The idea behind random sampling is to eliminate potential bias (intentional

or unintentional) from the selection process by using impersonal random chance to select

the sample. In addition to eliminating bias random sampling also provides the basis for

theoretical justification and quantification of inferences based on the sample.

All of the sampling situations we consider can be viewed as being abstractly the same as

the simple situation of selecting a sample of balls from a box of balls. This scenario was

illustrated in Figure 1.1.
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The simplest type of random sample is called a simple random sample. A simple random

sample of size n is a sample of n units selected from the population in such a way that

every possible sample of n units has the same chance of being selected. This definition of a

simple random sample can be refined to distinguish between two versions of simple random

samples. If we require that the possible samples of n units are such that a particular unit

can occur at most once in a sample, then we refer to the sample as being a simple random

sample of size n, selected without replacement. On the other hand, if we allow a

particular unit to occur more than once in the sample, then we refer to the sample as a

simple random sample of size n, selected with replacement.

To obtain a simple random sample of size n from the balls in our box, we first mix the

balls in the box and select one ball at random (so that each ball in the box has the same

chance of being selected). We then determine the value of the variable for the selected ball

giving us the value of the variable for one of the balls in our random sample. If we are

sampling with replacement we return the ball to the box before the next draw. If we are

sampling without replacement we do not return the ball to the box. We then mix the balls

in the box and continue this process of selecting a ball from the box at random until n

balls have been selected. These n balls (or the values of the variable for these balls) form

the simple random sample of size n.

If the population from which we wish to select a random sample is not too large, then it

is possible to envision actually labeling each unit in the population, placing these labels

on a collection of balls, placing these labeled balls in a box, and selecting a simple random

sample of these balls as described above. In fact, state lotteries, where a simple random

sample of numbers is selected from a collection of allowable numbers (the units), are

conducted in this way. If you have ever observed the complicated mechanisms used to

select winning lottery numbers, you know that it is difficult to convince people that a

method of “drawing balls from a box” yields a proper simple random sample. For most

purposes it is best to use a computer or calculator to select a simple random sample. The

computer will simulate the process of drawing balls at random from a box.

When we take a simple random sample, all of the possible samples have the same chance

of being selected. There are situations where it is not appropriate for all of the possible

samples to have the same chance of being selected. Suppose that there are two or more

identifiable subsets of the population (subpopulations). If we obtain a simple random
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sample from the whole population, then it is possible for the resulting sample to come

entirely from one of the subpopulations so that the sample does not contain any units

from one or more of the subpopulations. If we know or suspect that the distribution of

the variable of interest varies among the subpopulations, then a sample which does not

contain any units from some of the subpopulations will not be representative of the whole

population. Therefore, in a situation like this we should not use a simple random sample

to make inferences about the whole population. Instead we should use a more complex

kind of random sample. One possibility is to use a sampling method known as stratified

random sampling which is described below in the context of a simple example.

Suppose we wish to estimate the proportion of all registered voters in the United States

who favor a particular candidate in an upcoming presidential election. We might expect

there to be differences in the proportion of registered voters who favor this candidate

among the various states. For example, we might expect support for this candidate to be

particularly strong in his or her home state. Because we are interested in the proportion

of all registered voters in the United States who favor this candidate, we want to be sure

that all of the states are represented fairly in our sample.

We can use the states to define strata (subpopulations), take a random sample from each

state (stratum), and then combine these samples to get a sample that is representative of

the entire country. This is an example of a stratified random sample. The simplest type

of stratified random sample is obtained as described in the following three steps.

1. Divide the population into appropriate strata (subpopulations).

2. Obtain a simple random sample within each stratum.

3. Combine these simple random samples to get the stratified random sample from the

whole population.

To obtain a representative sample in the opinion poll example, we would need to determine

the number of registered voters in each state and select simple random samples of sizes

that are proportional to the numbers of registered voters in the states.
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1.3 Experimentation toc

An experimental study differs from a sampling study in that the units used in the ex-

perimental study are manipulated and the responses of the units to this experimental

manipulation are recorded. For an experimental study the relevant population or popu-

lations are hypothetical populations of values of the variable defined by the experimental

treatment(s) and corresponding to all of the units available for use in the experiment. That

is, the relevant population(s) is the population(s) of values of the variable which would

be observed if all of the available units were subjected to the experimental treatment(s).

In the context of a comparative experiment we cannot properly quantify inferences unless

the units are assigned to the treatments being compared using an appropriate method of

random assignment. This random assignment of units to treatments is analogous to the

random sampling of a sampling study.

In an experimental study we manipulate the units and observe their response to this

manipulation. In the experimental context, a particular combination of experimental con-

ditions is known as a treatment. The purpose of an experiment is to obtain information

about how the units in the population would respond to a treatment; or, to compare the

responses of the units to two or more treatments. The response of a unit to a particular

treatment is determined by measuring the value of a suitable response variable.

The steps involved in conducting a simple experimental study based on a random sample

are summarized below.

1. Obtain a random sample of units from the population of interest.

2. Subject the units in the sample to the experimental treatment of interest.

3. Obtain the data. That is, determine the values of the response variable for the units in

the sample.

4. Use the data to make inferences about the how the units in the population would

respond to the treatment. More specifically, use the distribution of the response variable

in the sample to make inferences about the distribution of the response variable in the

population from which the sample was taken. In this context it may be easiest to think

of the population as the hypothetical population of values of the response variable which

would result if all of the units in the population were subjected to the treatment.
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We will now discuss the basic ideas of experimentation in more detail in the context of a

simple hypothetical experiment. Suppose that a new drug has been developed to reduce

the blood pressure of hypertensive patients. The treatment of interest is the administration

of the new drug to a hypertensive patient. The change in a patient’s blood pressure will

be used as the response variable. For this example the plan of the simple experiment

described above is summarized in the steps below.

1. Obtain a random sample of n hypertensive patients.

2. Measure the blood pressure of each patient before the new drug is administered.

3. Administer the new drug to each of these patients.

4. After a suitable period of time, measure the blood pressure of each patient.

5. For each patient determine the change in his or her blood pressure by computing the

difference between the patient’s blood pressure before the drug was administered and the

patient’s blood pressure after the new drug was administered. This change or difference

will serve as the response variable for assessing the effects of the new drug. In this example

the relevant population is the hypothetical population of changes in blood pressure that we

would observe if all of the hypertensive patients in the population from which the sample

was selected had been subjected to this experiment.

Suppose that we actually conducted this experiment. Furthermore, suppose that the data

indicate that the hypertensive patients’ blood pressures tend to decrease after they are

given the new drug, i.e., suppose that the data indicate that most of the patients ex-

perienced a meaningful reduction in blood pressure. We can conclude that there is an

association between the new drug and a reduction in blood pressure. This association is

clear, since the patients (as a group) tended to experience a decrease in blood pressure

after they received the new drug. Can we conclude that the new drug caused this decrease

in blood pressure? The support for the contention that the new drug caused the decrease

in blood pressure is not so clear. In addition to the new drug there may be other fac-

tors associated with the observed decrease in blood pressure. For example, the decrease

in blood pressure might be explained, in whole or in part, as the physical manifestation

of the psychological effect of receiving medication. In other words, we might observe a

similar decrease in blood pressure if we administered a placebo to the patients instead of

the new drug. It is also possible that some other aspects of the experimental protocol are
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affecting the patients’ blood pressures. The way that this experiment is being conducted

does not allow us to separate out the effects of the many possible causes of the decrease in

blood pressure. If we hope to establish a cause and effect relationship between taking the

new drug and observing a decrease in blood pressure, then we need to use a comparative

experiment.

In a randomized comparative experiment baseline data is obtained at the same time

as the data concerning the treatment of interest. This is done by randomly dividing the

available units (patients) into two or more groups and comparing the responses for these

groups. In the drug example there is one treatment of interest, administer the new drug.

Therefore, in this situation we only need two groups, a control group and a treatment group.

The units (patients) in the control group do not receive the treatment (do not receive

the new drug). The units (patients) in the treatment group do receive the treatment

(do receive the drug). During the course of the experiment we need to keep all aspects of

the experiment, other than the treatment itself, as similar as possible for all of the units

in the study. The idea is that, if the only difference between the units in the control group

and the units in the treatment group is that the units in the treatment group received the

treatment, then any observed differences between the responses of the two groups must

be caused by the treatment. In the drug example it would be a good idea to administer

a placebo to the patients in the control group, so that they do not know that they did

not receive the new drug. It would also be a good idea to “blind” the patients and the

people administering the drug or placebo by not telling them which patients are receiving

the placebo and which patients are receiving the new drug. The purpose of such blinding

is to eliminate intentional or unintentional effects due to patient or administrative actions

which might affect a patient’s response. The steps for conducting such a randomized

comparative experiment are given below.

1. Randomly divide the group of available patients into two groups: a group of n1 patients

to serve as the control group and a group of n2 patients to serve as the treatment group.

These two groups are random samples of sizes n1 and n2 from the group of available

patients. The samples sizes n1 and n2 may be different.

2. Administer the placebo to the patients in the control group and administer the new

drug to the patients in the treatment group.
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3. Obtain the data. That is, measure the response variable for each of the n1 + n2

patients in the experiment. For example, we could determine the change (difference) in

each patient’s blood pressure as measured before and after administration of the placebo

or new drug.

4. Compare the responses of the patients in the treatment group to the responses of the

patients in the control group and make inferences about the effects of the new drug versus

the placebo.

In this example there are two hypothetical populations of changes in blood pressure. The

hypothetical population of changes in blood pressure that we would observe if all of the

available hypertensive patients were subjected to this experiment and given the placebo

and the hypothetical population of changes in blood pressure that we would observe if

all of the available hypertensive patients were subjected to this experiment and given the

new drug. Notice that, strictly speaking, our inferences in this example only apply to

the hypertensive patients who were available for assignment to the groups used in the

experiment. If we want to make inferences about a larger population of hypertensive

patients, then the group of available patients used in the study should form a random

sample from this larger population.

The experiment described above is designed to compare the effects of the new drug to the

effects of a placebo. Suppose that we wanted to compare the effects of the new drug to

the effects of a standard drug. To make this comparison we could design the experiment

with three groups: a control group, a treatment group for the new drug, and a treatment

group for the standard drug. If our only goal is to compare the two drugs (treatments),

then we could eliminate the placebo control group and run the experiment with the two

treatment groups alone.
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2 Descriptive Statistics toc

2.1 Tabular and graphical summary toc

Consider the problem of using data to learn something about the characteristics of the

group of units which comprise the sample. Recall that the distribution of a variable is

the way in which the possible values of the variable are distributed among the units in

the group. A variable is chosen to measure some characteristic of the units in the group;

therefore, the distribution of a variable contains all of the available information about

the characteristic (as measured by that variable) for the group. Other variables, either

alone or in conjunction with the primary variable, may also contain information about the

characteristic of interest. A meaningful summary of the distribution of a variable provides

an indication of the overall pattern of the distribution and serves to highlight possible

unusual or particularly interesting aspects of the distribution.

Generally speaking, it is hard to tell much about the distribution of a variable by examining

the data in raw form. Therefore, the first step in summarizing the distribution of a variable

is to tabulate the frequencies with which the possible values of the variable appear in the

sample. A frequency distribution is a table listing the possible values of the variable

and their frequencies (counts of the number of times each value occurs). A frequency

distribution provides a decomposition of the total number of observations (the sample

size) into frequencies for each possible value. In general, especially when comparing two

distributions based on different sample sizes, it is preferable to provide a decomposition

in terms of relative frequencies. A relative frequency distribution is a table listing

the possible values of the variable along with their relative frequencies (proportions). A

relative frequency distribution provides a decomposition of the total relative frequency of

one (100%) into proportions or relative frequencies (percentages) for each possible value.

Many aspects of the distribution of a variable are most easily communicated by a graph-

ical representation of the distribution. The basic idea of a graphical representation of a

distribution is to use area to represent relative frequency. The total area of the graphical

representation is taken to be one (100%) and sections with area equal to the relative fre-

quency (percentage) of occurrence of a value are used to represent each possible value of

the variable.
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2.2 Types of variables toc

When discussing the distribution of a variable we need to consider the structure possessed

by the possible values of the variable. This leads to the following classification of variables

into four basic types.

A qualitative variable (categorical variable) classifies a unit into one of several possible

categories. The possible values of a qualitative variable are names for these categories.

We can distinguish between two types of qualitative variables. A qualitative variable is

said to be nominal if there is no inherent ordering among its possible values. If there is

an inherent ordering of the possible values of a qualitative variable, then it is said to be

ordinal. For example the sex (female or male) of a college student is nominal while the

classification (freshman, sophomore, junior, senior) is ordinal.

A quantitative variable (numerical variable) assigns a meaningful numerical value to

a unit. Because the possible values of a quantitative variable are meaningful numerical

quantities, they can be viewed as points on a number line. If the possible values of a

quantitative variable correspond to isolated points on the number line, then there is a

discrete jump between adjacent possible values and the variable is said to be a discrete

quantitative variable. The most common example of a discrete quantitative variable is

a count such as the number of babies in a litter of animals or the number of plants in

a field plot. If there is a continuous transition from one value of the variable to the

next, then the variable is said to be a continuous quantitative variable. For a continuous

quantitative variable there is always another possible value between any two possible values,

no matter how close together the values are. In practice all quantitative variables are

discrete in the sense that the observed values are rounded to a reasonable number of

decimal places. Thus the distinction between a continuous quantitative variable and a

discrete quantitative variable is often more conceptual than real. If a value of the variable

represents a measurement of the size of a unit, such as height, weight, or length, or the

amount of some quantity, then it is reasonable to think of the possible values of the variable

as forming a continuum of values on the number line and to view the variable as continuous.

We can also classify variables with respect to the roles they play in a statistical analy-

sis. That is, we can distinguish between response variables and explanatory variables. A

response variable is a variable that measures the response of a unit to natural or exper-

imental stimuli. A response variable provides us with a measurement or observation that
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characterizes a unit with respect to a characteristic of primary interest. An explanatory

variable is a variable that can be used to explain, in whole or in part, how a unit responds

to natural or experimental stimuli. This terminology is clearest in the context of an ex-

perimental study. Consider an experiment where a unit is subjected to a treatment (some

combination of conditions) and the response of the unit to the treatment is recorded. A

variable that describes the treatment conditions is called an explanatory variable, since

it may be used to explain the outcome of the experiment. A variable that measures the

outcome of the experiment is called a response variable, since it measures the response of

the unit to the treatment. An explanatory variable may also be used to subdivide a group

so that the distributions of a response variable can be compared among subgroups.

2.3 Qualitative data toc

Bar graphs are used to summarize the distribution of a qualitative variable. A bar graph

consists of a collection of bars (rectangles) such that the combined area of all the bars is

one (100%) and the area of a particular bar is the relative frequency of the corresponding

value of the variable. Two other common forms for such a graphical representation are

segmented bar graphs and pie graphs. A segmented bar graph consists of a single bar

of area one (100%) that is divided into segments with a segment of the appropriate area

for each observed value of the variable. A segmented bar graph can be obtained by joining

the separate bars of a bar graph. If the bar of the segmented bar graph is replaced by a

disk, the result is a pie graph or pie chart. In a pie graph or pie chart the interior of a

disk (the pie) is used to represent the total area of one (100%); and the pie is divided into

slices of the appropriate area or relative frequency, with one slice for each observed value

of the variable.

Example 2.1 Immigrants to the United States. The data concerning immigrants admitted

to the United States summarized by decade as raw frequency distributions in Table 2.1

were taken from the 2002 Yearbook of Immigration Statistics, USCIS, (www.uscis.gov).

Immigrants for whom the country of last residence was unknown are omitted. For this

example a unit is an individual immigrant and these data correspond to a census of the

entire population of immigrants, for whom the country of last residence was known, for

these decades. Because the region of last residence of an immigrant is a nominal variable

and its values do not have an inherent ordering, the values in the bar graphs (and relative

frequency distributions) in Figure 2.1 have been arranged so that the percentages for the

1931–1940 decade are in decreasing order.
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Table 2.1 Region of last residence for immigrants to USA.

period

region 1931–1940 1961–1970 1991–2000

Europe 347,566 1,123,492 1,359,737
Asia 16,595 427,692 2,795,672
North America 130,871 886,891 2,441,448
Caribbean 15,502 470,213 978,787
Central America 5,861 101,330 526,915
South America 7,803 257,940 539,656
Africa 1,750 28,954 354,939
Oceania 2,483 25,122 55,845

total 528,431 3,321,634 9,052,999

Two aspects of the distributions of region of origin of immigrants which are apparent in

these bar graphs are: The decrease in the proportion of immigrants from Europe; and,

the increase in the proportion of immigrants from Asia. In 1931–1940 a large majority

(65.77%) of the immigrants were from Europe but for the later decades this proportion

steadily decreases. On the other hand, the proportion of Asians (only 3.14% in 1931–1940)

steadily increases to 30.88% in 1991–2000. Also note that the proportion of immigrants

from North America is reasonably constant for these three decades. The patterns we

observe in these distributions may be attributable to several causes. Political, social, and

economic pressures in the region of origin of these people will clearly have an impact on

their desire to immigrate to the US. Furthermore, political pressures within the US have

effects on immigration quotas and the availability of visas.
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Figure 2.1 Region of last residence for immigrants to USA, by decade.

1931–1940

Europe 65.77%

North America 24.77%

Asia 3.14%

Caribbean 2.93%

South America 1.48%

Central America 1.11%

Oceania .47%

Africa .33%

1961–1970

Europe 33.82%

North America 26.70%

Asia 12.88%

Caribbean 14.16%

South America 7.77%

Central America 3.05%

Oceania .76%

Africa .87%

1991–2000

Europe 15.02%

North America 26.97%

Asia 30.88%

Caribbean 10.81%

South America 5.96%

Central America 5.82%

Oceania .62%

Africa 3.92%
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2.4 Quantitative data toc

The tabular representations used to summarize the distribution of a discrete quantitative

variable, i.e., the frequency and relative frequency distributions, are defined the same as

they were for qualitative data. Since the values of a quantitative variable can be viewed as

points on the number line, we need to indicate this structure in a tabular representation.

In the frequency or relative frequency distribution the values of the variable are listed in

order and all possible values within the range of the data are listed even if they do not

appear in the data.

We will use a graphical representation called a histogram to summarize the distribution of

a discrete quantitative variable. Like the bar graph we used to represent the distribution

of a qualitative variable, the histogram provides a representation of the distribution of a

quantitative variable using area to represent relative frequency. A histogram is basically

a bar graph modified to indicate the location of the observed values of the variable on

the number line. For ease of discussion we will describe histograms for situations where

the possible values of the discrete quantitative variable are equally spaced (the distance

between any two adjacent possible values is always the same). We will use the following

weed seed example to illustrate the methodology.

Example 2.2 Weed seeds. C. W. Leggatt counted the number of seeds of the weed po-

tentilla found in 98 quarter–ounce batches of the grass Phleum praetense. This example

is taken from Snedecor and Cochran, Statistical Methods, Iowa State, (1980), 198; the

original source is C. W. Leggatt, Comptes rendus de l’association international d’essais de

semences, 5 (1935), 27. The 98 observed numbers of weed seeds, which varied from 0 to

7, are summarized in the relative frequency distribution of Table 2.2 and the histogram of

Figure 2.2. In this example a unit is a batch of grass and the number of seeds in a batch

is a discrete quantitative variable with possible values of 0, 1, 2, . . ..
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Table 2.2 Weed seeds relative
frequency distribution.

number frequency relative
of seeds frequency

0 37 .3776
1 32 .3265
2 16 .1633
3 9 .0918
4 2 .0204
5 0 .0000
6 1 .0102
7 1 .0102

total 98 1.0000

Figure 2.2 Histogram for number of weed seeds.

0 1 2 3 4 5 6 7
number of seeds

Consider the histogram for the number of weed seeds in a batch of grass of Figure 2.2. This

histogram is made up of rectangles of equal width, centered at the observed values of the

variable. The heights of these rectangles are chosen so that the area of a rectangle is the

relative frequency of the corresponding value of the variable. There is not a gap between

two adjacent rectangles in the histogram unless there is an unobserved possible value of

the variable between the corresponding adjacent observed values. For this example there

is a gap at 5 since none of the batches had exactly 5 weed seeds.

In this histogram we are using an interval of values on the number line to indicate a single

value of the variable. For example, the rectangle centered over 1 in the histogram of Figure

2.2 represents the relative frequency that a batch of grass contains exactly 1 weed seed;
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but, its base extends from .5 to 1.5 on the number line. Because it is impossible for the

number of weed seeds to be strictly between 0 and 1 or strictly between 1 and 2, we are

identifying the entire interval from .5 to 1.5 on the number line with the actual value of

1. This identification of an interval of values with the possible value at the center of the

interval eliminates gaps in the histogram that would incorrectly suggest the presence of

unobserved, possible values.

The histogram for the distribution of the number of weed seeds in Figure 2.2 has a mound

shaped appearance with a single peak at zero, indicating that the most common number of

weed seeds is zero. In fact, 37.76% of the batches of grass contain no weed seeds. Among

the batches that do contain weed seeds we see that 32.65% contain one weed seed and

16.33% contain two. Thus, 86.74% of the 98 batches of grass contain two or fewer weed

seeds and 95.92% contain three or fewer weed seeds. In summary, the majority of these

batches of grass have a small number of weed seeds; but, there are a few batches with

relatively high numbers of weed seeds.

The histogram of Figure 2.2, or the associated distribution, is not symmetric. That is,

the histogram (distribution) is not the same on the left side (smaller values) as it is on

the right side (larger values). This histogram or distribution is said to be skewed to the

right. The concept of a distribution being skewed to the right is often explained by saying

that the right “tail” of the distribution is “longer” than the left “tail”. That is, the area

in the histogram is more spread out along the number line on the right than it is on the

left. For this example, the smallest 25% of the observed values are zeros and ones while

the largest 25% of the observed values include values ranging from two to seven. In the

present example we might say that there is essentially no left tail in the distribution.

The number of weed seeds histogram provides an example of a very common type of

histogram (distribution) which is mound shaped and has a single peak. (A distribution

with a single peak is said to be unimodal.) This type of distribution arises when there is a

single value (or a few adjacent values) which occurs with highest relative frequency, causing

the histogram to have a single peak at this location, and when the relative frequencies of

the other values taper off (decrease) as we move away from the location of the peak.

Three examples of mound shaped distributions with a single peak are provided in Figure

2.3. For these illustrations a smooth curve is used to indicate the shape of the histogram.

The symmetric distribution is such that the histogram has two mirror image halves. The
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skewed distributions are more spread out along the number line on one side (the direction

of the skewness) than they are on the other side.

Figure 2.3 Distribution shapes – symmetry and skewness

skewed left skewed right

There is a fundamental difference between summarizing and describing the distribution

of a discrete quantitative variable and summarizing and describing the distribution of a

continuous quantitative variable. Since a continuous quantitative variable has an infinite

number of possible values, it is not possible to list all of these values. Therefore, some

changes to the tabular and graphical summaries used for discrete variables are required.

In practice, the observed values of a continuous quantitative variable are discretized, i.e.,

the values are rounded so that they can be written down. Therefore, there is really no

difference between summarizing the distribution of a continuous variable and summarizing
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the distribution of a discrete variable with a large number of possible values. In either

case, it may be impossible or undesirable to actually list all of the possible values of the

variable within the range of the observed data. Thus, when summarizing the distribution

of a continuous variable, we will group the possible values into intervals.

Figure 2.4 NHANES 2013–2014 adult height distribution histograms.

Example 1.1 NHANES (revisited). We will use some data from the 2013–2014 NHANES

to illustrate the basic ideas we are discussing. For this application we will use all of the

5588 adults (age 20 and over) in the 2013–2014 NHANES for whom a height or weight

measurement is available. This group forms a random sample from the population of all

adults (age 20 and over) in the US at the time of the survey. Histograms for the heights

and weights of the adult participants in the 2013–2014 NHANES, grouped by sex, are

given in Figures 2.4 and 2.5. A smooth version of each histogram (smooth curve) is also

provided. The height distributions are both unimodal and reasonably symmetric. The

weight distributions are both unimodal and skewed to the right. We will discuss these

distributions in more depth shortly.
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Figure 2.5 NHANES 2013–2014 adult weight distribution histograms.

Notice that the data have been grouped into intervals in order to construct these his-

tograms. For the height distributions the intervals are of length one inch. For the weight

distributions the intervals are of length 20 pounds. (In the context of histograms these

intervals are also know as bins.) For example, in the weight histograms the area of the

rectangle centered over 100 is the proportion of the individuals in the group who had a

weight between 90 and 110 pounds.

2.5 Numerical summary toc

For many purposes a few well–chosen numerical summary values (statistics) will suffice

as a description of the distribution of a quantitative variable. A statistic is a numerical

characteristic of a sample. More formally, a statistic is a numerical quantity computed

from the values of a variable, or variables, corresponding to the units in a sample. Thus

a statistic serves to quantify some interesting aspect of the distribution of a variable in

a sample. Summary statistics are particularly useful for comparing and contrasting the

distribution of a variable for two different samples.
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If we plan to use a small number of summary statistics to characterize a distribution or to

compare two distributions, then we first need to decide which aspects of the distribution

are of primary interest. If the distributions of interest are essentially mound shaped with

a single peak (unimodal), then there are three aspects of the distribution which are often

of primary interest. The first aspect of the distribution is its location on the number

line. Generally, when speaking of the location of a distribution we are referring to the

location of the “center” of the distribution. The location of the center of a symmetric,

mound shaped distribution is clearly the point of symmetry. There is some ambiguity in

specifying the location of the center of an asymmetric, mound shaped distribution and we

shall see that there are at least two standard ways to quantify location in this context.

The second aspect of the distribution is the amount of variability or dispersion in the

distribution. Roughly speaking, we would say that a distribution exhibits low variability

if the observed values tend to be close together on the number line and exhibits high

variability if the observed values tend to be more spread out in some sense. For example,

the female height distribution histogram of Figure 2.4 is more peaked than the male height

distribution histogram, which is somewhat flatter or more spread out. This indicates that,

for this NHANES data, there is less variability among the heights of the females than

there is among the heights of the males. The weight distribution histograms of Figure 2.5

suggest that the variability among the weights of the females is similar to the variability

among the weights of the males. The third aspect is the shape of the distribution and in

particular the degree of skewness in the distribution.

As a starting point consider the minimum (smallest observed value) and maximum

(largest observed value) as statistics. We know that all of the data values lie between

the minimum and the maximum, therefore, the minimum and the maximum provide a

crude quantification of location and variability. In particular, we know that all of the

values of the variable are restricted to the interval from the minimum to the maximum;

however, the minimum and the maximum alone tell us nothing about how the data values

are distributed within this interval. If the distribution is reasonably symmetric and mound

shaped, then the midrange, defined as the average of the minimum and the maximum,

may provide a suitable quantification of the location of the center of the distribution. The

median and mean, which are defined below, are generally better measures of the center of

a distribution.
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The range, defined as the distance from the minimum to the maximum can be used to

quantify the amount of variability in the distribution. Note that the range is the positive

number obtained by subtracting the minimum from the maximum. When comparing two

distributions the distribution with the larger range will generally have more variability than

the distribution with the smaller range; however, the range is very sensitive to extreme

observations so that one or a few unusually large or small values can lead to a very large

range.

We will now consider an approach to the quantification of the shape, location, and vari-

ability of a distribution based on the division of the histogram of the distribution into

sections of equal area. This is equivalent to dividing the data into groups, each containing

the same number of values. We will first use a division of the histogram into halves. We

will then use a division of the histogram into fourths.

The median is used to quantify the location of the center of the distribution. In terms of

area, the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the

median. Here and in the sequel we will use a lower case n to denote the sample size, i.e., n

will denote the number of units in the sample. In terms of the n observations, the median

is the number with the property that at least n/2 of the observed values are less than or

equal to the median and at least n/2 of the observed values are greater than or equal to

the median.

A simple procedure for finding the median, which is easily generalized to fractions other

that 1/2, is outlined below.

Median computation procedure.

step 1. Arrange the data (observations) in increasing order from the smallest (obs. no.

1) to the largest (obs. no. n). Be sure to include all n values in this list, including repeats

if there are any.

step 2. Compute the quantity n/2.

step 3a. If n/2 is not a whole number, round it up to the next largest integer. The

observation at the location indicated by the rounded–up value in the ordered listing of the

data is the median.

step 3b. If n/2 is a whole number, then we need to average two values to get the median.

The two observations to be averaged are obs. no. n/2 and the next observation (obs. no.
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n/2 + 1) in the ordered listing of the data. Find these two observations and average them

to get the median.

We can use the distance between the minimum and the median and the distance between

the median and the maximum to quantify the amount of skewness in the distribution.

The distance between the minimum and the median is the range of the lower (left) half of

the distribution, and the distance between the median and the maximum is the range of

the upper (right) half of the distribution. If the distribution is symmetric, then these two

distances (median – minimum) and (maximum – median) will be equal. If the distribution

is skewed, then we would expect to observe a larger range (indicating more variability)

for the half of the distribution in the direction of the skewness. Thus if the distribution

is skewed to the left, then we would expect (median – minimum) to be greater than

(maximum – median). On the other hand, if the distribution is skewed to the right, then

we would expect (maximum – median) to be greater than (median – minimum).

Example 2.2 Weed seeds (revisited). Recall that this example is concerned with the number

of weed seeds found in n = 98 quarter–ounce batches of grass. Since 98/2 = 49, the median

for this example is the average of observations 49 and 50. Referring to Table 2.2 we find

that the minimum number of weed seeds is 0, the maximum is 7, and the median is 1, since

observations 49 and 50 are each 1. The range for this distribution is 7 − 0 = 7. Notice

that the range of the right half of this distribution (maximum – median) = 7 − 1 = 6 is

much larger than the range of the left half (median – minimum) = 1 − 0 = 1 confirming

our observation that this distribution is strongly skewed to the right.

A more detailed quantification of the shape and variability of a distribution can be obtained

from a division of the distribution into fourths. In order to divide a distribution into

fourths, we need to specify three numbers or points on the number line. These statistics

are called quartiles, since they divide the distribution into quarters. In terms of area,

the first quartile, denoted by Q1 (read this as Q sub one), is the number (point on the

number line) with the property that the area in the histogram to the left of Q1 is equal to

one fourth and the area to the right of Q1 is equal to three fourths. The second quartile,

denoted by Q2, is the median. The third quartile, denoted by Q3, is the number (point

on the number line) with the property that the area in the histogram to the left of Q3 is

equal to three fourths and the area to the right of Q3 is equal to one fourth. In terms of

the n observations, Q1 is the number with the property that at least n/4 of the observed
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values are less than or equal to Q1 and at least 3n/4 of the observed values are greater

than or equal to Q1. Similarly, Q3 is the number with the property that at least 3n/4 of

the observed values are less than or equal to Q3 and at least n/4 of the observed values

are greater than or equal to Q3.

The method for finding the median given above is readily modified for finding the first and

third quartiles. For Q1, we simply replace n/2 by n/4 and replace the words ‘the median’

by Q1. To find Q3, use exactly the same method but count down from the largest value

instead of counting up from the smallest value. Some calculators and computer programs

use variations of the methods given above for finding Q1 and Q3. These variations may

give slightly different values for Q1 and Q3.

Example 2.1 Weed seeds (revisited). Since 98/4 = 24.5, the quartiles Q1 and Q3 for this

example are the observations located at position 25 counting up for Q1 and counting down

for Q3. Referring to Table 2.2 we find that Q1 = 0 and Q3 = 2. Notice that the range

of the lower three–fourths of this distribution, Q3 – minimum, is 2 while the range of the

upper fourth, maximum – Q3 is 5. This indicates that 75% (a large proportion) of the

batches of grass have relatively few weed seeds, and the skewness in this distribution is

due to the high amount of variability among the numbers of weed seeds in the 25% of the

batches with between 2 and 7 weed seeds.

Previously we introduced the range as a measure of variability. An alternative measure of

variability is provided by the interquartile range. The interquartile range (IQR) is the

distance between the first quartile Q1 and the third quartile Q3, i.e., the interquartile range

is the positive number obtained by subtracting Q1 from Q3. Notice that the interquartile

range is the range of the middle half of the distribution. The interquartile range is less

sensitive to the presence of a few extreme observations in the data than is the range. For

example, if there are one or two unusually large or unusually small values, then these values

may have the effect of making the range much larger than it would be if these unusual

values were not present. In such a situation, we might argue that the range is too large

to be deemed an appropriate overall measure of the variability of the distribution. The

interquartile range is not affected by a few unusual values, since it only depends on the

middle half of the data. We could use the range of a larger part of the middle of the

distribution, say the middle 75% or 90%, as a compromise between the range and the

interquartile range.
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The five summary statistics: the minimum (min), the first quartile (Q1), the median (med),

the third quartile (Q3), and the maximum (max), constitute the five number summary

of the distribution. Each of these five statistics provides a quantification of a particular

aspect of the distribution. They quantify where the distribution begins, where the first

quarter of the distribution ends, and so on. Furthermore, the distances between these five

statistics can be used to quantify the shape (skewness) of the distribution.

The four distances: (Q1 – min), (med – Q1), (Q3 – med), and (max – Q3), are the ranges

of the first, second, third, and fourth quarters of the distribution, respectively. These

distances can be used to quantify the amount of variability in the corresponding parts of

the distribution. Comparisons of appropriate pairs of these distances provide indications

of certain aspects of the shape of the distribution. The relationship between (med – Q1)

and (Q3 – med) can be used to quantify the shape (skewness) of the middle half of the

distribution. Since (Q1 – min) and (max – Q3) are the lengths of the tails (lower and

upper fourths) of the distribution, the relationship between these numbers can be used to

quantify skewness in the tails of the distribution.
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Figure 2.6. Mound shaped, single peak, symmetric distribution

The distribution of Figure 2.6 is mound shaped with a single peak (mode) at .5. This

distribution is symmetric. Since this distribution is symmetric we see that the range of

the left half of this distribution .5 is equal to the range of the right half; the range of the

left tail .409 is equal to the range of the right tail; and, the median .5 is exactly half way

between Q1 = .409 and Q3 = .591.
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Figure 2.7 Mound shaped, single peak, skewed right distribution

The distribution of Figure 2.7 is mound shaped with a single peak (mode) around .15.

This distribution is clearly skewed right. The fact that the range of the right half of this

distribution .799 is about 4 times .201 the range of the left half shows extreme skewness

to the right. This skewness is mostly due to the fact that the range of the right tail .697 is

almost 6 times .121 the range of the left tail. Notice that the middle half of the distribution

is reasonably symmetric since the median .201 is about half way between Q1 = .121 and

Q3 = .303.
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Figure 2.8 Mound shaped, single peak, skewed left distribution

The distribution of Figure 2.8 is mound shaped with a single peak (mode) around .85. This

distribution is clearly skewed left. The fact that the range of the left half of this distribution

.799 is about 4 times .201 the range of the right half shows extreme skewness to the left.

This skewness is mostly due to the fact that the range of the left tail .697 is almost 6 times

.121 the range of the right tail. Notice that the middle half of the distribution is reasonably

symmetric since the median .799 is about half way between Q1 = .697 and Q3 = .879.

We can use the five number summary values to form a simple graphical representation of a

distribution known as a boxplot or a box and whiskers plot. A boxplot provides a useful

graphical impression of the shape of the distribution as well as its location and variability.

Simple boxplots for unimodal mound shaped distributions similar to the distributions of

Figures 2.6, 2.7, and 2.8 are provided in Figure 2.9.
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Figure 2.9 Box plots for unimodal mound shaped distributions.

symmetric

skewed right

skewed left

Each boxplot has five vertical marks indicating the locations of the five number summary

values. The box which extends from the first quartile to the third quartile and is divided

into two parts by the median gives an impression of the distribution of the values in the

middle half of the distribution. In particular, a glance at this box indicates whether the

middle half of the distribution is skewed or symmetric and indicates the magnitude of the

interquartile range (the length of the box). The line segments (whiskers) which extend

from the ends of the box to the extreme values (the minimum and the maximum) give an

impression of the distribution of the values in the tails of the distribution. The relative

lengths of the whiskers indicate the contribution of the tails of the distribution to the

symmetry or skewness of the distribution.

Example 1.1 NHANES (revisited). Boxplots for the NHANES height and weight distribu-

tions are given in Figures 2.10 and 2.11. In these boxplots the whiskers are modified to

show extreme observations (indicated by o’s in these plots) in the tails of the distribution.

Summary information for the NHANES height and weight distributions is given in Tables

2.3 and 2.4.
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Figure 2.10 NHANES height distribution boxplots.

reasonably symmetric

reasonably symmetric

Table 2.3 NHANES height distribution summary information. (height in inches)

group
statistic females males

n 2888 2642
location

mean 63.15 68.63
median 63.25 68.58

variability
std deviation 2.82 3.06

variance 7.97 9.39
range 19.80 22.05
IQR 3.76 4.13

5 number summary
min 53.31 57.72
Q1 61.26 66.57

median 63.25 68.58
Q3 65.02 70.71

max 73.11 79.76
distances

Q1-min 7.95 8.85
med-Q1 1.99 2.01
Q3-med 1.77 2.13
max-Q3 8.09 9.05
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As noted earlier, the height distribution histograms for the adult males and the adult

females of Figure 2.4 are both unimodal and reasonably symmetric. The boxplots of

Figure 2.10 also indicate reasonable symmetry. We will now use the distances from Table

2.3 to quantify this claim of reasonable symmetry. For the adult males we see that the

range of the left tail 7.95 is almost the same as 8.09 the range of the right tail. Looking

at the middle half of the male height distribution we find that the range of the left side

med−Q1 = 1.99 is only slightly larger than the range of the right side Q3 −med = 1.77.

Similarly, for the adult females the range of the left tail 8.85 is almost the same as 9.05 the

range of the right tail; and, med−Q1 = 2.01 is only slightly smaller than Q3−med = 2.13.

Figure 2.11 NHANES weight distribution boxplots.

strongly skewed right

strongly skewed right

Turning to the weight distributions, recall that the weight distribution histograms for the

adult males and the adult females of Figure 2.5 are both unimodal and strongly skewed to

the right. The boxplots of Figure 2.11 also indicate strong skewness to the right. From each

of these boxplots it is clear that in both cases the skewness is due to the extreme variability

in the right tail of the distribution, that is, due to high variability among the weights of the

heaviest 25% of the group. Note also that in each case the middle half of the distribution is

reasonably symmetric. The distances in Table 2.4 readily support these observations. For

the male weights max−Q3 = 250.58 is much larger than Q1−min = 63.58, while, relatively

speaking, med − Q1 = 23.98 is only slightly smaller than Q3 − med = 34.32. Similarly,
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for the female weights max − Q3 = 276.32 is much larger than Q1 −min = 87.12, while,

relatively speaking, med−Q1 = 23.98 is only slightly smaller than Q3 −med = 30.14.

Table 2.4 NHANES weight distribution summary information. (weight in pounds)

group
statistic females males

n 2888 2645
location

mean 168.23 191.21
median 158.62 183.26

variability
std deviation 47.70 46.80

variance 2275 2190
range 372.46 417.56
IQR 58.30 54.12

5 number summary
min 71.06 72.16
Q1 134.64 159.28

median 158.62 183.26
Q3 192.94 213.40

max 443.52 489.72
distances

Q1-min 63.58 87.12
med-Q1 23.98 23.98
Q3-med 34.32 30.14
max-Q3 250.58 276.32

2.6 Quantiles and percentiles in general toc

We will now provide an extension of the method we used to compute the median and

quartiles to allow an arbitrary fraction. Given a proportion p (a fraction between zero and

one), the pth quantile (p × 100th percentile) of the distribution of X is the value Qp

with the property that if we choose a value of X at random, then X will be less than Qp

with probability p and X will be greater than Qp with probability 1− p, i.e., p× 100% of

the time X will be less than Qp and (1 − p) × 100% of the time X will be greater than

Qp. In terms of the histogram of the distribution of X this means that the area in the

histogram to the left of Qp is p and the area to the right of Qp is 1− p. Note that the first

quartile is the 25th percentile, the median is the 50th percentile, and the third quartile is

the 75th percentile.
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In terms of a sample of n values, the pth quantile is the number Qp with the property

that at least pn of the sample values are less than or equal to Qp and at least (1 − p)n
of the sample values are greater than or equal to Qp. In order to compute a quantile we

first need to sort (order) the data. Let x1, x2, . . . , xn denote the (unordered) data. Let

x(1), x(2), . . . , x(n) denote the ordered values with x(1) ≤ x(2) ≤ · · · ≤ x(n). These ordered

values are know as order statistics.

Quantile computation procedure. For 0 < p < 1, the pth quantile Qp of the n sample

values x1, . . . , xn of X is computed as follows. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the

sample values ordered from smallest to largest. There are two cases

case 1: If there is an integer k such that pn = k, then Qp =
x(k)+x(k+1)

2

case 2: If there is an integer k such that k < pn < k + 1, then Qp = x(k+1).

2.7 The mean and standard deviation toc

The approach that we have been using to form summary statistics is to select a single

representative value from the observed values of the variable (or the average of two adjacent

observed values) to quantify a particular aspect of the distribution. We have also considered

statistics that are distances between two such representative values.

An alternative approach to forming a summary statistic is to combine all of the observed

values to get a suitable statistic. The first statistic of this type that we consider is the

mean. The mean, which is the simple arithmetic average of the n data values, is used to

quantify the location of the center of the distribution. You could compute the mean by

adding all n data values together and dividing this sum by n; however, it is better to use a

calculator or a computer. The sample mean is often denoted by the symbol X (read this

as X bar).

Recall that the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the median.

The mean is the number (point on the number line) where the histogram would balance.

To understand what we mean by the balance point, imagine the histogram as being cut

out of a piece of cardboard. The mean is located at the point along the number line side of

this cutout where the histogram cutout would balance. These geometric characterizations

of the mean and the median imply that when the distribution is symmetric the mean will

be equal to the median. Furthermore, if the distribution is skewed to the right, then the

mean (the balance point) will be larger than the median (to the right of the median).
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Similarly, if the distribution is skewed to the left, then the mean (the balance point) will

be smaller than the median (to the left of the median).

The primary use of the mean, like the median, is to quantify the location of the center of

a distribution and to compare the locations (centers) of two distributions. Since both the

mean and the median can be used to quantify the location of the center of a distribution,

it seems reasonable to ask which is more appropriate. If the distribution is approximately

symmetric, then the mean and the median will be approximately equal. On the other

hand, if the distribution is not symmetric, then the median is likely to provide a better

indication of the center of the distribution. For example, if the distribution is strongly

skewed to the right, then the mean may be much larger than the median and the mean

may not be a good indication of the center of the distribution. For a specific application

it is a good idea to mark the locations of the mean and the median on a histogram of the

distribution and consider which seems more reasonable as an indicator of the center of the

distribution.

The two measures of variability we discussed earlier, the range and the interquartile range,

are distances between two representative values, the minimum and maximum for the range

and the first and third quartiles for the interquartile range. We will now discuss a more

complex measure of variability which is based on the distances between each of the obser-

vations and a single representative value. If the mean X is deemed suitable as a measure of

the center of the distribution of X, then the deviations (X−X) of the observed values of X

from their mean X contain information about the amount of variability in the distribution.

If there is little variability (the observed values of X are close together and they are close

to the mean X), then the deviations (X−X) will tend to be small in magnitude (absolute

value). On the other hand, if there is a lot of variability (at least some of the observed

values of X are far apart and they are not all close to the mean X), then the deviations

(X − X) will tend to be large in magnitude. It is this observation which suggests that

a summary statistic based on the distances between each of the observed values of the

variable and their mean can be used to measure the variability in the distribution. These

deviations from the mean are illustrated, for a small sample of values, in Figure 2.12.



40 2.7 The mean and standard deviation

Figure 2.12 An example showing deviations from the mean.

X values: 1, 2, 4, 5, 8, 10, 12; n = 7; mean: X = 6

The most commonly used measure of variability based on these deviation from the mean is

the standard deviation. The standard deviation is the square root of the “average”

of the squared deviations of the observed values of the variable from their mean. The

formula for the standard deviation given below is not intended for computation purposes;

you should use a calculator or a computer to compute the standard deviation. The standard

notation for the sample standard deviation of the distribution of the variable X is SX

(read this as S sub X). The defining formula is

SX =

√
Σ(X −X)2

n− 1

In this formula the capital Greek letter sigma, Σ, represents the statement “the sum of”,

and (X−X)2 denotes the square of the distance from the observed value X to the mean X.

Therefore, as mentioned above, the expression under the square root sign in the formula

is the “average” of the squared deviations of the observed values of the variable from their

mean. The reason for the square root is so that the standard deviation of X and the

variable X are in the same units of measurement. The quantity

S2
X =

Σ(X −X)2

n− 1
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is the sample variance of the distribution of the variable X. The calculations corre-

sponding to these formulae are demonstrated below for the sample used in Figure 2.12.

Example 2.3 Computation of the standard deviation. Consider the sample of seven (n = 7)

X values: 1, 2, 4, 5, 8, 10, 12. The sample mean is

X =
1 + 2 + 4 + 5 + 8 + 10 + 12

7
=

42

7
= 6.

The sample variance is

S2
X =

(1− 6)2 + (2− 6)2 + (4− 6)2 + (5− 6)2 + (8− 6)2 + (10− 6)2 + (12− 6)2

7− 1

=
(−5)2 + (−4)2 + (−2)2 + (−1)2 + (2)2 + (4)2 + (6)2

6

=
25 + 16 + 4 + 1 + 4 + 16 + 36

6
=

102

6
= 17.

The sample standard deviation is

SX =
√

17.

The standard deviation is positive, unless there is no variability at all in the data. That

is, unless all of the observations are exactly the same, the standard deviation is a positive

number. The standard deviation is a very widely used measure of variability. Unfortu-

nately, the standard deviation does not have a simple, direct interpretation. The important

thing to remember is that larger values of the standard deviation indicate that there is

more variability in the data.

There are quotation marks around the word average in the definition of the sample standard

deviation because we divided by n− 1 even though there are n squared deviations in the

average. When the standard deviation (variance) is computed for the population this

divisor is changed to n and a lower case Greek sigma is used instead of an S. That is, the

population standard deviation is defined as

σX =

√
Σ(X −X)2

n

and the population variance is σ2
X .

Example 1.1 NHANES (revisited). We noted earlier that the shapes of the female and male

height distributions are very similar and that the shapes of the female and male weight



42 2.8 A measure of relative position

distributions are also very similar. We will now use summary statistics from Tables 2.3

and 2.4 to compare and contrast the locations and the variability in these distributions.

We will first look at the height distributions. As you would expect the males tend to be

taller than the females. On average the males are about 5.5 inches taller than the females

(male mean height of 68.63 inches versus female mean height of 63.15 inches). Since the

height distributions are reasonably symmetric the median heights are very similar to the

mean heights. In terms of variability, there is slightly more variability among the heights

of the males: male height standard deviation of 3.06 inches verses female height standard

deviation of 2.82 inches; male height range of 22.05 inches verses female height range

of 19.80 inches; and, male height interquartile range of 4.13 inches verses female height

interquartile range of 3.76 inches.

Now we will look at the weight distributions. Again, as you would expect, the males

tend to be heavier than the females. On average the males are about 23 pounds heavier

than the females (male mean weight of 191.21 pounds versus female mean weight of 168.23

pounds). Since the both weight distributions are strongly skewed right each median weight

is smaller than the corresponding mean weight; but, as it turns out, the difference between

the median weights is similar to the difference between the mean weights (the median

weight difference is about 25 pounds). The weight distributions are quite similar in terms

of variability.

2.8 A measure of relative position toc

Percentiles can be used to quantify the location of a particular value of X relative to a

group. Another widely used measure of the relative position of a value within a group is

its Z–score. The Z–score of X quantifies the location of X relative to the mean X of the

sample in terms of the standard deviation SX of the sample. Since the Z–score is based

on X and SX , the Z–score is only appropriate when X and SX are appropriate measures

of the center and variability in the sample, respectively. We will develop the Z–score in

two stages.

First, we need a measure of the location of X relative to the center of the distribution

as determined by the mean X. The deviation, X −X, of X from the mean X is such a

measure. The deviation X −X is the signed distance from the particular value X to the

meanX. IfX−X is negative, thenX is below (smaller than) the mean. IfX−X is positive,
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then X is above (larger than) the mean. In summary, the sign of the deviation X − X
indicates the location of X relative to the mean X; and the magnitude of the deviation

|X − X| is the distance from X to the mean X, measured in the units of measurement

used for the observation X.

Second, we want a measure of the location of X relative to the mean X which takes the

amount of variability in the data into account. We will obtain such a measure by using

the standard deviation SX of the sample to standardize the deviation X − X. Given

a particular value X, the sample mean X, and the sample standard deviation SX , the

Z–score corresponding to X is

Z =
X −X
SX

.

The sign of the Z–score indicates the location of X relative to the mean X and the

magnitude of the Z–score is the distance from X to the mean X in terms of standard

deviation units. For example, if Z = 2, then X is two standard deviation units above the

mean (X = X + 2SX), and, if Z = −2, then X is two standard deviation units below the

mean (X = X − 2SX).

Interpretation of a Z–score requires some knowledge of the connection between Z–scores

and percentiles. The 68%−95%−99.7% rule given below allows us to associate a percentage

with a Z–score. This rule works best for distributions that are unimodal (single peaked),

mound shaped, and symmetric. A formal statement of the rule follows.

The 68%-95%-99.7% rule. For a distribution that is unimodal (has a single peak),

mound shaped, and reasonably symmetric:

i) Approximately 68% of the observed values will be within one standard deviation unit of

the mean. That is, approximately 68% of the observed values will have a Z–score that is

between -1 and 1.

ii) Approximately 95% of the observed values will be within two standard deviation units

of the mean. That is, approximately 95% of the observed values will have a Z–score that

is between -2 and 2.

iii) Approximately 99.7% of the observed values will be within three standard deviation

units of the mean. That is, approximately 99.7% of the observed values will have a Z–score

that is between -3 and 3. Notice that this indicates that almost all of the observed values

will be within three standard deviations of the mean.
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When it is applicable, the 68%− 95%− 99.7% rule, can be used to determine the relative

position of a particular value of a variable based on the corresponding Z–score. Notice

that this rule indicates that a fairly large proportion (68%) of the sample will lie within

one standard deviation of the mean; a very large proportion (95%) of the sample will lie

within two standard deviations of the mean; and, almost all (99.7%) of the sample will lie

within three standard deviations of the mean.

An aside – Chebyshev’s rule

Another connection between Z–scores and percentages is provided by Chebyshev’s rule.

Chebyshev’s rule is a mathematical fact that is true for any distribution. Unfortunately, the

universal applicability of Chebyshev’s rule forces its conclusions to be of more theoretical

than practical interest. That is, the conclusions of Chebyshev’s rule are valid for any

distribution; but, they are often so imprecise that they are of limited practical use.

Chebyshev’s rule. For any distribution:

i) At least 75% of the observed values will be within two standard deviation units of the

mean. That is, at least 75% of the observed values will have a Z–score that is between -2

and 2.

ii) At least 89% of the observed values will be within three standard deviation units of the

mean. That is, at least 89% of the observed values will have a Z–score that is between -3

and 3.

iii) In general, given a number k > 1, at least [1 − (1/k2)]100% of the observed values

will be within k standard deviation units of the mean, i.e., at least this percentage of the

observed values will have a Z–score that is between -k and k.
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3 Probability toc

3.1 The setting toc

Probability theory is used to model the behavior of random experiments. In this context a

random experiment is any process of observation or experimentation for which the par-

ticular outcome is not known with certainty in advance of performance of the experiment.

For example we might consider the experiment of tossing a coin or a die, tossing a pair

of dice, dealing a hand of cards from a deck of cards, drawing balls from a box of balls,

selecting a person from a population and measuring the person’s height, age, or weight, or

testing a machine to determine if it works properly.

Our goal is to formulate a theory which can be used to specify a formal model for the ran-

domness in the outcomes of the experiment by assigning probabilities to events associated

with the experiment. An event is a description of the outcome of the experiment. It is

useful to distinguish between simple events and compound events. A simple event is an

event which cannot be decomposed into simpler events. We will refer to simple events as

elementary outcomes. A compound event is an event which can be decomposed into

two or more events. For example, if we toss a die once, then the elementary outcomes,

“observe a 1”, “observe a 2”, etc., can be represented by the integers 1, 2, 3, 4, 5, and 6.

The compound event “observe an even number” is the collection (set) {2, 4, 6} of the three

elementary outcomes corresponding to even numbers.

The first step in forming a probability model for a particular experiment is the specifica-

tion of a sample space containing all the possible elementary outcomes of the experiment.

Relevant events can then be viewed as subsets of the sample space. The elementary out-

comes (simple events) are the singleton sets (sets containing a single elementary outcome)

and compound events are sets containing two or more elementary outcomes.

3.2 Some illustrative examples toc

Example 3.1 Tossing a die. As noted above, we can represent the 6 elementary outcomes

of a single toss of a die by the integers 1, 2, 3, 4, 5, and 6. Now suppose that a die is tossed

twice. The 36 elementary outcomes for this experiment can be represented by ordered

pairs of the integers 1, . . . , 6. For example the ordered pair (1, 3) indicates that the first

toss yielded a 1 and the second yielded a 3. The sample space is the set containing the 36

elementary outcomes (ordered pairs) shown in Table 3.1.
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Table 3.1 Elementary outcomes (ordered pairs) when a die is tossed twice.

second toss
first toss 1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Two events of potential interest are:

1. The event that the sum of the two numbers observed is 7. The ordered pairs on the

upper right to lower left diagonal of the table are favorable for this event. Thus the event

that the sum is 7 is represented by the set

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Read this as: the set containing the ordered pairs (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1).

2. The event that the number on the first toss is even. The ordered pairs in the second,

fourth, and sixth rows of the table are favorable to this event. Thus the event that the

number on the first toss is even is represented by the set
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

 .

Example 3.2 Tossing a coin. If we toss a coin once, then, letting H denote “heads” and T

denote “tails”, the sample space is the set containing the 2 elementary outcomes {H,T}.
Letting H and T denote the values of a dichotomy, such as the sex of a person (male or

female), the quality of an item (acceptable or unacceptable), or the outcome of a medical

procedure (successful or not), we can use the H and T notation of this and the three toss

example below to represent a wide variety of experiments.

If we toss a coin three times, then, letting H denote “heads” and T denote “tails”, we

can use an ordered triple (with the order indicating the outcomes of the first, second, and
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third tosses) to represent an elementary outcome. The sample space is the set containing

the 8 elementary outcomes (ordered triples):

{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Two events of potential interest are:

1. The event that there are exactly two heads. The ordered triples with two H ′s and one

T are favorable to this event. Thus the event is represented by the set

{HHT,HTH, THH}.

2. The event that there are at least two heads. The ordered triples with two H ′s and one

T or three H ′s are favorable to this event. Thus the event is represented by the set

{HHH,HHT,HTH, THH}.

An aside – playing cards, bridge, and poker

A standard deck of playing cards, as shown in Figure 3.1, contains 52 cards. The cards

appear in four suits, hearts ♥, diamonds ♦, clubs ♣, and spades ♠, of these the heart and

diamond cards are colored red and the club and spade cards are colored black. The 13

cards of each suit have face values (ranks) of 2, 3, . . . , 10, jack, queen, king, and ace. An

ace is often treated as having a face value (rank) of one. Cards with the same face value

are said to be of the same kind. The jacks, queens, and kings, which typically (as with the

deck in Figure 3.1) have “faces” on them are called face cards.

Bridge is a four–player partnership game. The four players in bridge are known as North,

East, South, and West. North and South form one team and East and West form the

second team. All 52 cards are dealt with each player receiving 13 cards. Thus, for our

purposes, bridge means dividing the 52 cards into four hands (sets) of 13 cards and a bridge

hand is a collection of 13 cards. There are many variations of poker. For our purposes, a

poker hand is a collection of five cards.
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Figure 3.1 A standard deck of 52 playing cards

Example 3.3 Bridge or poker. If we assign the numbers from 1 to 52 as labels for the 52

cards in the deck (for example we might label the cards according to their positions in

Figure 3.1), then we can use an ordered arrangement of the numbers from 1 to 52 to rep-

resent a particular deal of cards for a bridge game with the first 13 numbers corresponding

to North, the next 13 to East, and so on. If we are only concerned with characteristics of

one hand we could use a collection of 13 different numbers selected from the labels 1 to 52.

Similarly, we could use a collection (set) of 5 different numbers to represent a poker hand.

Consider the event that a poker hand contains exactly two aces. The sets of five cards

containing two aces and three non–aces are favorable for this event. There are too many

such hands to list here. In case you wondered, using notation defined in Section 5, there

are
(
4
2

)(
48
3

)
= 103, 776 hands containing exactly two aces.

Example 3.4 Tossing a coin or die repeatedly. Suppose that a coin is tossed repeatedly until

a head occurs. In this application we can represent an elementary outcome by a sequence

terminating with an H and with enough T ′s to indicate the outcome. For example; H

indicates that we got heads on the first toss, TH indicates that we first got heads on the

second toss, TTH indicates that we first got heads on the third toss, and so on. Thus the

sample space is the countably infinite set

{H,TH, TTH, TTTH, . . .}.

As noted earlier, we can use the H and T notation of this example to represent a wide

variety of experiments. Three events of potential interest are:
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1. The event that exactly three tosses are required to get a head. Since TTH is the only

outcome favorable for this event, it is represented by the set

{TTH}.

2. The event that at most three tosses are required to get a head. The three outcomes

favorable for this event, heads first, second, or third, are the elements of the set

{H,TH, TTH}.

3. The event that more than three tosses are required to get a head. The representation

of this event is provided by the infinite set

{TTTH, TTTTH, TTTTTH, . . .}

containing all sequences which consist of a sequence of three or more T ′s followed by a

single H.

If a die is tossed repeatedly until a 1 (an ace) occurs, then this same representation can

be used with H indicating that a 1 occurs and T indicating that a 2, 3, 4, 5, or 6 occurs.

Similarly, if parts selected from a production line are tested sequentially until a defective

part is found, then this same representation can be used with H indicating that the part

is defective and T indicating that the part is acceptable.

Example 3.5 Sampling for a numerical value. Suppose that we are interested in the distri-

bution of weights among individuals in a particular population. Further suppose that we

choose one individual from this population and determine the weight of this individual.

We can use a positive real number x to represent an elementary outcome (the weight of

the individual). If we know the weights of all of the individuals in the population we can

use these weights as the sample space. Since it is unlikely that we would know the weights

of all the individuals, it is more convenient to use an interval of values on the number

line as our sample space. If we know that no one in the population weighs more than 300

pounds, then we can use the interval from zero to 300 ((0, 300] in interval notation) as our

sample space. If we do not want to specify a maximal weight, we can use the positive part

of the number line ((0,∞) in interval notation) to represent the sample space. Events can

be represented by appropriate intervals. For example, the event “the individual weighs
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between 100 and 150 pounds” corresponds to the interval [100, 150] and the event “the

individual weighs at least 100 pounds” corresponds to the interval [100,∞) (or [100, 300)

with the sample space (0, 300)).

3.3 Sample spaces and events toc

The examples given above illustrate the process of defining an elementary outcome, a

sample space, and events for several specific experiments. Recall that for our purposes an

experiment is a process of observation or experimentation which results in one of several

possible elementary outcomes. We will now begin a more formal treatment of these aspects

of an experiment. We will assume that all of the possible elementary outcomes of the

experiment are known in advance but the actual outcome of the experiment will not be

known with certainty until after the experiment is performed.

The sample space Ω of a particular experiment is the collection of all possible elementary

outcomes for the experiment. Recall that an elementary outcome or simple event is an event

which cannot be decomposed into simpler events. We will assume that these elementary

outcomes are mutually exclusive so that two distinct elementary outcomes cannot occur at

the same time. A generic elementary outcome will be denoted ω. In set terminology the

objects which form a set are called elements, thus, we may refer to an elementary outcome

as an element of the sample space or of an event. (Ω and ω are the upper and lower case

versions of the Greek letter omega.)

An event A is a collection of elementary outcomes, i.e., a subset of Ω. If the experiment

is conducted and the elementary outcome ω occurs, then if ω is an element of A (in

symbols, ω ∈ A) we say that event A has occurred. On the other hand, if ω is not an

element of A (in symbols, ω /∈ A) we say that A has not occurred . For example, in the

die tossing example, if we observe ω = 2, then 2 ∈ {2, 4, 6} and the event observe an even

number occurred. But, 2 /∈ {1, 3, 5} so the event observe an odd number did not occur.

For convenience we define the null event (empty set), ∅, as the event with no elements.

Viewed as an event, the sample space Ω is the sure event, since it contains all possible

outcomes and therefore must occur.

Given two events A and B we write B ⊂ A (B is contained in A or B is a subset of A)

when every element of B is also an element of A. More formally, B ⊂ A means that if

ω ∈ B, then ω ∈ A. This is illustrated in Figure 3.2. Notice that if B ⊂ A, then the
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occurrence of B implies the occurrence of A. In particular, if B is a proper subset of A,

that is, if A contains some elements that are not in B, then the event B is a “special case”

of the event A. Also note that for every event A, A ⊂ Ω (A is a subset of the sample space

Ω), A ⊂ A (A is a subset of itself), and ∅ ⊂ A (the empty set is a subset of A).

Figure 3.2 An event and a subevent.

In this Venn diagram event B is a subevent (subset) of event A.

Example 3.6a Tossing a die once. For one toss of a die we have Ω = {1, 2, 3, 4, 5, 6}.
Consider the following events:

A: “the number observed is 4 or less” A = {1, 2, 3, 4}
B: “the number observed is 1, 3, or 4” B = {1, 3, 4}
C: “the number observed is 5 or 6” C = {5, 6}
D: “the number observed is 3 or more” D = {3, 4, 5, 6}.
For these events, B ⊂ A, since observing a 1, 3, or 4 implies that we observed a number

which is 4 or less, and C ⊂ D since observing 5 or 6 implies that we we observed a number

which is 3 or larger.

Example 3.6b Tossing a coin three times. For three tosses of a coin we have

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}. Consider the following events:

A: “the first toss yields a head” A = {HHH,HHT,HTH,HTT}
B: “the first two tosses yield heads” B = {HHH,HHT}
C: “there are exactly two heads” C = {HHT,HTH, THH}
D: “there are at least two heads” D = {HHH,HHT,HTH, THH}.
For these events, B ⊂ A, since observing heads on the first two tosses is a special case of

observing heads on the first toss, B ⊂ D, since observing heads on the first two tosses is

a special case observing at least two heads, and C ⊂ D since observing exactly two heads

is a special case of observing at least two heads.
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Given an event A the complementary event Ac (the complement of A) is the event

containing all elements of Ω that do not belong to A. This is illustrated in Figure 3.3.

In symbols, Ac = {ω ∈ Ω : ω /∈ A} Read this as the set of ω in Ω such that ω is not in A.

In words, Ac (A complement) is the event that A does not occur.

Figure 3.3 An event A and its complement Ac.

In this Venn diagram, the rectangle represents the sample space Ω, the interior of

the circle the event A, and the region outside the circle Ac, the complement of A.

Example 3.6a Tossing a die once (continued). The complements of the events A =

{1, 2, 3, 4}, B = {1, 3, 4}, C = {5, 6}, and D = {3, 4, 5, 6} are: Ac = C = {5, 6},
Bc = {2, 5, 6}, Cc = A, and Dc = {1, 2}

Example 3.6b Tossing a coin three times (continued). The complements of the events

A = {HHH,HHT,HTH,HTT}, B = {HHH,HHT}, C = {HHT,HTH, THH}, and

D = {HHH,HHT,HTH, THH} are:

Ac = {THH,THT, TTH, TTT} “the first toss yields tails”

Bc = {HTH,HTT, THH, THT, TTH, TTT} “at least one of the first two tosses yields

tails”

Cc = {HHH,HTT, THT, TTH, TTT} “there are zero, one, or three heads”

Dc = {HTT, THT, TTH, TTT} “there is at most one head”.

Note that, for any event A, events A and Ac are mutually exclusive in the sense that they

cannot both occur at the same time. Furthermore, since they are complementary, exactly

one of A and Ac must occur. Note also that Ωc = ∅ (the complement of everything is

nothing) and ∅c = Ω (the complement of nothing is everything).
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In general, two events are said to be mutually exclusive or disjoint if they do not have

any elements in common. In other words, two events are mutually exclusive (disjoint) if

they cannot occur at the same time. This is illustrated in Figure 3.4.

Figure 3.4 Mutually exclusive (disjoint) events.

In this Venn diagram events A and B are mutually exclusive or disjoint

while events C and D are not mutually exclusive.

Example 3.6a Tossing a die once (continued). There are two pairing of the events A =

{1, 2, 3, 4}, B = {1, 3, 4}, C = {5, 6}, and D = {3, 4, 5, 6} which give mutually exclusive

events. A and C are mutually exclusive and B and C are mutually exclusive.

Example 3.6b Tossing a coin three times (continued). Each of the events

A = {HHH,HHT,HTH,HTT}, B = {HHH,HHT}, C = {HHT,HTH, THH}, and

D = {HHH,HHT,HTH, THH} contains HHT ; thus, no pairing of these events gives

mutually exclusive events. On the other hand, the event E = {TTT, TTH, THT,HTT}
(observe at least two tails) shares no elements with B, C, or D; thus, E and B are mutually

exclusive, E and C are mutually exclusive, and E and D are mutually exclusive.

Figure 3.5 The union of A and B.
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The union of events A and B, denoted A ∪ B, is the collection of elementary outcomes

which belong to A or B. The or in this statement is the logical or meaning one or the

other or both. That is, when we say A or B we mean A alone or B alone or both A and

B. This is illustrated in Figure 3.5.

In symbols, A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}
In words, A ∪B is the event “A or B” in the sense that A or B or both A and B occur.

Example 3.6a Tossing a die once (continued). Recall that A = {1, 2, 3, 4},
B = {1, 3, 4}, C = {5, 6}, and D = {3, 4, 5, 6} The unions of these events are:

A ∪B = {1, 2, 3, 4} ∪ {1, 3, 4} = {1, 2, 3, 4} = A (B is a subset of A)

A ∪ C = {1, 2, 3, 4} ∪ {5, 6} = {1, 2, 3, 4, 5, 6}
A ∪D = {1, 2, 3, 4} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}
B ∪ C = {1, 3, 4} ∪ {5, 6} = {1, 3, 4, 5, 6}
B ∪D = {1, 3, 4} ∪ {3, 4, 5, 6} = {1, 3, 4, 5, 6}
C ∪D = {5, 6} ∪ {3, 4, 5, 6} = {3, 4, 5, 6} = D (C is a subset of D)

Example 3.6b Tossing a coin three times (continued). Recall that

A = {HHH,HHT,HTH,HTT}, B = {HHH,HHT}, C = {HHT,HTH, THH},
D = {HHH,HHT,HTH, THH} The unions of these events are:

A ∪B = {HHH,HHT,HTH,HTT} ∪ {HHH,HHT} = A (B is a subset of A)

A ∪ C = {HHH,HHT,HTH,HTT} ∪ {HHT,HTH, THH} = A (C is a subset of A)

A ∪D = {HHH,HHT,HTH,HTT} ∪ {HHH,HHT,HTH, THH}
= {HHH,HHT,HTH,HTT, THH}

B ∪ C = {HHH,HHT} ∪ {HHT,HTH, THH} = {HHH,HHT,HTH, THH}
B ∪D = {HHH,HHT} ∪ {HHH,HHT,HTH, THH} = D (B is a subset of D)

C ∪D = {HHT,HTH, THH} ∪ {HHH,HHT,HTH, THH} = D (C is a subset of D)

The intersection of events A and B, denoted A ∩B, is the collection of elementary out-

comes which belong to both A and B. This is illustrated in Figure 3.6.

In symbols, A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}
In words, A ∩B is the event “A and B” in the sense that both A and B occur.
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Figure 3.6 The intersection of A and B.

Example 3.6a Tossing a die once (continued). Recall that A = {1, 2, 3, 4},
B = {1, 3, 4}, C = {5, 6}, and D = {3, 4, 5, 6}. The intersections of these events are:

A ∩B = {1, 2, 3, 4} ∩ {1, 3, 4} = {1, 3, 4} = B (B is a subset of A)

A ∩ C = {1, 2, 3, 4} ∩ {5, 6} = ∅ (A and C are mutually exclusive (disjoint)).

A ∩D = {1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}
B ∩ C = {1, 3, 4} ∩ {5, 6} = ∅ (B and C are mutually exclusive (disjoint)).

B ∩D = {1, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}
C ∩D = {5, 6} ∩ {3, 4, 5, 6} = {5, 6} = C (C is a subset of D)

Example 3.6b Tossing a coin three times (continued). Recall that

A = {HHH,HHT,HTH,HTT}, B = {HHH,HHT}, C = {HHT,HTH, THH},
D = {HHH,HHT,HTH, THH} The intersections of these events are:

A ∩B = {HHH,HHT,HTH,HTT} ∩ {HHH,HHT} = B (B is a subset of A)

A ∩ C = {HHH,HHT,HTH,HTT} ∩ {HHT,HTH, THH} = C (C is a subset of A)

A∩D = {HHH,HHT,HTH,HTT}∩{HHH,HHT,HTH, THH} = {HHH,HHT,HTH}
B ∩ C = {HHH,HHT} ∩ {HHT,HTH, THH} = {HHT}
B ∩D = {HHH,HHT} ∩ {HHH,HHT,HTH, THH} = B (B is a subset of D)

C ∩D = {HHT,HTH, THH} ∩ {HHH,HHT,HTH, THH} = C (C is a subset of D)

Substantial simplifications of probability calculations are often possible using the repre-

sentations of the complement of a union and the complement of an intersection contained

in DeMorgan’s laws.
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DeMorgan’s laws. For any pair of events A and B:

(1) The complement of the union of the events is the intersection of their complements.

This is illustrated in Figure 3.7. In symbols, (A ∪B)c = Ac ∩Bc

(2) The complement of the intersection of the events is the union of their complements. In

symbols, (A ∩B)c = Ac ∪Bc.

Example 3.6 Tossing a die once (continued). Recall that Ω = {1, 2, 3, 4, 5, 6}, A =

{1, 2, 3, 4}, B = {1, 3, 4}, C = {5, 6}, and D = {3, 4, 5, 6}. We will use A and B to

demonstrate DeMorgan’s laws. The complements are Ac = {5, 6}, Bc = {2, 5, 6}.
First consider A ∪ B = {1, 2, 3, 4}. For these events the complement of the union is

(A ∪ B)c = {1, 2, 3, 4}c = {5, 6} and the intersection of the complements is Ac ∩ Bc =

{5, 6} ∩ {2, 5, 6} = {5, 6}.
Next consider A ∩ B = {1, 3, 4}. For these events the complement of the intersection

is (A ∩ B)c = {1, 3, 4}c = {2, 5, 6} and the union of the complements is Ac ∪ Bc =

{5, 6} ∪ {2, 5, 6} = {2, 5, 6}.

Figure 3.7a Illustration of DeMorgan’s law (A ∪B)c = Ac ∩Bc.
From the shading it is clear that (A ∪B)c is the intersection of Ac and Bc.
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Figure 3.7b Illustration of DeMorgan’s law (A ∩B)c = Ac ∪Bc.
From the shading it is clear that (A ∩B)c is the union of Ac and Bc.

Example 3.6b Tossing a coin three times (continued). We will use A and D to demonstrate

DeMorgan’s laws. Recall that A = {HHH,HHT,HTH,HTT}
and D = {HHH,HHT,HTH, THH}.
First consider A∪D = {HHH,HHT,HTH,HTT, THH} “the first toss yields a head OR

there are at least two heads”. The complement of this union is (A∪D)c = {THT, TTH, TTT},
that is, “the first toss does not yield a head AND there are less than two heads”. Notice

that this is the intersection of the complements Ac = {THH,THT, TTH, TTT} “the first

toss yields tails (not heads)” and Dc = {HTT, THT, TTH, TTT}: “there are less than

two heads” Thus, (A ∪D)c = Ac ∩Dc.

Next consider A ∩D = {HHH,HHT,HTH} “the first toss yields a head AND there are

at least two heads”. The complement of this intersection is

(A ∩ D)c = {HTT, THH, THT, TTH, TTT} “the first toss does not yield a head OR

there are less than two heads”. Notice that this is the union of the complements Ac =

{THH,THT, TTH, TTT} “the first toss yields tails (not heads)”

and Dc = {HTT, THT, TTH, TTT}: “there are less than two heads” Thus, (A ∩D)c =

Ac ∪Dc.
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Some properties of set operations

Some basic properties of set operations are summarized here for completeness and ease of

reference.

Commutative properties. For any events A and B

(a) A ∪B = B ∪A
(b) A ∩B = B ∩A

Associative properties. For any events A, B, and C

(a) (A ∪B) ∪ C = A ∪ (B ∪ C) (thus the notation A ∪B ∪ C is unambiguous)

(b) (A ∩B) ∩ C = A ∩ (B ∩ C) (thus the notation A ∩B ∩ C is unambiguous)

Distributive properties. For any events A, B, and C

(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Additional properties.

For any event A: A ∩A = A, A ∪A = A, A ∩Ω = A, A ∪Ω = Ω, A ∩ ∅ = ∅, A ∪ ∅ = A,

(Ac)c = A, A ∩Ac = ∅, and A ∪Ac = Ω.

If A ⊂ B, then A ∩B = A and A ∪B = B.
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3.4 Partitioning an event toc

Given two events, we will often find it useful to use one of the events to decompose the

other event into disjoint subevents. A decomposition of an event into disjoint subevents

yields a partition of the event. Given events A and B, we can partition (decompose) A

into the subevents A ∩ B and A ∩ Bc. These two subevents form a partition of A, since

they are disjoint (they cannot share any outcomes since A∩B is a subset of B while A∩Bc

is a subset of Bc) and their union is A (each outcome in A is either an element of B or an

element of its complement Bc).

In symbols, A = (A ∩B) ∪ (A ∩Bc) and (A ∩B) ∩ (A ∩Bc) = ∅.
In words, there are two mutually exclusive ways in which the event A can occur:

(1) Event A and event B both occur (A ∩B occurs); or,

(2) Event A occurs but event B does not occur (A ∩Bc occurs).

This basic decomposition of A is illustrated in Figure 3.8. Figures 3.9 and 3.10 illustrate

how this relationship can be used to partition a union of two or three events.

Figure 3.8 Use of event B to decompose event A into two disjoint parts.

Example 3.7 Characteristics of a person. Consider the experiment of selecting a person

from a population of adults. Let A denote the event that the person selected is a college

student and let B denote the event that the person is 20 years old. The decomposition

A = (A∩B)∪ (A∩Bc) indicates that a college student is either 20 years old, event A∩B,

or some other age, event A ∩ Bc. The fact that this is a partition of A simply indicates

that there is no other option, i.e. the college student is either 20 or not.
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The Venn diagram of Figure 3.9 shows a partition (decomposition) of A ∪ B into three

disjoint parts. For this partition we have A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B). This

shows the three mutually exclusive ways in which the event A ∪B can occur:

(1) (event A ∩Bc) A occurs and B does not occur;

(2) (event A ∩B) both A and B occur; or,

(3) (event Ac ∩B) B occurs and A does not occur.

Figure 3.9 Decomposition of A ∪B into three disjoint parts.

Example 3.7 Characteristics of a person, revisited. As before, consider the experiment of

selecting a person from a population of adults. Let A denote the event that the person

selected is a college student and let B denote the event that the person is 20 years old.

The union A ∪ B is the event that the person selected is a college student or age 20 or

both. This union is partitioned into the three disjoint events: event A∩Bc the person is a

college student but is not 20 years old, event A ∩B the person is a college student and is

also 20 years old, and event Ac ∩B the person is 20 years old but is not a college student.
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Figure 3.10 Decomposition of A ∪B ∪ C into seven disjoint parts.

The Venn diagram of Figure 3.10 shows a partition (decomposition) of A ∪ B ∪ C into

seven disjoint parts. The seven mutually exclusive ways in which the event A∪B ∪C can

occur are:

(1) (event A ∩Bc ∩ Cc) A occurs but B and C do not occur;

(2) (event A ∩B ∩ Cc) A and B occur but C does not occur;

(3) (event Ac ∩B ∩ Cc) B occurs but A and C do not occur;

(4) (event A ∩B ∩ C) A and B and C all occur;

(5) (event A ∩Bc ∩ C) A and C occur but B does not occur;

(6) (event Ac ∩B ∩ C) B and C occur but A does not occur; or,

(7) (event Ac ∩Bc ∩ C) C occurs but A and B do not occur.

Example 3.7 Characteristics of a person, revisited. As before, consider the experiment of

selecting a person from a population of adults. Let A denote the event that the person

selected is a college student, let B denote the event that the person is 20 years old, and

let C denote the event that the person owns a car. The union A∪B ∪C is the event that

the person selected is a college student or age 20 or owns a car, i.e., the person possesses
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at least one of these three characteristics. This union is partitioned into the seven disjoint

events:

(1) (event A ∩Bc ∩ Cc) is a college student, is not age 20, and does not own a car;

(2) (event A ∩B ∩ Cc) is a college student, is age 20, and does not own a car;

(3) (event Ac ∩B ∩ Cc) is not a college student, is age 20, and does not own a car;

(4) (event A ∩B ∩ C) is a college student, is age 20, and owns a car;

(5) (event A ∩Bc ∩ C) is a college student, is not age 20, and owns a car;

(6) (event Ac ∩B ∩ C) is not a college student, is age 20, and owns a car;

(7) (event Ac ∩Bc ∩ C) is not a college student, is not age 20, and owns a car;

An aside – notation for more complicated unions and intersections

On occasion it is useful to have a compact notation for the union or intersection of a

collection of events.

Given a set of n events {A1, . . . , An}:

n⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪An denotes the union of these events

n⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩An denotes the intersection of these events

Given an infinite sequence of events {A1, A2, . . .}:

∞⋃
i=1

Ai = A1 ∪A2 ∪ · · · denotes the union of this sequence of events

∞⋂
i=1

Ai = A1 ∩A2 ∩ · · · denotes the intersection of this sequence of events
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4 Probability measure toc

4.1 Definition of a probability measure toc

Given an experiment and an event A we need to associate a probability P (A) with the

event. The formal (axiomatic) definition of a probability measure below indicates the

restrictions we will impose on any such assignment of probabilities to events.

Definition. A probability measure P is a function which assigns probabilities to events

(subsets of Ω) and satisfies the following axioms.

Axiom 1: For every event A, 0 ≤ P (A) ≤ 1.

Axiom 2: P (Ω) = 1.

Axiom 3: For every finite collection of mutually exclusive events A1, A2, . . . , An,

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An).

Furthermore, for every infinite sequence of mutually exclusive events {A1, A2, . . .},
P (A1 ∪A2 ∪ · · ·) = P (A1) + P (A2) + · · · , more formally P (

⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

The meaning and desirability of these axioms is straightforward. The first two axioms place

some basic restrictions on the possible values of probabilities. Axiom 1 simply requires

that the probability of an event must be a number between zero and one. (If we think

of probabilities as percentages, this says that a probability must be between zero and 100

percent.) By assigning the value 1 (100%) to the sample space, Axiom 2 simply requires

that something must happen when the experiment is conducted. The third axiom requires

a certain type of consistency in the assignment of probabilities. Recall that when events

are mutually exclusive (disjoint), they cannot occur at the same time. Axiom 3 states

that if an event can be partitioned (decomposed) into a collection of mutually exclusive

subevents (the Ai), then the probability of the event must be equal to the sum of the

probabilities of the mutually exclusive subevents of the partition.

4.2 Properties of probability measures toc

In this section we will provide some basic properties of probability measures.

The null event has probability zero

As noted above, Axiom 2, P (Ω) = 1, indicates that something must occur when the

experiment is conducted. In other words, the sure event Ω must occur. As you would
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expect, this implies that the null event ∅, will not occur. Formally this is indicated by

saying that the null event has probability zero. That is,

P (∅) = 0.

(Technical remark: This result follows from the infinite sequence part of axiom 3.)

The probability of the complement of an event

For any event A, the sample space can be partitioned as Ω = A ∪ Ac. Thus, by axioms

2 and 3 we see that for any event A, P (Ω) = P (A) + P (Ac) = 1. It follows that the

probability of the complement of an event is one minus the probability of the event. In

symbols,

P (Ac) = 1− P (A).

An important decomposition of the probability of an event

In Figure 3.8 we illustrated the use of one event (event B) to partition another event (event

A), viz, A = (A ∩B) ∪ (A ∩Bc). This partition and axiom 3 imply that for any events A

and B,

P (A) = P (A ∩B) + P (A ∩Bc).

Probabilities of nested events

Recall that if A ⊂ B, then the occurrence of A implies the occurrence of B. Therefore, if A

is a subset of B, then the probability of B cannot be less than the probability of A. More

formally, if A ⊂ B, then A ∩ B = A and the decomposition we just discussed becomes

P (B) = P (A∩B) +P (Ac ∩B) = P (A) +P (Ac ∩B). Since P (Ac ∩B) ≥ 0, it follows that

if A ⊂ B, then P (A) ≤ P (B).

We will now provide some important expressions for the probability of a union in terms

of the probabilities of certain subevents.
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The probability of the union of 2 events

In Figure 3.9 we illustrated the partition of A ∪B into three disjoint parts, viz,

A ∪B = (A ∩Bc) ∪ (A ∩B) ∪ (Ac ∩B). This partition implies that

P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩B). The partitions A = (A ∩B) ∪ (A ∩Bc)
and B = (A ∩B) ∪ (Ac ∩B) imply that P (A) = P (A ∩Bc) + P (A ∩B) and

P (B) = P (A ∩B) + P (Ac ∩B). These observations lead to the expression

P (A ∪B) = P (A) + P (B)− P (A ∩B)

for the union of any two events A and B. This decomposition is illustrated in Figure 4.1.

Figure 4.1 Illustration – the union of 2 events The pluses and minuses indicate how

the probabilities for each section enter into and are removed from the sum.

P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩B)

= P (A) + P (B)− P (A ∩B)

Example 4.1 Dogs and cats. Among households in the United States (in 2006), 44% of the

households have a dog, 29% have a cat, 17% have both, and 44% do not have a dog or a

cat. Let D denote the event that a household has a dog and let C denote the event that a

household has a cat. If we select a household at random, so that each household has the

same chance of being selected, then P (D) = .44, P (C) = .29, and P (D ∩ C) = .17. We

will now find P (D∪C), the probability that a household has a dog or a cat. Application of

the formula for the probability of a union yields P (D ∪C) = P (D) +P (C)−P (D ∩C) =

.44 + .29− .17 = .56, that is, 56% have a dog or a cat or both.
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Some readers may find the following detailed derivation of this probability instructive.

Since P (D) = P (D ∩ C) + P (D ∩ Cc), we find that P (D ∩ Cc) = P (D) − P (D ∩ C) =

.44− .17 = .27, that is, 27% have a dog but not a cat.

Similarly P (C) = P (D ∩ C) + P (Dc ∩ C), so that P (Dc ∩ C) = P (C) − P (D ∩ C) =

.29− .17 = .12, that is, 12% have a cat but not a dog.

Combining these results we have

P (D ∪ C) = P (D ∩ Cc) + P (D ∩ C) + P (Dc ∩ C) = .27 + .17 + .12 = .56.

The probability of the union of 3 events

In Figure 3.10 we illustrated the partition of A ∪ B ∪ C into seven disjoint parts, viz,

A∪B ∪C = (A∩Bc ∩Cc)∪ (Ac ∩B ∩Cc)∪ (A∩B ∩Cc)∪ (A∩B ∩C)∪ (A∩Bc ∩C)∪
(Ac∩B∩C)∪ (Ac∩Bc∩C). This partition implies that P (A∪B∪C) = P (A∩Bc∩Cc)+

P (Ac∩B∩Cc)+P (A∩B∩Cc)+P (A∩B∩C)+P (A∩Bc∩C)+P (Ac∩B∩C)+P (Ac∩Bc∩C).

Similar decompositions for the probabilities of the events A, B, C, A ∩B, A ∩ C, B ∩ C,

and A ∩B ∩ C, and a bit of algebra yields the decomposition

P (A∪B ∪C) = P (A) +P (B) +P (C)−P (A∩B)−P (A∩C)−P (B ∩C) +P (A∩B ∩C).

This decomposition is illustrated in Figure 4.2.
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Figure 4.2 Illustration – the union of 3 events The pluses and minuses indicate how

the probabilities for each section enter into and are removed from the sum.

P (A∪B ∪C) = P (A) +P (B) +P (C)−P (A∩B)−P (A∩C)−P (B ∩C) +P (A∩B ∩C)

An aside – The probability of the union of many events

The decomposition of the probability of 3 events above can be extended to 4 or more

events. This extension is straightforward (but tedious) with alternating inclusions (pluses)

and exclusions (minuses). Here is the expression for n events. For any events A1, . . . , An,

P (A1 ∪A2 ∪ · · · ∪An) =
∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑
i<j<k

P (Ai ∩Aj ∩Ak)

+ · · ·+ (−1)n+1P (A1 ∩ · · · ∩An).

This expression indicates that the probability of the union is obtained by first adding

the probabilities of each event, then subtracting the probabilities of each intersection of

2 events, then adding the probabilities of each intersection of 3 events, with this process

continuing (alternating adding and subtracting) until the probability of the intersection of

all n events is entered.
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4.3 Probabilities on discrete sample spaces toc

A sample space Ω is said to be discrete if it contains a finite or countably infinite number

of elementary outcomes. That is, either Ω = {ω1, . . . , ωN} for some positive integer N or

the elements of Ω can be arranged in a sequence Ω = {ω1, ω2, . . .}.

A probability distribution on a finite sample space Ω = {ω1, . . . , ωN} is an assignment

of probabilities to the elementary outcomes (elements) of Ω. More formally, given a finite

sample space Ω = {ω1, . . . , ωN}, a collection of probabilities p1, . . . , pN , with 0 ≤ pi ≤ 1

and p1 + · · · + pN = 1, determines a probability distribution on Ω with P (ωi) = pi

for i = 1, . . . , N . Note that in most situations we can remove any elements with zero

probability and there are at least two elements with positive probability, thus, we can

assume that 0 < pi < 1.

Similarly, if Ω = {ω1, ω2, . . .} is countably infinite, then a probability distribution on

Ω is a sequence p1, p2, . . . of probabilities (P (ωi) = pi) with 0 ≤ pi ≤ 1 for all i and∑∞
i=1 pi = p1 + p2 + · · · = 1.

Given an event A, i.e., given A ⊂ Ω, the probability of the event A is the sum of the

probabilities of the elementary outcomes which belong to A, i.e., if the elements of Ω are

labeled so that A = {ω1, ω2, . . . , ωm}, then

P (A) = P (ω1) + P (ω2) + · · ·+ P (ωm) = p1 + p2 + · · ·+ pm.

The simplest way to assign probabilities to the elements of a finite sample space Ω =

{ω1, . . . , ωN} is to assume that theN elementary outcomes are equally probable (equally

likely) so that P (ωi) = 1/N for i = 1, . . . , N . When the N elementary outcomes are as-

sumed equally probable, the probability of an event A is P (A) = N(A)/N , where N(A)

is the number of elementary outcomes which belong to A. In other words, with equally

probable outcomes, the probability of event A is the ratio of the number of outcomes “fa-

vorable” for A to the number of “possible” outcomes. This simple situation is convenient

for demonstrating concepts; but, the usefulness of the assumption of a finite sample space

with equally probable outcomes as a model for an idealized version of reality is limited.

Example 4.2 Fiber breaks (from Schervish and DeGroot). Consider an experiment in which

five fibers having different lengths are subjected to a testing procedure to see which will
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break first. Suppose that the lengths of these five fibers are 1, 2, 3, 4, and 5 inches,

respectively. Suppose also that the probability that any given fiber will be the first to

break is proportional to its length. We will find the probability that the length of the first

fiber to break is no more than 3 inches.

For i = 1, . . . , 5, let ωi be the outcome that the fiber of length i inches breaks first. Then

Ω = {ω1, . . . , ω5} and pi = ki for i = 1, . . . , 5, where k is a proportionality factor. Since

we need p1 + . . .+p5 = 1 and k1 +k2 +k3 +k4 +k5 = 15k, we know that k = 1/15. Let A

denote the event that the length of the first fiber to break is no more than 3 inches. Then

A = {ω1, ω2, ω3}, and

P (A) = p1 + p2 + p3 =
1

15
+

2

15
+

3

15
=

2

5
.
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5 Combinatorics – counting toc

5.1 Counting basics toc

We will start with a basic (illustrative) counting problem. Consider a box containing 5 balls

labeled with the integers 1, 2, 3, 4, 5. If we select one ball from the box, then, obviously,

there are 5 possible outcomes. Let’s consider a slightly more interesting setup. Suppose we

select 2 balls from the box in the following way, first we select a ball and note its number,

then we return the ball to the box and make a second selection. How many possible

outcomes are there now? We can think of this selection process as an experiment with

two stages and we can represent the possible outcomes as ordered pairs of the form (a, b)

where a denotes the number on the first ball selected and b the number on the second. The

answer is that there are 5 times 5 equals 25 possible outcomes. These 25 possible outcomes

are listed in Table 5.1a. In this table there are 5 rows, one for each of the 5 possibilities

at the first stage, and 5 columns, one for each of the 5 possibilities at the second stage.

Table 5.1a Ordered pairs (a, b) with a, b ∈ {1, 2, 3, 4, 5} (repeats allowed).

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)
(4,1) (4,2) (4,3) (4,4) (4,5)
(5,1) (5,2) (5,3) (5,4) (5,5)

How does the answer change if we do not return the first ball to the box before selecting the

second? In this case, regardless of which ball was selected first, there are only 4 possibilities

at the second stage. As shown in Table 5.1b, in terms of the listing in Table 5.1a, the

ordered pairs on the diagonal, (1,1), (2,2), etc., are not possible. Thus, in this case, there

are 5 times 4 equals 20 possible outcomes. We will now formalize this fundamental rule of

counting.
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Table 5.1b Ordered pairs (a, b) with a, b ∈ {1, 2, 3, 4, 5} and a 6= b (repeats not allowed).

(1,2) (1,3) (1,4) (1,5)
(2,1) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,4) (3,5)
(4,1) (4,2) (4,3) (4,5)
(5,1) (5,2) (5,3) (5,4)

Fundamental rule of counting – multiplication rule for counting. If an experiment

consists of two stages (parts) a first stage which can be performed in m ways, and, regard-

less of the particular outcome of the first stage, a second stage which can be performed in

n ways, then the experiment itself can be performed in mn ways.

If we use ordered pairs to represent the possible outcomes of the experiment, as we did in

Tables 5.1a and 5.1b, we have the following alternate statement.

Alternate statement of the fundamental rule of counting. Given m labels (out-

comes) a1, . . . , am and n labels (outcomes) b1, . . . , bn, there are mn ordered pairs of the

form (ai, bj) with i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Figure 5.1 Multiplication rule: a tree diagram with mn paths.
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We can also envision the choices in the two stages of the experiment as branches in the tree

diagram of Figure 5.1. Here a path (choice of an a branch, say ai, and choice of a b branch,

say bj) corresponds to the outcome associated with the label (ai, bj). The fundamental

rule of counting says that there are mn paths through this tree diagram. That is, there are

mn paths through a tree diagram with m branches at the first level (stage) and n branches

at the second level (stage).

Example 5.1 Some basic counting problems.

1. Each year starts on one of the seven days (Sunday through Saturday). Each year is

either a leap year (i.e., it includes February 29) or not. How many different calendars are

possible for a year?

2. John has 4 clean shirts and 2 clean pairs of jeans. How many clean shirt / clean jeans

combinations does John have to choose from?

solutions

1. There are two steps in forming a calendar. First we need to select a day of the week

for January 1 (7 choices) and then we need to decide whether to include February 29 (2

choices). Thus there are 7× 2 = 14 possible calendars.

2. John has 4 choices for his shirt and 2 choices for his jeans. Therefore, John has 4×2 = 8

clean shirt / clean jeans combinations to choose from.

Extension of the fundamental rule of counting. If an experiment consists of k stages,

so that, for i = 1, . . . , k, regardless of the exact outcomes of the other stages, the ith stage

can be performed in ni ways, then the experiment itself can be performed in n1n2 · · ·nk
ways. In other words, thinking of the possible outcomes as ordered k–tuples, there are

n1n2 · · ·nk ways in which an ordered k–tuple can be formed when there are n1 choices for

the first element, n2 choices for the second element, and so on ending with nk choices for

the kth element.

Example 5.2 Some more basic counting problems. Suppose that a license plate “number”

consists of a combination of three letters followed by four digits, such as ABC–1234.

1. How many such license plate “numbers” are possible if there is no restriction on the

choices for the letters or digits?

2. How many such license plate “numbers” are possible if the three letters must be distinct
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(three different letters) but there is no restriction on the choices the digits?

3. How many such license plate “numbers” are possible if the three letters must be distinct

and the four digits must be distinct?

solutions

There are 26 letters (A, B, . . ., Z) and ten digits (0,1, . . ., 9).

1. With no restrictions, there are 26 choices for each letter and 10 for each digit resulting

in 26 · 26 · 26 · 10 · 10 · 10 · 10 = 175, 760, 000 possible license plate “numbers”.

2. If the letters must be distinct, then at each letter selection stage there is one fewer

choices. Hence, there are 26 · 25 · 24 · 10 · 10 · 10 · 10 = 156, 000, 000 possible license plate

“numbers”.

3. Similarly, if the letters must be distinct and the digits must be distinct, then there are

26 · 25 · 24 · 10 · 9 · 8 · 7 = 78, 624, 000 possible license plate “numbers”.

5.2 Ordered samples toc

Consider a population (collection) consisting of N distinct objects.

An ordered sample of size n is an ordered collection of n objects selected from the N

objects in the population. An ordered sample of this type can be represented by an ordered

n–tuple. The multiplication rule can be used to determine the number of possible ordered

samples. We can think of the selection of an ordered sample of size n as a sequence of n

steps, where the first element of the sample is selected at step one, the second element is

selected at step two, and so on until all n elements have been selected. Since the selection of

the sample will entail n such steps the multiplication rule will yield the number of possible

samples as a product of n values (one for each of the n steps).

Before we start counting, notice that there are two ways in which a sample can be selected.

The elements of the sample can be selected with replacement, so that at each step

the element is selected from the entire population, or the elements of the sample can be

selected without replacement, so that at each step an object is removed from the

population and there is one less object in the population for the next selection. When

sampling with replacement a particular object can appear more than once in the sample

and there is no restriction on the sample size n. When sampling without replacement no

particular object can appear more than once in the sample and the sample size n clearly

cannot exceed the population size N .



74 5.2 Ordered samples

When sampling with replacement there are N choices at each of the n steps. Thus there

are Nn possible ordered samples of size n when the sample is selected with replacement

from a population of size N . This result is illustrated for a population of size N = 4 and

a sample of size n = 3 in Table 5.2.

Table 5.2 The 43 = 64 ordered samples of size n = 3, selected with replacement
from {a, b, c, d}

(a, a, a) (a, a, b) (a, a, c) (a, a, d) (a, b, a) (a, b, b) (a, b, c) (a, b, d)
(a, c, a) (a, c, b) (a, c, c) (a, c, d) (a, d, a) (a, d, b) (a, d, c) (a, d, d)

(b, a, a) (b, a, b) (b, a, c) (b, a, d) (b, b, a) (b, b, b) (b, b, c) (b, b, d)
(b, c, a) (b, c, b) (b, c, c) (b, c, d) (b, d, a) (b, d, b) (b, d, c) (b, d, d)

(c, a, a) (c, a, b) (c, a, c) (c, a, d) (c, b, a) (c, b, b) (c, b, c) (c, b, d)
(c, c, a) (c, c, b) (c, c, c) (c, c, d) (c, d, a) (c, d, b) (c, d, c) (c, d, d)

(d, a, a) (d, a, b) (d, a, c) (d, a, d) (d, b, a) (d, b, b) (d, b, c) (d, b, d)
(d, c, a) (d, c, b) (d, c, c) (d, c, d) (d, d, a) (d, d, b) (d, d, c) (d, d, d)

When sampling without replacement there are N choices at the first step, N −1 choices at

the second step, and so on, with N −n+ 1 choices at the nth step (assuming that n ≤ N).

Thus, assuming that n ≤ N , there are N(N − 1) · · · (N − n+ 1) possible ordered samples

of size n when the sample is selected without replacement from a population of size N .

Notice that, as before, there are n terms in this product. This result is illustrated for a

population of size N = 4 and a sample of size n = 3 in Table 5.3.

Table 5.3 The 4 · 3 · 2 = 24 ordered samples of size n = 3, selected without replacement
from {a, b, c, d}

(a, b, c) (a, b, d) (a, c, b) (a, c, d) (a, d, b) (a, d, c)

(b, a, c) (b, a, d) (b, c, a) (b, c, d) (b, d, a) (b, d, c)

(c, a, b) (c, a, d) (c, b, a) (c, b, d) (c, d, a) (c, d, b)

(d, a, b) (d, a, c) (d, b, a) (d, b, c) (d, c, a) (d, c, b)

For ease of reference these counting results are summarized below.
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The number of ordered samples. Refer to the ordered samples of Tables 5.2 and 5.3

for an illustration of this result. For a population of size N :

(1) There are Nn ordered samples of size n when the sample is selected with replacement.

(2) For n ≤ N , there are N(N − 1) · · · (N − n + 1) ordered samples of size n when the

sample is selected without replacement.

Example 5.3 Some basic ordered sample counting problems. Consider a club consisting of

35 members.

1. In how many ways can this club select three officers (a president, a secretary, and a

treasurer), if the three officers are required to be three different members?

2. How does the answer to part 1 change if we allow one person to hold two or even three

offices?

solutions

We can use an ordered triple (a, b, c) to represent the choice of the officers (a is president,

b is secretary, c is treasurer). Since there are 35 members and we need 3 officers, N = 35

and n = 3.

1. If a member can hold at most one office, then there are N(N −1)(N −2) = 35 ·34 ·33 =

39, 270 ways to select the three officers.

2. If a member is allowed to hold two or more offices, then there are Nn = 353 = 42, 875

ways to select the three officers.

An ordered sample selected without replacement can also be viewed as an ordered ar-

rangement of a set of objects. A permutation of a set is an ordered arrangement

of the elements of the set. Note that if an ordered sample of size n = N is selected

without replacement from a population of size N , then the ordered sample is a permuta-

tion (ordered arrangement) of the N objects which comprise the population. There are

N ! = N(N − 1) · · · 1 (read this as N factorial) permutations of N objects. By convention

0! = 1.

The 24 = 4 ·3 ·2 ordered samples of size n = 3 selected without replacement from {a, b, c, d}
listed in Table 5.3 are the permutations of the four letters {a, b, c, d} taken three at a time.

In general, the permutations of N objects taken n at a time are the ordered samples

of size n selected without replacement from a population of N objects. Thus there are
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N(N − 1) · · · (N − n + 1) permutations of N objects taken n at a time. This result is

restated below for ease of reference.

The number of permutations – ordered samples. The number of permutations of

N objects taken n at a time, which is also the number of ordered samples of size n selected

without replacement from a population of size N , is equal to

NPn =
N !

(N − n)!
= N(N − 1) · · · (N − n+ 1).

Notice that there are n terms in the product determining the value of NPn.

Example 5.4 Arranging people.

1. In how many ways can 6 people be seated in a row of 6 theater seats?

We can represent a seating arrangement by a 6–tuple (x1, x2, x3, x4, x5, x6), where xi is the

label of the seat assigned to person i. There are 6 choices for the first person’s seat, 5 choices

for the second person’s seat, and so on, down to 1 choice for the sixth person’s seat. Thus,

the number of ways to seat 6 people in a row of 6 theater seats is 6! = 6 ·5 ·4 ·3 ·2 ·1 = 720.

Notice that this is the number of permutations of 6 objects and can also be written as 6P6.

2. Now suppose that there are 12 seats in the row. In how many ways can 6 people be

seated in a row of 12 theater seats?

Arguing as before, in this situation there are 12 choices for the first person’s seat, 11

choices for the second person’s seat, and so on, down to 7 choices for the sixth person’s

seat. Thus, the number of ways to seat 6 people in a row of 12 theater seats is 12P6 =

12 · 11 · 10 · 9 · 8 · 7 = 665, 280.

Calculator aside: Many calculators use the notation nPr (the number of permutations of n

objects taken r at a time). For these calculators 6! = (6 nPr 6) and 12P6 = 12·11·10·9·8·7 =

(12 nPr 6).

Example 5.5 Choosing different numbers.

Consider a box containing N balls, numbered 1, 2, . . . , N . Suppose a sample of n balls is

selected at random with replacement from this box. Assuming that theNn possible ordered

samples of size n are equally likely, we will find the probability P that the numbers on the

n balls are all different? If n > N , then P = 0, since the sample size is greater than the
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number of balls in the box and at least one number must occur more than once. If n ≤ N ,

then the NPn permutations of N objects taken n at a time are the samples of size n for

which the the numbers on the n balls are all different. Hence, the probability of interest is

P =
NPn
Nn

=
N !

(N − n)! Nn
=
N(N − 1) · · · (N − n+ 1)

Nn
.

We will consider an interesting application of this result in the next example.

Example 5.6 The birthday problem. In this example we will find the probability Pn that at

least two people in a group of n people have the same birthday (month and day). We need

to make a few simplifying assumptions. First assume that there are no twins in the group

and assume that no one in the group was born on February 29. Next assume that the 365

birthdays are equally likely. We will use the argument from the preceding example to solve

the birthday problem. The complement of the event that at least two people in the group

of n have the same birthday is the event that no two people have the same birthday. Since

there are N = 365 possible birthdays, we have

Pn = 1− 365Pn
365n

= 1− 365!

(365− n)! 365n

Numerical values of this probability for several choices of n are given in Table 5.4. If

you have never encountered this problem before, you may find these numbers surprisingly

large. If fact, you might reasonably guess that we would need a large number of people,

say n > 100, in order for Pn to be greater than 1/2. However, you can see that we only

need n = 23 people in the group to get Pn > 1/2. Notice that for n = 50 people there is a

97% chance that at least two people have the same birthday!

Table 5.4 The probability Pn that at least two people in a group of n people

will have the same birthday.

n Pn n Pn

5 0.027 23 0.507
10 0.117 25 0.569
15 0.253 30 0.706
20 0.411 40 0.891
22 0.476 50 0.970
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5.3 Unordered samples toc

An unordered sample of size n is a collection (set) of n objects selected without replace-

ment from the N objects in the population. In other words, an unordered sample is a

subset or subpopulation of the original population. We can use set notation to represent

an unordered sample. We will now determine, for fixed n < N , the number of unordered

samples of size n that can be formed from the objects in a population of size N . Note that

the selection of a unordered sample of size n can also be viewed as a partitioning (division)

of the population into two complementary subpopulations — one of size n (the objects in

the sample) and the other of size N − n (the objects not in the sample).

A combination of N objects taken n at a time is an unordered sample of size n selected

without replacement from a population of N objects, i.e., a subpopulation (subset) of size

n. We will now find the number of such combinations.

We know that there are NPn = N(N −1) · · · (N −n+1) ordered samples of size n selected

without replacement from a population of size N , i.e., there are NPn permutations of

N objects taken n at a time. Each of these ordered samples of size n can be ordered

(permuted) in n! ways, i.e., there are n! permutations of a particular set of n distinct

objects. This connection is illustrated in the table of Example 5.7 where the 4P3 = 24

permutations of {a, b, c, d} taken 3 at a time are arranged in rows of 3! = 6 permutations,

one row for each of the 24/6 = 4 combinations.

Example 5.7 Permutations and combinations. The connection between the permutations

of the four letters {a, b, c, d} taken three at a time and the combinations of the four letters

{a, b, c, d} taken three at a time is indicated in this table. Within each row, the first 6

columns contain the 6 permutations of the combination in column 7.

The permutations and combinations of the four letters {a, b, c, d} taken three at a time.

permutations combinations

(ordered samples) (unordered samples)

(a, b, c) (a, c, b) (b, a, c) (b, c, a) (c, a, b) (c, b, a) {a, b, c}
(a, b, d) (a, d, b) (b, a, d) (b, d, a) (d, a, b) (d, b, a) {a, b, d}
(a, c, d) (a, d, c) (c, a, d) (c, d, a) (d, a, c) (d, c, a) {a, c, d}
(b, c, d) (b, d, c) (c, b, d) (c, d, b) (d, b, c) (d, c, b) {b, c, d}
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If we divide the number of ordered samples of size n by the number of ways that each

set of n objects can be ordered, then we obtain the number of unordered samples. For

example, there are four combinations in the table of Example 5.7 since 4P3/3! = 24/6 = 4.

A general version of this expression is given below.

The number of combinations – unordered samples. The number of combinations

of N objects taken n at a time, which is also the number of unordered samples of size n

selected without replacement (number of subpopulations of size n) from a population of

size N , is given by the binomial coefficient (read
(
N
n

)
as N choose n)(

N

n

)
=
N(N − 1) · · · (N − n+ 1)

n(n− 1) · · · 1
=

N !

n!(N − n)!
.

The terminology N choose n indicates that
(
N
n

)
is the number of ways to choose n objects

without replacement from N objects. The binomial coefficient
(
N
n

)
is sometimes denoted

by NCn with C indicating combinations. Note that in the ratio of products expression for(
N
n

)
the numerator product N(N −1) · · · (N −n+1) and the denominator product n! both

contain n terms.

Calculator aside: Many calculators use the notation nCr (the number of combinations

of n objects taken r at a time). For these calculators
(
N
n

)
= NCn = (N nCr n), e.g.,(

7
3

)
= 7·6·5

3·2·1 = 35 = (7 nCr 3).

As noted above, a combination of N objects taken n at a time can also be viewed as

a subpopulation of size n selected from a population of size N . Thus the binomial

coefficient
(
N
n

)
is the number of subpopulations of size n from a population of size N .

Note also that selecting a subpopulation of size n from a population of size N is equivalent

to selecting a collection of N − n objects which are excluded from the subpopulation.

Thus, recalling the convention 0! = 1, which leads to the convention
(
N
0

)
=
(
N
N

)
= 1, for

0 ≤ n ≤ N , we have the identity (
N

n

)
=

(
N

N − n

)
.

Continuing along this line of thought we see that there are
(
N
n

)
ways to partition a popula-

tion of size N into a primary subpopulation of size n and a complementary subpopulation
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of size N − n. Note that this method of counting partitions takes the order of the sub-

populations into account. For example, with N = 4 and n = 2 the six ordered partitions,

expressed as ordered pairs, are:

({a, b}, {c, d}), ({a, c}, {b, d}), ({a, d}, {b, c}), ({b, c}, {a, d}), ({b, d}, {a, c}), ({c, d}, {a, b}).

We will now extend the binomial coefficient to provide a general expression for the number

of partitions of a population. For m ≥ 2 and n1, . . . , nm such that n1 + · · · + nm = N ,

we might ask: In how many ways can a population of size N be partitioned into m

subpopulations of respective sizes n1, . . . , nm? (Note that, as with the case when m = 2

and n1 = n2, there is an implied ordering of the subpopulations in this statement.) To

answer this question consider the formation of such a partition via a sequence of m steps.

At the first step there are N objects to choose from and
(
N
n1

)
ways to select the first

subpopulation. At the second step there are N − n1 objects to choose from and
(
N−n1

n2

)
ways to select the second subpopulation. Continuing with this reasoning when we reach

the last (mth) step we find that there are N − n1 − · · · − nm−1 = nm objects to choose

from and
(
nm

nm

)
= 1 ways to select the final subpopulation. The answer to our question is

the multinomial coefficient given in the following result.

The number of partitions. Consider a population of size N . For n1, . . . , nm such that

each ni ≥ 1 and n1 + · · · + nm = N , the number of partitions of the population into m

subpopulations of respective sizes n1, . . . , nm is given by the multinomial coefficient(
N

n1, n2, . . . , nm

)
=

(
N

n1

)(
N − n1
n2

)(
N − n1 − n2

n3

)
· · ·
(
nm
nm

)
=

N !

n1!n2! · · ·nm!
.

Note that if we allow ni = 0 in this theorem, then the expression is still valid but the

number of nontrivial subpopulations in the partition is reduced by the number of i for

which ni = 0. Note also that a binomial coefficient is a special case of a multinomial

coefficient. In particular, (
N

n,N − n

)
=

(
N

n

)
.

Example 5.7a An application. A child has 20 colored beads, of which 9 are red, 5 are green,

4 are blue, and 2 are black. If the child puts the beads on a string to form a necklace, how

many arrangements are possible?

We will assume that the beads of the same color are indistinguishable (all look the

same). The elementary outcomes can be represented by ordered sequences of the form
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(RRRRRRRRRGGGGGBBBBKK), where R,G,B, and K denote the respective colors

red, green, blue, and black. As noted above, switching the positions of two beads of the

same color does not result in a new outcome since such a change would be undetectable

once the beads were on the string. We will count by selecting positions in the sequence (on

the string) sequentially for the four colors. Initially there are 20 positions to choose from.

Thus, there are
(
20
9

)
choices for the 9 red beads. Once this is done, there are 11 positions

to choose from, so we have
(
11
5

)
choices for the green beads. Continuing in this way, there

are
(
6
4

)
position choices for the blue beads and there is

(
2
2

)
= 1 choice for the black beads.

Hence, there are (
20

9, 5, 4, 2

)
=

(
20

9

)(
11

5

)(
6

4

)(
2

2

)
= 167, 960 · 462 · 15 · 1 = 1, 163, 962, 800

possible arrangements of the 20 beads.

The next few sections are devoted to some probabilistic applications of the combinatorial

techniques we have been discussing.

5.4 Sampling with replacement – The binomial distribution toc

We will first consider probabilities associated with the number of objects of a specified

type in a random sample selected with replacement.

We will use the selection of balls from a box of suitably labeled balls to represent a random

experiment. Consider a box (the population) containing N = N1 + N2 balls (individual

objects) of which N1 are red (of one type) and N2 = N −N1 are blue (of a second type).

Suppose that a simple random sample of n balls is selected at random with replacement

from this population. For an integer x, between 0 and n, we will find the probability P (x)

that the sample contains exactly x red balls (and consequently exactly n− x blue balls).

At first glance the use of a box of balls as a model for a population and the drawing of

balls from the box as sampling from the population may not appear to lend itself to great

generality in application. As we shall see, this is not the case. The simple device of using

the selection of balls from a box — a so–called box model — can be adapted to a very

wide spectrum of applications.
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Figure 5.2 A box containing 5 red and 15 blue balls.

N1 = 5 balls of the first type (red)

N2 = 15 balls of the second type (blue)

Let’s start with a simple example. Consider the box (population), illustrated in figure 5.2,

containing N = 20 balls (objects) of which N1 = 5 are red (of one type) and N2 = 15 are

blue (of a second type). Suppose that a simple random sample of n = 3 balls is selected

at random with replacement from this population. The characteristic of interest here is

the number of red balls among the n = 3 balls in the sample. The possible numbers of red

balls in a sample of n = 3 are 0, 1, 2, 3.

Before we start counting, consider a representation of the possible outcomes of the three

draws by ordered triples of the letters R for red and B for blue. Note well that these 8

elementary outcomes are not equally likely!

Ω = {BBB,RBB,BRB,BBR,RRB,RBR,BRR,RRR}

Since we are drawing with replacement, there are always 5 choices for each R and 15

choices for each B in these outcomes. Furthermore, there are always a total of 20 choices

for each draw. Thus, the probabilities for these outcomes are as shown below.
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P (BBB) =
15 · 15 · 15

20 · 20 · 20
=

(
15

20

)3

P (RBB) =
5 · 15 · 15

20 · 20 · 20
=

(
5

20

)1(
15

20

)2

P (BRB) =
15 · 5 · 15

20 · 20 · 20
=

(
5

20

)1(
15

20

)2

P (BBR) =
15 · 15 · 5
20 · 20 · 20

=

(
5

20

)1(
15

20

)2

P (RRB) =
5 · 5 · 15

20 · 20 · 20
=

(
5

20

)2(
15

20

)1

P (RBR) =
5 · 15 · 5

20 · 20 · 20
=

(
5

20

)2(
15

20

)1

P (BRR) =
15 · 5 · 5

20 · 20 · 20
=

(
5

20

)2(
15

20

)1

P (RRR) =
5 · 5 · 5

20 · 20 · 20
=

(
5

20

)3

Notice that there is
(
3
0

)
= 1 way to get x = 0 red (BBB); there are

(
3
1

)
= 3 ways to get x = 1

red (RBB,BRB,BBR); there are
(
3
2

)
= 3 ways to get x = 2 red (RRB,RBR,BRR); and,

there is
(
3
3

)
= 1 way to get x = 3 red (RRR). Also notice that for x = 1 red and x = 2

red, the three probabilities corresponding to the three ways to order the R′s and B′s are

the same. These observations lead to the probabilities P (x) as summarized below.

These probabilities depend on N1 = 5 and N2 = 15 only through the proportions p1 =
5
20 = 1

4 (proportion red) and p2 = 1− p1 = 15
20 = 3

4 (proportion blue). This implies that if

we had used a box with any values of N1 and N2 that yielded these proportions, then the

probabilities would be the same!

P (0) = P (0 red) = 1 · 15 · 15 · 15

20 · 20 · 20
=

(
3

0

)(
5

20

)0(
15

20

)3

=

(
3

0

)(
1

4

)0(
3

4

)3

=
27

64

P (1) = P (1 red) = 3 · 5 · 15 · 15

20 · 20 · 20
=

(
3

1

)(
5

20

)1(
15

20

)2

=

(
3

1

)(
1

4

)1(
3

4

)2

=
27

64

P (2) = P (2 red) = 3 · 5 · 5 · 15

20 · 20 · 20
=

(
3

2

)(
5

20

)2(
15

20

)1

=

(
3

2

)(
1

4

)2(
3

4

)1

=
9

64

P (3) = P (3 red) = 1 · 5 · 5 · 5
20 · 20 · 20

=

(
3

3

)(
5

20

)3(
15

20

)0

=

(
3

3

)(
1

4

)3(
3

4

)0

=
1

64
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We are now ready to generalize the expression for P (x) from our specific example with

N1 = 5 red, N2 = 15 blue, and a sample of size n = 3 to the general situation.

In general, we have a population containing N = N1 + N2 individual objects (the balls

in the box) of which N1 are of one type (red) and N2 = N − N1 are of a second type

(blue). The proportion of individual objects of the first type (red) is p1 = N1/N and the

proportion of individual objects of the second type (blue) is p2 = N2/N = 1− p1. We are

assuming that a simple random sample of n individual objects is selected at random with

replacement from this population.

For x = 0, 1, . . . , n, the probability that the sample of n objects contains exactly x objects

of the first type (red) is

P (x) =

(
n

x

)(
N1

N

)x(
N2

N

)n−x
=

(
n

x

)
px1p

n−x
2 =

(
n

x

)
px1(1− p1)n−x.

Notice that this expression depends on N,N1, and N2 only through p1 = N1

N , the proba-

bility that a single object (ball) selected at random is of the first type (red), and 1− p1 =
N2

N = N−N1

N , the probability that a single object (ball) selected at random is of the second

type (blue). Hence, for fixed values of n and x, the probability P (x) does not depend on

the size of the population; it only depends on the proportion of red balls in the population.

Let’s review the terms in this expression for the binomial probability P (x). It is helpful

to split this expression into two terms.

P (x) =

(
n

x

)(
px1p

n−x
2

)
=

(
n

x

)(
Nx

1 ·Nn−x
2

Nx

)

(1)
(
n
x

)
is counting the number of ways that x R′s and n− x B′s can be arranged in a

sequence of length n. This is analogous to counting the number of ways to string x red

beads and n− x blue beads like we did in Example 5.7a.

(2) px1p
n−x
2 =

Nx
1 ·N

n−x
2

Nx is the probability that we observed x R′s followed by n− x B′s,
expressed as the ratio N(A)/N of the number of favorable outcomes to the number of

possible outcomes. As noted above, this probability is the same for each of the
(
n
x

)
ways

to order x R′s and n− x B′s.
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Expressing the probability P (x) as the product of terms (1) and (2) is equivalent to sum-

ming the probabilities (as expressed in term (2)) for each of the
(
n
x

)
ways that x R′s and

n− x B′s can be arranged in a sequence of length n.

We will reconsider this binomial distribution and discuss it in more detail in a later section.

Example 5.8 Tossing a die Tossing a fair (balanced) die and noting the number on the

upturned face is abstractly the same as selecting a number (ball) at random from the set

{1, 2, 3, 4, 5, 6}. Tossing the die n times is equivalent to selecting a random sample of size

n with replacement from the set {1, 2, 3, 4, 5, 6}.

If a fair die is tossed 10 times, then, for x = 0, 1, . . . , 10, the probability of observing

exactly x aces (ones) is

P (x) =

(
10

x

)(
1

6

)x(
5

6

)10−x

.

In particular:

The probability of observing exactly 0 aces is P (0) =
(
10
0

)
( 1
6 )0( 5

6 )10 = 1·510
610 ≈ .1615.

The probability of observing exactly 1 ace is P (1) =
(
10
1

)
( 1
6 )1( 5

6 )9 = 10·59
610 ≈ .3230.

The probability of observing exactly 2 aces is P (2) =
(
10
2

)
( 1
6 )2( 5

6 )8 = 45·58
610 ≈ .2907.

The probability of observing exactly 3 aces is P (3) =
(
10
3

)
( 1
6 )3( 5

6 )7 = 120·57
610 ≈ .1550.

Example 5.9 Sampling from a box of balls Consider a box containing 600 balls of which

100 are red and 500 are blue. Since p = 1/6 of the balls in the box are red and the

probability of getting an ace when a fair die is tossed once is p = 1/6, selecting 10 balls

at random with replacement from these 600 balls and counting the number of red balls

is equivalent to tossing a fair die 10 times and counting the number of aces tossed. Thus

the probabilities of Example 5.8 apply here as well. That is, if 10 balls are selected at

random with replacement from these 600 balls, then, for x = 0, 1, . . . , 10, the probability

of observing exactly x red balls is

P (x) =

(
10

x

)(
1

6

)x(
5

6

)10−x

.
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5.5 Sampling without replacement – The hypergeometric distribution toc

We will now consider probabilities associated with the number of objects of a specified

type in a random sample selected without replacement.

As before, we will use the selection of balls from a box of suitably labeled balls to represent

a random experiment and we will consider a box (the population) containing N = N1 +N2

balls (individual objects) of which N1 are red (of one type) and N2 = N −N1 are blue (of

a second type).

This time, however, suppose that a simple random sample of n balls is selected at random

without replacement from this population. For an integer x, between 0 and n, we will

find the probability P (x) that the sample contains exactly x red balls (and consequently

exactly n − x blue balls). Note that, since the population contains N1 red balls and

N2 = N − N1 blue balls and we are sampling without replacement certain values of x

may not be attainable. In particular, we must have P (x) = 0 when x > N1 and when

n− x > N −N1, since these values of x are not possible.

Let’s start with the same simple example as we used when introducing the binomial dis-

tribution. Consider the box (population), illustrated in figure 5.2, containing N = 20

balls (objects) of which N1 = 5 are red (of one type) and N2 = 15 are blue (of a second

type). Suppose that a simple random sample of n = 3 balls is selected at random without

replacement from this population. The characteristic of interest here is the number of red

balls among the n = 3 balls in the sample. The possible numbers of red balls in a sample

of n = 3 are 0, 1, 2, 3. In this application, since the box contains more than 3 balls of both

colors, all values of x are attainable.

For the probabilities we want to compute, when sampling without replacement we can think

of selecting all n balls at once and we can use unordered outcomes in our representation of

the sample space. There are
(
20
3

)
= 1, 140 ways to choose 3 balls (without keeping track of

order) from a box containing 20 balls. In order to formally list these elementary outcomes

we would need to add labels to the 20 balls so that they would be distinguishable. This is

tedious and not very helpful so let’s just consider the counting argument. Before we start

counting, note that there are three basic types of elementary outcomes here, using R for

red and B for blue, the possibilities are: a set of the form {B,B,B} (three distinct blue

balls); a set of the form {R,B,B} (one red ball and two distinct blue balls); a set of the

form {R,R,B} (two distinct red balls and one blue ball); and, a set of the form {R,R,R}
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(three distinct red balls). Note well that, as when sampling with replacement, these 4 types

of elementary outcomes are not equally likely!

It is helpful to think of the process of choosing the balls as series of three stages (select the

desired number, x, of red balls, select the desired number, n− x, of blue balls, and select

the desired number, n, of balls). These three selections are illustrated in Figure 5.3.

Figure 5.3 Choosing balls from a box containing 5 red and 15 blue balls.

choose x balls from the N1 = 5 balls of the first type (red)

choose n−x balls from the N2 = 15 balls of the second type (blue)

choose n balls from the N = N1 +N2 = 20 balls in the box

There is
(
5
0

)
= 1 way to choose x = 0 red from 5 red balls; there are

(
5
1

)
= 5 ways to choose

x = 1 red from 5 red balls; there are
(
5
2

)
= 10 ways to choose x = 2 red from 5 red balls;

and, there are
(
5
3

)
= 10 ways to choose x = 3 red from 5 red balls. Similarly, there are(

15
3

)
= 455 ways to choose n− x = 3− 0 = 3 blue from 15 blue balls; there are

(
15
2

)
= 105

ways to choose n − x = 3 − 1 = 2 blue from 15 blue balls; there are
(
15
1

)
= 15 ways to

choose n − x = 3 − 2 = 1 blue from 15 blue balls; and, there is
(
15
0

)
= 1 way to choose

n− x = 3− 3 = 0 blue from 15 blue balls. Finally, as noted earlier, there are
(
20
3

)
= 1, 140

ways to choose n = 3 balls from the N = 20 balls in the box. These observations are

represented graphically in Figure 5.4.

Figure 5.4 Choosing balls from a box containing 5 red and 15 blue balls.

there is
(
5
0

)
= 1 way to choose x = 0 red balls

there are
(
15
3

)
= 455 ways to choose n− x = 3 blue balls

there are
(
20
3

)
= 1140 ways to choose n = 3 balls from the 20 balls

there are
(
5
1

)
= 5 ways to choose x = 1 red balls

there are
(
15
2

)
= 105 ways to choose n− x = 2 blue balls

there are
(
20
3

)
= 1140 ways to choose n = 3 balls from the 20 balls
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there are
(
5
2

)
= 10 ways to choose x = 2 red balls

there are
(
15
1

)
= 15 ways to choose n− x = 1 blue balls

there are
(
20
3

)
= 1140 ways to choose n = 3 balls from the 20 balls

there are
(
5
3

)
= 10 ways to choose x = 3 red balls

there is
(
15
0

)
= 1 way to choose n− x = 0 blue balls

there are
(
20
3

)
= 1140 ways to choose n = 3 balls from the 20 balls

Combining these observations and computations yields the probabilities P (x) as summa-

rized below.

P (0) = P (0 red) =

(
5
0

)(
15
3

)(
20
5

) =
1 · 455

1140
=

91

228

P (1) = P (1 red) =

(
5
1

)(
15
2

)(
20
5

) =
5 · 105

1140
=

105

228

P (2) = P (2 red) =

(
5
2

)(
15
1

)(
20
5

) =
10 · 15

1140
=

30

228

P (3) = P (3 red) =

(
5
3

)(
15
0

)(
20
5

) =
10 · 1
1140

=
2

228

We are now ready to generalize the expression for P (x) from our specific example with

N1 = 5 red, N2 = 15 blue, and a sample of size n = 3 to the general situation.

In general, we have a population containing N = N1 + N2 individual objects (the balls

in the box) of which N1 are of one type (red) and N2 = N − N1 are of a second type

(blue). We are assuming that a simple random sample of n individual objects is selected

at random without replacement from this population.

For x = 0, 1, . . . , n (subject to the restrictions described below) the probability that the

sample of n objects contains exactly x objects of the first type (red) is

P (x) =

(
N1

x

)(
N−N1

n−x
)(

N
n

)
=

(
N1

x

)(
N2

n−x
)(

N1+N2

n

) .
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The restriction mentioned above says that this hypergeometric probability formula only

works when x ≤ N1 and n−x ≤ N2. This restriction reflects the fact that we are sampling

without replacement and that it may be possible to run out of objects (balls) of one type

(color) before we obtain a sample of the desired size n.

Notice the pattern in the binomial coefficients in the expression for the hypergeometric

probability P (x). The “top” numbers, N1 and N2, in the numerator binomial coefficients

sum to give the “top” number, N , in the denominator binomial coefficient. Similarly, the

“bottom” numbers, x and n − x, in the numerator binomial coefficients sum to give the

“bottom” number, n, in the denominator binomial coefficient. This pattern reflects the

facts that the N objects (balls) are comprised of N1 objects of the first type (red balls)

and N2 objects of the second type (blue balls). And, the n objects (balls) in the sample

are comprised of x objects of the first type (red balls) and n−x objects of the second type

(blue balls).

Also notice that, unlike the binomial probability formula, this hypergeometric probabil-

ity formula does depend on the values of N1 and N2. Therefore, these hypergeometric

probabilities cannot be computed unless we know the sizes of the two subpopulations.

We will reconsider this hypergeometric distribution and discuss it in more detail in a later

section.

Example 5.10 Poker Consider the number of aces in a 5–card poker hand. Dealing a 5–card

hand is abstractly the same as selecting five cards at random without replacement from a

collection of 52 balls (cards). For this problem, the relevant partition of the 52 cards in

the deck is into the 4 aces and the 48 non–aces. Since there are only 4 aces the x values

of interest are x = 0, 1, 2, 3, 4. For x = 0, 1, 2, 3, 4, the probability that the 5–card hand

contains exactly x aces is

P (x) =

(
4
x

)(
48
5−x
)(

52
5

) .

In particular:

The probability that the hand contains exactly 0 aces is P (0) = [
(
4
0

)(
48
5

)
]/
(
52
5

)
≈ .6588

The probability that the hand contains exactly 1 ace is P (1) = [
(
4
1

)(
48
4

)
]/
(
52
5

)
≈ .2995

The probability that the hand contains exactly 2 aces is P (2) = [
(
4
2

)(
48
3

)
]/
(
52
5

)
≈ .0399

The probability that the hand contains exactly 3 aces is P (3) = [
(
4
3

)(
48
2

)
]/
(
52
5

)
≈ .0017

The probability that the hand contains exactly 4 aces is P (4) = [
(
4
4

)(
48
1

)
]/
(
52
5

)
≈ .00002
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5.6 Sampling with replacement – The multinomial distribution toc

We will now extend the binomial distribution by allowing three types of objects. As

before, suppose that a simple random sample of n balls (objects) is selected at random

with replacement from a population of N balls (objects). However, now suppose that N1

balls are red (of one type), N2 are blue (of a second type), and N3 are magenta (of a third

type), with N = N1 +N2 +N3.

For n = x1 + x2 + x3, we will find the probability P (x1, x2, x3) that the sample con-

tains x1 red balls, x2 blue balls, and x3 magenta balls. As in the binomial case, we will

think of obtaining the balls in the sample one at a time and use ordered outcomes in our

representation of the sample space.

As we did with the binomial distribution, let’s start with a simple example. Consider the

box (population), illustrated in Figure 5.5, containing N = 30 balls (objects) of which

N1 = 5 are red (of one type), N2 = 15 are blue (of a second type), and N3 = 10 are

magenta (of a third type). Suppose that a simple random sample of n = 6 balls is selected

at random with replacement from this population. The characteristics of interest here are

the number of balls of each of the three colors (objects of each of the three types) among

the n = 6 balls in the sample. There are 28 ways in which a sample of n = 6 balls can be

distributed among the three colors. For example, we might observe (x1 = 0 red, x2 = 0

blue, and x3 = 6 magenta) or (x1 = 1 red, x2 = 2 blue, and x3 = 3 magenta) or (x1 = 2

red, x2 = 2 blue, and x3 = 2 magenta).

Figure 5.5 A box containing 5 red, 15 blue, and 10 magenta balls.

N1 = 5 balls of the first type (red)

N2 = 15 balls of the second type (blue)

N3 = 10 balls of the third type (magenta)

Before we start counting, consider a representation of the possible outcomes of the six

draws by ordered 6–tuples of the letters R for red, B for blue, and M for magenta. Note
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well that these 28 elementary outcomes are not equally likely!

Ω = {MMMMMM,BMMMMM,BBMMMM,BBBMMM,BBBBMM,BBBBBM,

BBBBBB,RMMMMM,RBMMMM,RBBMMM,RBBBMM,RBBBBM,

RBBBBB,RRMMMM,RRBMMM,RRBBMM,RRBBBM,RRBBBB,

RRRMMM,RRRBMM,RRRBBM,RRRBBB,RRRRMM,RRRRBM,

RRRRBB,RRRRRM,RRRRRB,RRRRRR}

Since we are drawing with replacement, there are always 5 choices for each R, 15 choices

for each B, and 10 choices for each M in these outcomes. Furthermore, there are always

a total of 30 choices for each draw. The probabilities for a few of these outcomes are

P (RRBBMM) =
5 · 5 · 15 · 15 · 10 · 10

30 · 30 · 30 · 30 · 30 · 30
=

(
5

30

)2(
15

30

)2(
10

30

)2

P (RBBMMM) =
5 · 15 · 15 · 10 · 10 · 10

30 · 30 · 30 · 30 · 30 · 30
=

(
5

30

)1(
15

30

)2(
10

30

)3

P (RRRBBB) =
5 · 5 · 5 · 15 · 15 · 15

30 · 30 · 30 · 30 · 30 · 30
=

(
5

30

)3(
15

30

)3(
10

30

)0

P (RRRRRR) =
5 · 5 · 5 · 5 · 5 · 5

30 · 30 · 30 · 30 · 30 · 30
=

(
5

30

)6(
15

30

)0(
10

30

)0

For each collection of values x1, x2, x3 with x1 + x2 + x3 = 6, we now need to determine

how many ways we can order a collection of x1 R
′s, x2 B

′s, and x3 M
′s. As we noted

in the binomial section, this is analogous to asking in how many ways can we string a

collection of x1 red beads, x2 blue beads, and x3 magenta beads (when x1 + x2 + x3 = 6).

In other words, we need count the number of ways to partition the n = 6 draws (elements

of the 6–tuple) into a group of x1 when a red ball is drawn, a group of x2 when a blue ball

is drawn, and a group of x3 when a magenta ball is drawn. The solution is provided by

the multinomial coefficient(
6

x1, x2, x3

)
=

(
6

x1

)(
6− x1
x2

)(
6− x1 − x2

x3

)
.

As in the binomial case, we can now combine these observations and provide the following

expression for these multinomial probabilities in the application when n = 6, p1 = N1/N =

5/30, p2 = N2/N = 15/30, and p3 = N3/N = 10/30. For values of x1, x2, x3 between 0
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and 6 with x1 + x2 + x3 = 6, the probability of observing x1 red balls, x2 blue balls, and

x3 magenta balls in a sample of size n = 6 is

P (x1, x2, x3) =

(
6

x1, x2, x3

)(
5

30

)x1
(

15

30

)x2
(

10

30

)x3

=

(
6

x1

)(
6− x1
x2

)(
6− x1 − x2

x3

)(
5

30

)x1
(

15

30

)x2
(

10

30

)x3

Generalizing this expression for P (x1, x2, x3) from our specific example with N1 = 5 red,

N2 = 15 blue, N3 = 10 magenta, and a sample of size n = 6 to the general situation is

straightforward.

In general, we have a population containing N = N1+N2+N3 individual objects (the balls

in the box) of which N1 are of one type (red) and N2 are of a second type (blue), and N3

are of the third type (magenta). The proportion of individual objects of the first type (red)

is p1 = N1/N , the proportion of individual objects of the second type (blue) is p2 = N2/N ,

and the proportion of individual objects of the third type (magenta) is p3 = N3/N . Note

well that p1 + p2 + p3 = 1, since N1 + N2 + N3 = N . We are assuming that a simple

random sample of n individual objects is selected at random with replacement from this

population.

For values of x1, x2, x3 between 0 and n with x1 +x2 +x3 = n, the probability of observing

x1 objects of the first type (red balls), x2 objects of the second type (blue balls), and x3

objects of the third type (magenta balls) in a sample of size n is

P (x1, x2, x3) =

(
n

x1, x2, x3

)(
N1

N

)x1
(
N2

N

)x2
(
N3

N

)x3

=

(
n

x1

)(
n− x1
x2

)(
n− x1 − x2

x3

)(
N1

N

)x1
(
N2

N

)x2
(
N3

N

)x3

=

(
n

x1

)(
n− x1
x2

)(
n− x1 − x2

x3

)
px1
1 p

x2
2 p

x3
3

Notice that this expression depends on N,N1, N2 and N3 only through p1 = N1

N , the

probability that a single object (ball) selected at random is of the first type (red), p2 = N2

N ,

the probability that a single object (ball) selected at random is of the second type (blue),

and p3 = N3

N , the probability that a single object (ball) selected at random is of the third

type (magenta). Hence, for fixed values of n, x1, x2, and x3, the probability P (x1, x2, x3)

does not depend on the size of the population; it only depends on the proportions of
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objects (balls) in the three subpopulations. Computational aside: n − x1 − x2 = x3 and

thus
(
n−x1−x2

x3

)
=
(
x3

x3

)
= 1.

As you might expect, this is a trinomial distribution, since we have three types of objects

(colors). The extension of this expression to give multinomial probabilities when there

are four or more types of objects should be reasonably clear. We will reconsider this

multinomial distribution and discuss it in more detail in a later section.

Example 5.11 Tossing a die Suppose a fair die is tossed 10 times. Since the population

(possible outcomes for one toss) {1, 2, 3, 4, 5, 6} contains six values, in order to apply the

multinomial probability formula, we need to partition these six values into a fixed number

of values (“colors”).

First consider the probability of observing exactly 3 ones and exactly 4 twos. Since 3+4 = 7

we also need 3 numbers other than one or two. Thus we need the partition {1, 2, 3, 4, 5, 6} =

{1} ∪ {2} ∪ {3, 4, 5, 6}. Here we have N1 = 1, N2 = 1 and N3 = 4 and x1 = 3, x2 = 4, and

x3 = 3. The probability of observing exactly 3 ones and exactly 4 twos is

P (3 ones and 4 twos) = P (3 ones, 4 twos, and 3 others)

=

(
10

3

)(
7

4

)(
3

3

)(
1

6

)3(
1

6

)4(
4

6

)3

=
120 · 35 · 1 · 43

610
≈ .0044.

Now let’s consider an event which involves four values. In particular, let’s find the proba-

bility of observing exactly 2 ones, exactly 3 twos, and exactly 4 threes. Since 2 + 3 + 4 = 9

we also need 1 number other than one, two, or three. Here we have N1 = 1, N2 = 1,

N3 = 1, and N4 = 3 and x1 = 2, x2 = 3, x3 = 4, and x4 = 1. The probability of observing

exactly 2 ones, exactly 3 twos, and exactly 4 threes is

P (2 ones, 3 twos, and 4 threes) = P (2 ones, 3 twos, 4 threes, and 1 other)

=

(
10

2

)(
8

3

)(
5

4

)(
1

1

)(
1

6

)2(
1

6

)3(
1

6

)4(
3

6

)1

=
45 · 56 · 5 · 1 · 31

610
≈ .00062.
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5.7 Sampling without replacement – The multiple hypergeometric dist.toc

The hypergeometric distribution is also readily generalized to allow for balls of three or

more colors. As before, suppose that a simple random sample of n balls (objects) is selected

at random without replacement from a box (population) of N balls (objects). However,

now suppose that N1 balls are red (of one type), N2 are blue (of a second type), and N3

are magenta (of a third type), with N = N1 +N2 +N3.

As we did with the hypergeometric distribution, let’s start with a simple example. Consider

the box (population), illustrated in Figure 5.6, containing N = 30 balls (objects) of which

N1 = 5 are red (of one type), N2 = 15 are blue (of a second type), and N3 = 10 are

magenta (of a third type). Suppose that a simple random sample of n = 6 balls is selected

at random without replacement from this population.

Figure 5.6 Choosing balls from a box containing 5 red and 15 blue balls.

choose x1 balls from the N1 = 5 balls of the first type (red)

choose x2 balls from the N2 = 15 balls of the second type (blue)

choose x3 balls from the N3 = 10 balls of the third type (magenta)

choose n = 6 balls from the N = N1 +N2 +N3 = 30

balls in the box

In this application there are
(
30
6

)
= 593, 775 equally likely possible outcomes (subsets of

size n = 6). Our task is to determine how many of these possible outcomes are favorable

for each event of the form “the sample contains x1 red balls, x2 blue balls, and x3 magenta

balls” so that we can compute the corresponding probability P (x1, x2, x3).

The ingredients we need are:

1. There are
(
5
x1

)
ways to choose x1 red balls from the N1 = 5 red balls in the box.

2. There are
(
15
x2

)
ways to choose x2 blue balls from the N2 = 15 blue balls in the box.

3. There are
(
10
x3

)
ways to choose x3 magenta balls from the N3 = 10 magenta balls in the

box.

The obvious extension of the hypergeometric probability expression yields

P (x1, x2, x3) =

(
5
x1

)(
15
x2

)(
10
x3

)(
30
6

)
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Note well that the sizes of the subpopulations (numbers of balls of each color in the box)

place some restrictions on which values of x1, x2, and x3, will work in this expression.

Since there are only 5 red balls we must have x1 ∈ {0, 1, 2, 3, 4, 5}. Since there are more

than six blue balls and more than six magenta balls, there is no restriction on the values

of x2 and x3 other than the requirement that x1 + x2 + x3 = 6.

Generalizing this expression for P (x1, x2, x3) from our specific example with N1 = 5 red,

N2 = 15 blue, N3 = 10 magenta, and a sample of size n = 6 to the general situation is

straightforward.

In general, we have a population containing N = N1 + N2 + N3 individual objects (the

balls in the box) of which N1 are of one type (red) and N2 are of a second type (blue),

and N3 are of the third type (magenta). We are assuming that a simple random sample

of n individual objects is selected at random without replacement from this population.

For values of x1, x2, x3 between 0 and n with x1 + x2 + x3 = n (subject to the restrictions

that x1 ≤ N1, x2 ≤ N2, and x3 ≤ N3), the probability of observing x1 objects of the first

type (red balls), x2 objects of the second type (blue balls), and x3 objects of the third type

(magenta balls) in a sample of size n is

P (x1, x2, x3) =

(
N1

x1

)(
N2

x2

)(
N3

x3

)(
N1+N2+N3

x1+x2+x3

) =

(
N1

x1

)(
N2

x2

)(
N3

x3

)(
N
n

)
As with the hypergeometric distribution, notice the pattern in the binomial coefficients

in the expression for the multiple hypergeometric probability P (x1, x2, x3). The “top”

numbers, N1, N2, and N3, in the numerator binomial coefficients sum to give the “top”

number, N , in the denominator binomial coefficient. Similarly, the “bottom” numbers,

x1, x2, and x3, in the numerator binomial coefficients sum to give the “bottom” number, n,

in the denominator binomial coefficient. This pattern reflects the facts that the N objects

(balls) are comprised of N1 objects of the first type (red balls), N2 objects of the second

type (blue balls), and N3 objects or the third type (magenta balls). And, the n objects

(balls) in the sample are comprised of x1 objects of the first type (red balls), x2 objects of

the second type (blue balls) and x3 objects of the third type (magenta balls). Also notice

that, unlike the multinomial probability formula, this multiple hypergeometric probability

formula does depend on the values of N1, N2, and N3. Therefore, as with hypergeometric
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probabilities, these multiple hypergeometric probabilities cannot be computed unless we

know the sizes of the three subpopulations.

The extension to a population with four or more types of objects (balls) should be clear.

Example 5.12 Poker Now we can find the probabilities of some more interesting poker

hands. The 52 card deck contains 4 aces, 4 kings, and 44 other cards. Using this partition

yields the following probabilities.

The probability that a poker hand contains exactly 2 aces and exactly 1 king is(
4
2

)(
4
1

)(
44
2

)(
52
5

) ≈ .0087.

The probability that a poker hand contains exactly 2 aces and exactly 2 kings is(
4
2

)(
4
2

)(
44
1

)(
52
5

) ≈ .0006.

The probability that a poker hand contains exactly 2 aces and exactly 3 kings is(
4
2

)(
4
3

)(
44
0

)(
52
5

) ≈ .000009.
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6 Conditional probability and independence toc

6.1 Conditional probability toc

In many situations we have partial information about the outcome of an experiment and

we need to update the probability measure to reflect this additional information. More

formally, consider two events A and B which can occur at the same time, if we know

that event A has occurred, then we need to determine how to update the probability of

event B to take this information about A into account. That is, we need to determine the

conditional probability of event B conditioning on the fact that event A has occurred. A

couple of simple examples will help motivate the formal definition of conditional probability

given below.

Example 6.1 Selecting one card Suppose we select 1 card at random from a 52 card deck.

The deck of 52 cards contains 4 kings. Thus, the probability that we will select a king is

P (king) = 4/52 = 1/13.

Now suppose we know that the card selected is a face card. How does this partial informa-

tion about the card affect the probability that it is a king? That is, what is the conditional

probability that the card is a king given the information that it is a face card? Since there

are 12 face cards (the 4 kings, 4 queens, and 4 jacks) and we know that one of these 12 cards

has been selected at random, there is a 4 out of 12 probability that the card is a king. Thus,

when we know that the card is a face card the probability that it is a king (conditioning

on the fact that it is a face card) is P (king given the card is a face card) = 4/12 = 1/3.

Next suppose that we know that the card selected is a spade. How does this partial

information about the card affect the probability that it is a king? That is, what is the

conditional probability that the card is a king given the information that it is a spade?

Since there are 13 spades and we know that one of these 13 spades has been selected at

random, and there is only one king of spades, there is a 1 out of 13 probability that the

card is a king. Thus, when we know that the card is a spade the probability that it is a king

(conditioning on the fact that it is a spade) is P (king given the card is a spade) = 1/13.

It is helpful to consider the three probabilities we just computed in terms of the represen-

tation of the 52 cards in the image of Figure 3.1. The first probability we computed, the
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unconditional probability that the card is a king, is 1/13 because we are selecting at ran-

dom from all 52 cards and 4 of these are kings. For the second probability, we conditioned

on the event that the card was a face card. That is, we restricted our selection to the 12

cards in the last three columns of Figure 3.1. Since 1/3 of the cards in these columns are

kings, we argued that the conditional probability of selecting a king given that the card is

a face card is 1/3. For the third probability, we conditioned on the event that the card was

a spade. That is, we restricted our selection to the 13 spades in the third row of Figure

3.1. Since one of the cards in the spade row is a king, we argued that the conditional

probability of selecting a king given that the card is a spade is 1/13.

Notice that the unconditional probability of selecting a king changes when we condition

on the event that the card is a face card; but, it does not change when we condition on

the event that the card is a spade. When two events, say A and B, have the property that

the unconditional probability of A is the same as the conditional probability of A given

that B has occurred, the events are said to be independent. We will discuss independence

in Section 6.2

Example 6.2 Bachelor’s degree majors In 2004–2005, degree–granting institutions in the

US conferred N = 1, 439, 264 bachelor’s degrees (see Table 6.1). Of these degrees, N(S) =

174, 980 had a Science or Math major. Thus, if we select a bachelor’s degree recipi-

ent at random, then the probability that that person is a Science or Math major is

P (Science or Math major) = N(S)/N = .1216. As you might expect this probabil-

ity will change if we know that the person selected is a woman. For these N degrees,

N(F ) = 826, 264 were awarded to women and out of theseN(F ) degreesN(S∩F ) = 77, 380

had a Science or Math major. Thus, if we know that a woman was selected, then the con-

ditional probability that she has a Science or Math major is

P (Science or Math major given the person is a woman) = N(S ∩ F )/N(F ) = .0936. We

will return to this example after we define some relevant notation. (source: National

Center for Education Statistics (NCES))

Consider a population of N objects and two subpopulations (events) A and B. Let N(A)

denote the number of objects in subpopulation A and let N(B) denote the number of

objects in subpopulation B. If an object is selected at random from this population, then

P (A) = N(A)/N and P (B) = N(B)/N . Now suppose that it is known that event A has
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occurred. That is suppose that we know that the object belongs to subpopulation (event)

A. Using subpopulation A as our reference space (new sample space) we note that the

event B occurs if and only if the object is the intersection A ∩B. Thus letting N(A ∩B)

denote the number of objects in the population which belong to subpopulation A and

subpopulation B, we see that the conditional probability of the selected object belonging

to subpopulation B given that the selected object belongs to subpopulation A is

P (B|A) =
N(A ∩B)

N(A)
=
N(A ∩B)/N

N(A)/N
=
P (A ∩B)

P (A)
.

Definition – Conditional probability. Given events A and B with P (A) > 0, the

conditional probability of B given A is

P (B|A) =
P (A ∩B)

P (A)

Example 6.2 Bachelor’s degree majors revisited The N = 1, 439, 264 bachelor’s degrees

conferred by degree–granting institutions in the US in 2004–2005 are classified by field of

major and sex in Table 6.1.

Table 6.1. Bachelor’s degrees conferred in 2004-05, by sex and major. (counts)

sex
Major male female total

Business 162,669 176,358 339,027

Social Sciences 91,533 220,410 311,943

Humanities 80,163 126,431 206,594

Science/Math 97,600 77,380 174,980

Art 61,901 101,006 162,907

Education 34,215 94,124 128,339

Engineering 84,919 30,555 115,474

total 613,000 826,264 1,439,264

Suppose that a person is selected at random from this group of N = 1, 439, 264 bache-

lor’s degree recipients. The (unconditional) probabilities for each major–sex combination,
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obtained by dividing the entries in Table 6.1 by N, are given in Table 6.2. The margins

of this table contain the (unconditional) probabilities for each major (the column of row

probabilities) and for each sex (the row of column probabilities).

Table 6.2. Bachelor’s degrees conferred in 2004-05, by sex and major. (proportions)

sex
Major male female total

Business 0.1130 0.1225 0.2356

Social Sciences 0.0636 0.1531 0.2167

Humanities 0.0557 0.0878 0.1435

Science/Math 0.0678 0.0538 0.1216

Art 0.0430 0.0702 0.1132

Education 0.0238 0.0654 0.0892

Engineering 0.0590 0.0212 0.0802

total 0.4259 0.5741 1

Of these N bachelor’s degrees, N(M) = 613, 000 were awarded to men and N(F ) =

826, 264 were awarded to women. We will use conditional probabilities to explore some

differences and similarities in the distributions of the tabulated majors among these groups

of men and women. Note that we can use the counts in Table 6.1 or the probabilities

(proportions) in Table 6.2 to compute conditional probabilities.

First consider education majors. Let E denote the event that the person selected had an

education major. There are N(E) = 128, 339 education majors and P (E) = 128,339
1,439,264 =

0.0892. Thus, there is a 8.92% chance of selecting an education major. Let F denote the

event that the person selected is a woman, and let M denote the event that the person

selected is a man. From Table 6.2 we see that P (F ) = 0.5741 and P (M) = 0.4259. Thus,

there is a 57.41% chance of selecting a woman and a 42.59% chance of selecting a man.

Now consider how the probability of selecting an education major changes when we know

the sex of the selected person. In order to compute the desired conditional probabilities

we need the counts or probabilities of the intersections E ∩ F and E ∩M .
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First consider education majors among women. In terms of the counts in the “Female”

column of Table 6.1 we have N(E ∩ F ) = 94, 124 and N(F ) = 826, 264. Thus

P (E|F ) =
N(E ∩ F )

N(F )
=

94, 124

826, 264
= 0.1139.

In terms of the probabilities in the “Female” column of Table 6.2 we have P (E∩F ) = 0.0654

and P (F ) = 0.5741. Thus

P (E|F ) =
0.0654

0.5741
= 0.1139.

Now consider education majors among men. In terms of the counts in the “Male” column

of Table 6.1 we have N(E ∩M) = 34, 215 and N(M) = 613, 000. Thus

P (E|M) =
N(E ∩M)

N(M)
=

34, 215

613, 000
= 0.0558.

In terms of the probabilities in the “Male” column of Table 6.2 we have P (E∩M) = 00238.

and P (M) = 0.4259. Thus

P (E|F ) =
0.0238

0.4259
= 0.0558.

As noted earlier, there is a 8.92% chance of selecting an education major. However, if we

know that the person selected is a woman, then there is an 11.39% chance that we have

selected an education major, and, if we know that the person selected is a man, then there

is a 5.58% chance that we have selected an education major. As you probably expected,

we see that the conditional probability of selecting an education major given that we have

selected a woman, P (E|F ) = 0.1139, is substantially larger than the conditional probability

of selecting an education major given that we have selected a man, P (E|M) = 0.0558.

If we performed analogous computations for the other majors we could find the entire

conditional distribution of majors among the 826, 264 women and the entire conditional

distribution of majors among the 613, 000 men. All we need to do is extract the numbers

(counts or proportions) in the “Female” column (respectively “Male” column) of Table 6.1

or 6.2 and normalize them by dividing each by their sum. These conditional distributions

are given in Table 6.3.

Note in particular the probabilities for engineering majors. Let G denote the event that the

person selected had an engineering major. The unconditional probability of selecting an
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engineering major is P (G) = 0.0802 and the conditional probabilities are P (G|F ) = 0.0370

and P (G|M) = 0.1385.

Table 6.3 The conditional distributions of majors for each sex.

men women

major probability major probability

Business 0.2654 Business 0.2134
SocialSciences 0.1493 SocialSciences 0.2668
Humanities 0.1308 Humanities 0.1530
Science/Math 0.1592 Science/Math 0.0936
Art 0.1010 Art 0.1222
Education 0.0558 Education 0.1139
Engineering 0.1385 Engineering 0.0370

total 1.0000 total 0.9999

Given events A and B, with P (A) > 0, the conditional probability of B given A is

P (B|A) = P (A ∩ B)/P (A). Multiplying the conditional probability P (B|A) by P (A)

yields the following multiplication rule for probabilities.

The multiplication rule. Given events A and B with P (A) > 0,

P (A ∩B) = P (A)P (B|A).

Note that if P (A ∩B) > 0, then P (A) > 0 and P (B) > 0 and we have

P (A ∩B) = P (A)P (B|A) = P (B)P (A|B).

The multiplication rule–three events. Given events A,B,C with P (A ∩B ∩C) > 0,

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B)

The multiplication rule–several events. Given events A1, . . . , An

with P (A1 ∩A2 ∩ · · · ∩An) > 0,

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (An|A1 ∩A2 ∩ · · · ∩An−1)
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The multiplication rule is especially useful for computing the probability of an intersection

when the events involved occur sequentially in time.

6.2 Independence toc

Intuitively we say that the events A and B are independent (stochastically indepen-

dent) when knowing that B has occurred has no effect on the probability of occurrence

of A, i.e. when P (A) = P (A|B). For mathematical convenience the formal definition

of independence is in terms of a product so that it does not depend on the existence of

conditional probabilities.

Definition – Independence. The events A and B are said to be independent (stochas-

tically independent) when P (A ∩B) = P (A)P (B).

Example 6.1 Selecting one card, revisited Recall that we found that the probability of

selecting a king and the conditional probability of selecting a king given that the card

selected is a spade are both 1/13. Thus, the events K – the card is a king and S – the card

is a spade are independent. Note also that P (K ∩ S) = 1/52 = (1/4)(1/13) = P (S)P (K).

Example 6.3 Tossing a die If a fair die is tossed once and we let A = {2, 4, 6} denote the

event that an even value occurs and B = {1, 2, 3, 4} the event that the value is four or

less, then P (A) = 1
2 , P (B) = 2

3 , and P (A ∩ B) = 1
3 . Thus P (A ∩ B) = P (A)P (B) and A

and B are independent. We can also verify the independence of A and B by noting that

P (A) = 3/6 = 1/2 and P (A|B) = 2/4 = 1/2 so that P (A|B) = P (A).

If two events are disjoint (mutually exclusive), then they cannot occur at the same time;

thus if A and B are mutually exclusive, then they cannot be independent unless at least

one of them is the null event. That is, if A and B are mutually exclusive, with P (A) > 0

and P (B) > 0, then P (A ∩B) = 0 cannot be equal to P (A)P (B).

In the next result we note some ways in which the independence of two events implies the

independence of some associated pairs of events.

Some implications of independence. If the events A and B are independent, then the

events A and Bc are independent, the events Ac and B are independent, and the events

Ac and Bc are independent.
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An aside – independence in general and conditional independence

When more than two events are involved the definition of independence is somewhat more

complicated. The reason for this complexity is that we need to be sure that all possible

subsets of the events exhibit appropriate independence properties. We first define inde-

pendence (mutual independence) for several events.

Definition – Independence of several events. The events A1, . . . , An are said to be

independent (mutually independent) when

P (Ai ∩Aj) = P (Ai)P (Aj) for all pairs (i, j) with distinct elements

P (Ai ∩Aj ∩Ak) = P (Ai)P (Aj)P (Ak) for all triples (i, j, k) with distinct elements

and so on for sets of four, five, . . ., up to

P (Ai ∩ · · · ∩An) = P (A1) · · ·P (An).

This definition of mutual independence simply says that in order for the events A1, . . . , An

to be independent, every possible subset of the Ai must satisfy the condition that the

probability of the intersection of the events in the subset is equal to the product of the

probabilities of the individual events which form the subset. In particular, this factorization

of the probability of an intersection must hold for every possible pair of events, triple of

events, and so on up to the collection of all n events.

There is a weaker type of independence, pairwise independence, which arises in some

applications. As the name suggests pairwise independence only requires that the factor-

ization property holds for pairs.

Definition – Pairwise independence. The events A1, . . . , An are said to be pairwise

independent when

P (Ai ∩Aj) = P (Ai)P (Aj) for all pairs (i, j) with i 6= j.

Example 6.4 Independent events Let P (ω) = 1/8 for ω ∈ Ω = {1, 2, 3, 4, 5, 6, 7, 8}, let

A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, and C = {1, 3, 5, 7}. Then P (A) = P (B) = P (C) = 1
2 ,

P (A ∩ B) = P (A ∩ C) = P (B ∩ C) = 1
4 = ( 1

2 )2, and P (A ∩ B ∩ C) = 1
8 = ( 1

2 )3. Thus, in

this example, the events A, B, and C are independent (mutually independent).
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Example 6.5 Pairwise independent events that are not independent Let P (ω) = 1/8 for

ω ∈ Ω = {1, 2, 3, 4, 5, 6, 7, 8}, let A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, and C = {1, 2, 7, 8}.
Then P (A) = P (B) = P (C) = 1

2 and P (A∩B) = P (A∩C) = P (B ∩C) = 1
4 = ( 1

2 )2. But

P (A ∩ B ∩ C) = 1
4 6= ( 1

2 )3. Thus, in this example, the events A, B, and C are pairwise

independent but not mutually independent.

Definition – Conditional independence. Given events A,B, and C with

P (A∩B ∩C) > 0, the events A and B are said to be conditionally independent given the

event C when P (A ∩B|C) = P (A|C)P (B|C).

6.3 The law of total probability – Bayes’ theorem toc

In some situations we may find it convenient to compute the probability of an event by

first decomposing the event into disjoint subevents and then adding the probabilities of

these subevents. For example, given events A and B, we can partition the sample space

as Ω = B ∪Bc and the event A as A = (A ∩B) ∪ (A ∩Bc). Since B and Bc are disjoint,

A ∩ B and A ∩ Bc are also disjoint. This gives the decomposition of the probability of A

as P (A) = P (A ∩B) + P (A ∩Bc). This result is the simplest case of the following law of

total probability.

The law of total probability. Refer to Figure 6.1 for an illustration of this result. If the

events B1, . . . , Bn form a partition of Ω, i.e. if B1, . . . , Bn are disjoint and Ω = B1∪· · ·∪Bn,

then, for any event A,

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bn)

=

n∑
i=1

P (A ∩Bi).

Alternate statement of the law of total probability. If the events B1, . . . , Bn form

a partition of Ω, and P (Bi) > 0 for i = 1, . . . , n, then

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn)

=
n∑
i=1

P (A|Bi)P (Bi).
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Figure 6.1 The law of total probability. The ellipse represents event A and

the rectangular sections represent the events B1, . . . , B5 of the partition.

Here we see that Ω is partitioned into 5 disjoint parts, A is similarly partitioned, and the

probabilities of these part are added.

P (A) = P (A ∩B1) + · · ·+ P (A ∩B5)

P (A) = P (A|B1)P (B1) + · · ·+ P (A|B5)P (B5)

We will now provide a variation of the law of total probability, called Bayes’ theorem,

which allows use to compute conditional probabilities of events at the first stage of an

experiment given the outcome at the second stage.

Bayes’ theorem. If the events B1, . . . , Bn form a partition of Ω and P (Bi) > 0 for

i = 1, . . . , n, then for any event A with P (A) > 0, we have

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn)
.

Bayes’ theorem is particularly useful for a situation where the occurrence of event A follows

the occurrence of one of the events Bi in time and we are interested in the conditional

probability that a particular Bi, say B1, has occurred given that event A has occurred.



6.3 The law of total probability – Bayes’ theorem 107

Note that if A and B are events and 0 < P (B) < 1, then the events B and Bc form a

partition of Ω. Thus P (A) = P (A ∩B) + P (A ∩Bc) and Bayes’ theorem reduces to

P (B|A) =
P (A ∩B)

P (A ∩B) + P (A ∩Bc)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.

Example 6.6 Balls from a box Consider a box containing 100 balls of which 20 are labeled

A, 30 are labeled B, and 50 are labeled C, and three other boxes labeled A,B, and C such

that: box A contains 8 red and 2 blue balls; box B contains 7 red and 3 blue balls; and,

box C contains 6 red and 4 blue balls. Now suppose that a ball is chosen at random from

the box containing 100 balls, the letter (A,B, or C) on the ball is noted, and then a ball is

chosen at random from the 10 balls in the box with the appropriate letter label. Clearly,

the conditional probabilities of choosing a red ball given the letter label are: P (R|A) = .8,

P (R|B) = .7, and P (R|C) = .6. It is also clear that the probabilities of selecting the label

(A,B, or C) are: P (A) = .2, P (B) = .3, and P (C) = .5. Thus, P (A∩R) = P (R|A)P (A) =

.16, P (B ∩ R) = P (R|B)P (B) = .21, and P (C ∩ R) = P (R|C)P (C) = .30 are obtained

by multiplication of the probabilities along the appropriate path in the tree diagram as

indicated in Figure 6.2. The law of total probability says that the probability of choosing

a red ball P (R) is obtained, as indicated at the bottom of the figure, by summing these

three probabilities.
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Figure 6.2 The law of total probability example.

P (A ∩R) = P (A)P (R|A) = .2× .8 = .16

P (B ∩R) = P (B)P (R|B) = .3× .7 = .21

P (C ∩R) = P (C)P (R|C) = .5× .6 = .30

P (R) = P (R|A)P (A) + P (R|B)P (B) + P (R|C)P (C) = .16 + .21 + .30 = .67

The values of conditional probabilities of the form P (A|R), the conditional probability

that the ball was selected from box A given that it was red, are less obvious than the

conditional probabilities of selecting red from a specified box. However, these conditional

probabilities are readily computed using Bayes’ Theorem. Here

P (R) = P (R|A)P (A) + P (R|B)P (B) + P (R|C)P (C) = .16 + .21 + .30 = .67

and we have

P (A|R) =
P (R ∩A)

P (R)
=
P (R|A)P (A)

P (R)
=

16

67
≈ .24

P (B|R) =
P (R ∩B)

P (R)
=
P (R|B)P (B)

P (R)
=

21

67
≈ .31

P (C|R) =
P (R ∩ C)

P (R)
=
P (R|C)P (C)

P (R)
=

30

67
≈ .45

Notice that each of these conditional probabilities is of the form a
a+b+c , where a, b, and c

are the three probabilities summed to get P (R) in the tree diagram of Figure 6.2.



6.3 The law of total probability – Bayes’ theorem 109

It is interesting to compare the unconditional probabilities of drawing from boxes A,B, and

C, P (A) = .2, P (B) = .3, and P (C) = .5, to the corresponding conditional probabilities

given that the ball drawn is known to be red, P (A|R) = 16
67 ≈ .24, P (B|R) = 21

67 ≈ .31, and

P (C|R) = 30
67 ≈ .45. The initial probabilities (before we obtain the additional information

that the ball drawn was red) are known as prior probabilities and the updated prob-

abilities (conditional on the added information) are known as posterior probabilities.

In this example, the conditional probability of drawing a red ball is highest when drawing

from box A and lowest when drawing from box C. Thus, the added information that the

selected ball was red increases the likelihood that the ball came from box A and decreases

the likelihood that the ball came from box C.
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7 Discrete random variables toc

7.1 Random variables toc

In some of the examples we have considered the sample space is a set of integers, e.g.,

Ω = {1, 2, 3, 4, 5, 6} corresponding to one toss of a die. In other examples we restricted our

attention to events described in terms of a numerical value, e.g., the number of heads in

n tosses of a coin. We will now consider a more formal treatment of such assignments of

numerical values to the outcomes of an experiment.

A function which assigns numerical values (real numbers) to the elements of a sample space

is known as a random variable (denoted r.v.). Given an experiment with sample space

Ω, a random variable associates a numerical value with each elementary outcome (element)

ω of the sample space Ω. In the term random variable: the word variable indicates that

the values of the function are numbers which are assigned to elementary outcomes; and,

the adjective random is used as it is used in random experiment to indicate that the value

of the random variable or outcome of the experiment is not known with certainty before

the experiment is conducted at which time the value of the random variable or outcome

of the experiment is determined.

Given a random experiment with sample space Ω and a random variable X defined on Ω,

the r.v. X defines a new sample space ΩX comprised of all of the possible values of X.

An event defined in terms of X (a subset of ΩX) can be identified with the equivalent

event from the underlying experiment (a subset of Ω). For example, the event X = 2

corresponds to the event consisting of all elements ω of the underlying sample space Ω

which are assigned the value X = 2. More formally, the event [X = x] (a subset of ΩX)

corresponds to the event {ω ∈ Ω : X(ω) = x} (a subset of Ω). In this last expression we

are using the function notation X(ω) to indicate the value of X assigned to the elementary

outcome ω.

Recall that a set is said to be discrete if it contains a finite or countably infinite number

of elements. That is, the elements of a discrete set can be arranged in a list of the form

x1, x2, . . . , xN , if the set is finite, or x1, x2, . . . if the set is infinite. If ΩX is discrete, then X

is said to be a discrete random variable. In this chapter we will restrict our attention

to discrete random variables.
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Probabilities of events defined in terms of the random variable X are determined by finding

the probability of the equivalent event in terms of the underlying experiment. That is,

given a random variable X and an event A (a subset of ΩX), the probability that X takes

on a value in A, P (X ∈ A), is found by adding the probabilities of each of the elementary

outcomes in Ω for which the corresponding X values are in A.

We will use a simple example to clarify the relationship between Ω and ΩX , the relationship

between events defined in terms of X and events of the original experiment, and the

computation of probabilities of events defined in terms of X.

Example 7.1 Tossing a coin. Suppose we toss a coin three times. Letting H denote “heads”,

T denote “tails”, and using 3–tuples of the letters H and T to represent the elementary

outcomes, the sample space of the experiment is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Now let X denote the random variable “the number of heads in the three tosses”. The

sample space for this X is

ΩX = {0, 1, 2, 3}.

As noted above, an event defined in terms of X is a subset of ΩX and each such event can

be identified with an equivalent event from the underlying experiment. For example:

The event [X = 0] is equivalent to the event {TTT};
The event [X = 1] is equivalent to the event {HTT, THT, TTH};
The event [X = 2] is equivalent to the event {HHT,HTH, THH};
The event [X = 3] is equivalent to the event {HHH}; and,

The event [X ≤ 2] is equivalent to the event {TTT,HTT, THT, TTH,HHT,HTH, THH}.

If we assume that the coin we are tossing is fair so that each of the eight elementary

outcomes in Ω has probability 1/8, then

P (X = 0) = P ({TTT}) = 1/8;

P (X = 1) = P ({HTT, THT, TTH}) = 3/8;

P (X = 2) = P ({HHT,HTH, THH}) = 3/8;

P (X = 3) = P ({HHH}) = 1/8; and,

P (X ≤ 2) = P ({TTT,HTT, THT, TTH,HHT,HTH, THH}) = 7/8.
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We can characterize the distribution of the discrete r.v. X by specifying a probability

mass function (denoted p.m.f.) pX . The probability mass function pX assigns a proba-

bility to each potential value of the random variable X, i.e.,

pX(x) = P (X = x).

The p.m.f. assigns positive probabilities to the elements of ΩX and zero probabilities to

values not in ΩX . Furthermore, since all of the values of X which have positive probability

of occurrence belong to ΩX , the probabilities of the elements of ΩX must sum to one. The

requisite properties of a p.m.f. are provided in the following definition.

Definition: probability mass function. Given a discrete sample space ΩX = {x1, . . . , xN}
any function pX with the properties that:

(1) pX(x) > 0 for all x ∈ {x1, . . . , xN};
(2) pX(x) = 0 for all x /∈ {x1, . . . , xN}; and,

(3) pX(x1) + · · ·+ pX(xN ) = 1

can be viewed as the probability mass function (p.m.f.) of a random variable X with sample

space ΩX . The obvious modifications apply when ΩX = {x1, x2, . . .} is countably infinite.

For any event A defined in terms of the r.v. X, i.e., for any A ⊂ ΩX , the probability of

event A is equal to the sum of the probabilities of each of the distinct values of X which

form the event (the sum of the pX(x) corresponding to each element x ∈ A). In symbols,

the probability of A is

P (A) =
∑
x∈A

pX(x).

We will now return to the coin tossing example to clarify this definition of a probability

mass function.

Example 7.1 Tossing a coin, revisited. As noted above, assuming that the coin we are

tossing is fair so that each of the eight elementary outcomes in Ω has probability 1/8,

P (X = 0) = 1/8, P (X = 1) = 3/8, P (X = 2) = 3/8, and P (X = 3) = 1/8. Hence, in

function notation, X has probability mass function

pX(x) =


1/8 if x = 0
3/8 if x = 1
3/8 if x = 2
1/8 if x = 3
0 otherwise.
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We can also express this p.m.f. in tabular form as shown in Table 7.1.

Table 7.1 The p.m.f. of X = the number of heads in 3 tosses of a fair coin.

x pX(x)

0 1/8
1 3/8
2 3/8
3 1/8

Note that observing the value of X is equivalent to selecting a ball at random from a box

containing eight balls of which 1 is numbered zero, 3 are numbered one, 3 are numbered

two, and 1 is numbered three. This is an example of a binomial distribution. This binomial

p.m.f. is shown in the graph on the left in Figure 7.1; the graph on the right represents this

distribution as a probability histogram. The probability histogram representation allows

us to easily visualize the probability of an event as the sum of the areas of the rectangles

over the values of X which comprise the event.

Figure 7.1 Binomial distribution n = 3 p = .5 – p.m.f. and probability histogram.

The distribution of X can also be characterized in terms of its cumulative distribution

function (denoted c.d.f.) FX , where

FX(x) = P (X ≤ x).

For discrete random variables the p.m.f. usually gives the more convenient characterization

of the distribution. The c.d.f. is useful for computing probabilities.
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7.2 Some examples toc

Example 7.2 Tossing a die – uniform distribution. Suppose that a fair (balanced) die is

tossed and let X denote the number on the upturned face. The sample space for X is

ΩX = {1, 2, 3, 4, 5, 6}. Since the die is assumed to be fair we will assume that these 6

outcomes are equally probable. (Note that tossing a fair die once is equivalent to selecting

a ball at random from a box containing six balls numbered from one to six.) Thus, the

p.m.f. of X is given by

pX(x) =
{

1/6 if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

.

This is an example of a uniform distribution on a finite set of integers. This uniform p.m.f.

is shown in the graph on the left in Figure 7.2; the graph on the right represents this

distribution as a probability histogram.

Figure 7.2 Uniform distribution on {1, 2, 3, 4, 5, 6} – p.m.f. and probability histogram.

Example 7.3 The sum when a die is tossed twice – triangular distribution. Suppose that

a fair (balanced) die is tossed twice and let X denote the sum of the numbers observed.

The elementary outcomes for this experiment can be represented by the 36 ordered pairs

of the form (a, b) where a, b ∈ {1, 2, 3, 4, 5, 6}. The sums and their relationship with these

elementary outcomes are shown in Table 7.2. Here the row label represents the number on

the first toss, the column label represents the number on the second toss, and the value in

the body of the table is the corresponding sum. Because the sums range from 2 to 12 the

sample space for X is ΩX = {2, 3, . . . , 12}.
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Table 7.2 Sums when a die is tossed twice.

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Since the die is assumed to be fair we will assume that these 36 elementary outcomes are

equally probable. Counting the number of favorable outcomes for each case we find that

the p.m.f. of X is given by

pX(x) =



1/36 if x = 2 or x = 12
2/36 if x = 3 or x = 11
3/36 if x = 4 or x = 10
4/36 if x = 5 or x = 9
5/36 if x = 6 or x = 8
6/36 if x = 7
0 otherwise

.

In this example, we can think of selecting a ball at random from a box containing 36 balls

of which 1 is numbered two, 2 are numbered three, 3 are numbered four, and so on. This

p.m.f. is shown in the graph on the left in Figure 7.3; the graph on the right represents this

distribution as a probability histogram. This is an example of a triangular distribution on

a finite set of integers.

Figure 7.3 Distribution of sum of two fair dice – p.m.f. and probability histogram.

(Triangular distribution on {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})



116 7.3 The binomial distribution

7.3 The binomial distribution toc

In Section 5.4 we introduced the binomial distribution as the distribution of the number of

objects of one type in a sample selected at random with replacement. We also discussed two

typical applications of the binomial distribution as the distribution of a random variable

X denoting the number of objects of a specified type in a sample. In Example 5.8 X

denoted the number of aces observed when a fair die was tossed 10 times. In Example 5.9

X denoted the number of red balls in a sample selected at random with replacement from

a population containing 100 red balls and 500 blue balls.

We will now provide a slightly different description of the binomial distribution. Consider

an experiment consisting of a sequence of n independent, dichotomous trials, where a trial

is a process of observation or experimentation which results in the occurrence of one of

two possible outcomes. The two possible outcomes are generically known as “success” and

“failure”. There is no connotation of “goodness” associated with the term “success”, this

term is simply used to indicate a success in the sense that the outcome of interest has

occurred. In Example 5.8 a trial is a toss of the die and tossing an ace (one) is a success.

In Example 5.9 a trial is the selection of a ball from the population and obtaining a red

ball is a success. The success probability p is the probability of observing a success on a

single trial and 1− p is the probability of observing a failure on a single trial. The random

variable of interest X is the number of successes observed in the sequence of n independent

trials.

A sequence of independent Bernoulli trials

Given a positive integer n and a probability p (0 < p < 1), a sequence of independent

Bernoulli trials with success probability p is a sequence of n dichotomous (success or

failure) trials with the properties that:

1. On each trial the probability of success is p; and,

2. The outcomes of the trials are independent.

A binomial r.v. X denotes the number of successes in a sequence of n independent Bernoulli

trials with success probability p.
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The binomial probability mass function

Given a positive integer n and a probability p (0 < p < 1), the binomial random variable

X denotes the number of successes in a sequence of n independent Bernoulli trials with

success probability p. For x = 0, 1, . . . , n, the binomial probability mass function is

of the form

pX(x) =

(
n

x

)
px(1− p)n−x.

Example 7.4 Number of red balls in a sample. Suppose we select a random sample of n = 4

balls with replacement from a box containing 60 balls of which 10 are red. We can think

of the selection of a single ball from the box as a trial. Since the balls are being selected

with replacement the outcomes of the four trials are independent and the probability of

obtaining a red ball is 1/6 for each selection, we can view these four selections of a ball

as forming a sequence of n = 4 Bernoulli trials with success probability p = 1/6. Hence,

letting X denote the number of red balls in the four selections, X is the binomial random

variable with p.m.f.

pX(x) =

(
4

x

)(
1

6

)x(
5

6

)4−x

for x = 0, 1, 2, 3, 4.

Example 7.5 Number of aces when tossing a fair die. Suppose a fair (balanced) die is

tossed n = 4 times and the number of aces (ones) is determined. Since the outcomes of

these four tosses are independent and the probability of obtaining an ace is 1/6 on each

toss, we can view these four tosses as forming a sequence of n = 4 Bernoulli trials with

success probability p = 1/6. Hence, letting X denote the number of aces in the four tosses,

X is the binomial random variable with p.m.f.

pX(x) =

(
4

x

)(
1

6

)x(
5

6

)4−x

for x = 0, 1, 2, 3, 4.

Some properties of binomial distributions are illustrated in Figures 7.4 and 7.5. Figure 7.4

shows that the binomial distribution is centered at np and the variability in the distribution

increases as the sample size n increases. In this figure the success probability is fixed at

p = .6 and histograms are provided for several sample sizes (n = 10, 20, 30, and 40).

Figure 7.5 shows how the shape of the binomial distribution and the variability in the

distribution depend on the value of the success probability p. In this figure the sample size
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is fixed at n = 20 and histograms are provided for several values of the success probability

(p = .5, .6, .7, .8, and .9). When p = .5, the distribution is exactly symmetric about

np = 10. When p 6= .5 the binomial distribution is skewed and as the value of p moves

away from .5 the distribution becomes more skewed. In this figure the values p = .6, .7, .8,

and .9 are greater than .5 and the distributions are skewed left. if we had used values less

than .5 the distributions would be skewed right. Notice that in addition to the increase in

skewness there is a decrease in variability as p moves away from .5.

Figure 7.4 Binomial distributions for p = .6. Histograms are provided for n = 10, 20, 30,

and 40. These distributions are centered at np for p = .6 and the appropriate value of n.

Notice how the variability in the distribution increases as n increases.

n = 10 n = 20

n = 30 n = 40
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Figure 7.5 Binomial distributions for n = 20. Histograms for p = .5, .6, .7, .8, and .9.

Each distribution is centered at 20p for the appropriate p. Notice how the variability in

the distribution decreases as p moves away from .5. Notice also how the distribution

becomes more skewed left as p moves away from .5.

p = .5 p = .6

p = .7 p = .8

p = .9
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When n = 1 our sequence of trials reduces to a single Bernoulli trial with X = 1 indicating

that a success has occurred and X = 0 indicating a failure. The binomial distribution for

the case when n = 1 is also know as a Bernoulli distribution. We will now consider an

interesting application.

Example 7.6 Mendelian inheritance models. In his investigations, during the years 1856

to 1868, of the chromosomal theory of inheritance Gregor Mendel performed a series of

experiments on ordinary garden peas. One characteristic of garden peas that Mendel

studied was the color of the flowers (red or white). When Mendel crossed a plant with red

flowers with a plant with white flowers, the resulting offspring all had red flowers. But

when he crossed two of these first generation plants, he observed plants with white as well

as red flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers

(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (combinations) RR,Rr, rR, and rr.

The three genotypes RR,Rr, and rR, which include the dominant R allele, will yield red

flowers while the fourth genotype rr will yield white flowers. If a red flowered RR genotype

parent is crossed with a white flowered rr genotype parent, then all of the offspring will

have genotype Rr and will produce red flowers. The basic Mendelian inheritance model

assumes that a pair of alleles is formed by randomly choosing one allele from each parent.

Under this model, if two of these first generation Rr genotype plants are crossed, each of

the four possible genotypes RR,Rr, rR, and rr is equally likely and plants with white as

well as red flowers will occur. Under this simple model, with each of the four genotypes

having the same probability of occurring, the probability that a plant will have red flowers

is P (red) = 3/4 and the probability that a plant will have white flowers is P (white) = 1/4.

The distribution of the r.v. X denoting flower color, with X = 1 indicating the plant

has red flowers and X = 0 indicating the plant has white flowers, follows the Bernoulli

distribution with p = 3/4.

We could test the validity of this model, as Mendel did, by crossing n pairs of peas plants

and determining the color of the flowers for these n crosses. If we let X denote the number

of these n crosses which result in a red flowered offspring, then X will follow the binomial

distribution with parameters n and p, where, according to Mendel’s model p = 3/4.
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7.4 The hypergeometric distribution toc

In Section 5.5 we introduced the hypergeometric distribution distribution as the distri-

bution of the number of objects of one type in a sample selected at random without

replacement. We discussed a typical application of the hypergeometric distribution as the

distribution of a random variable X denoting the number of objects of a specified type in

a sample. In Example 5.10 X denoted the number of aces in a five card poker hand. For

ease of reference the hypergeometric probability mass function is given below. Here we

have simplified the notation compared to that of Section 5.5.

The hypergeometric probability mass function

Given positive integers n, A, and B with n ≤ A+B, the hypergeometric random variable X

denotes the number of successes in random sample of size n selected without replacement

from a population containing A + B objects of which A are classified as successes and B

are classified as failures. Subject to some restrictions noted below, for x = 0, 1, . . . , n, the

hypergeometric probability mass function is of the form

pX(x) =

(
A
x

)(
B
n−x
)(

A+B
n

) .

Notice that the values of A and B may impose restrictions on the values of x for which

this expression works. Specifically, we must have x ≤ A and n− x ≤ B.

Example 7.7 The number of aces in a poker hand. Suppose that a five card poker hand

is dealt from a well–shuffled deck. Dealing a five card hand in this way is equivalent to

selecting five balls (cards) at random from a box containing 52 balls (cards) labeled so

that they represent the cards in the deck. Let X denote the number of aces in the hand.

In this application the 52 cards are partitioned into the set of A = 4 aces and the set of

B = 48 non–aces. For x = 0, 1, 2, 3, 4, the p.m.f. for this X is

pX(x) =

(
4
x

)(
48
5−x
)(

52
5

) .

For example, the probability of getting exactly 4 aces is

pX(4) =

(
4
4

)(
48
1

)(
52
5

) =
1 · 48

2598960
≈ .00002.
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Figure 7.6 Hypergeometric and binomial distributions compared, with n = 10, p = .5.

Left column: hypergeometric histograms for N = A+B = 20, 50, 200, and 500.

Middle column: binomial histogram for comparison. Right column: probabilities.

N = 20 binomial probabilities

 x  hyper   bino

 0  0.0000  0.0010

 1  0.0005  0.0098

 2  0.0110  0.0439

 3  0.0779  0.1172

 4  0.2387  0.2051

 5  0.3437  0.2461

 6  0.2387  0.2051

 7  0.0779  0.1172

 8  0.0110  0.0439

 9  0.0005  0.0098

10  0.0000  0.0010

N = 50 binomial probabilities

 x  hyper   bino

 0  0.0003  0.0010

 1  0.0050  0.0098

 2  0.0316  0.0439

 3  0.1076  0.1172

 4  0.2181  0.2051

 5  0.2748  0.2461

 6  0.2181  0.2051

 7  0.1076  0.1172

 8  0.0316  0.0439

 9  0.0050  0.0098

10  0.0003  0.0010

N = 200 binomial probabilities

 x  hyper   bino

 0  0.0008  0.0010

 1  0.0085  0.0098

 2  0.0410  0.0439

 3  0.1153  0.1172

 4  0.2082  0.2051

 5  0.2525  0.2461

 6  0.2082  0.2051

 7  0.1153  0.1172

 8  0.0410  0.0435

 9  0.0085  0.0098

10  0.0008  0.0010

N = 500 binomial probabilities

 x  hyper   bino

 0  0.0009  0.0010

 1  0.0092  0.0098

 2  0.0428  0.0439

 3  0.1165  0.1172

 4  0.2063  0.2051

 5  0.2486  0.2461

 6  0.2063  0.2051

 7  0.1165  0.1172

 8  0.0428  0.0439

 9  0.0092  0.0098

10  0.0009  0.0010
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For given values of the sample size n and the success proportion p, there is more variability

in a hypergeometric distribution than a binomial distribution. The pattern of dependence

of the basic shape of hypergeometric distributions on the values on n and p are similar

to those for binomial distributions. In particular, when p = 1/2 the hypergeometric

distribution is symmetric, when p < 1/2 it is skewed right, and when p > 1/2 it is skewed

left. When the population size N = A + B is large, the hypergeometric and binomial

distribution, for given values of n and p, are very similar. This relationship between the

hypergeometric and binomial distribution is illustrated, graphically and numerically, for

n = 10, p = 1/2 in Figure 7.6.

7.5 The geometric distribution toc

The binomial and hypergeometric distributions can be used to model the distribution of

the number of red balls (successes) in a sample of fixed size. We will now explore a variation

on this sampling procedure where balls are sampled, one at a time with replacement, until

a ball of the specified color (a success) is obtained.

Consider a box containing 20 balls of which 5 are red and 15 are blue. First a single ball

is selected at random from the 20 balls in the box and its color is determined. If the ball

is red we stop sampling. On the other hand, if the ball is blue, it is returned to the box

and this procedure is repeated until a red ball is obtained. Let X denote the number of

the trial (draw) on which the red ball is obtained. For example, X = 1 means we got a

red ball on the first draw and X = 10 means we got a blue ball on each of the first 9 draws

and then a red ball on the tenth draw. Notice that there is no upper limit on how many

draws might be needed to obtain a red ball so that, in this situation, the sample space for

X is the positive integers (the counting numbers) 1, 2, 3, . . .

We can view the results of this sampling process as forming a, potentially infinite, sequence

of trials, where a trial is the selection of a ball from the box. In the present context, since

we are sampling with replacement, the outcomes of the trials (draws) are independent and

on every trial the probability of selecting a red ball is p = 5
20 = 1

4 . In other words, we

are considering a potentially infinite sequence of independent Bernoulli trials with success

probability p = 1
4 which ends when the first success is obtained. In this context, using

R to denote a red ball and G to denote a blue ball, the results of the sequence of trials

(the elementary outcomes) can be represented by sequences of the form R, BR, BBR, . . ..

Notice that, letting x denote the number of the trial on which the red ball was obtained,
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these elementary outcome sequences contain x− 1 B′s followed by a single R. Notice also

that, since the outcomes of the trials are independent, the probability of observing x − 1

B′s (x− 1 blue balls) followed by 1 R (one red ball) is

pX(x) =

(
15

20

)x−1(
5

20

)
.

The geometric probability mass function

Given a probability p, with 0 < p < 1, consider a possibly infinite sequence of independent

Bernoulli trials with success probability p. The geometric random variable X denotes the

number of the trial on which the first success occurs. For x = 1, 2, 3 . . ., the geometric

probability mass function is of the form

pX(x) = (1− p)x−1p.

Example 7.8 Tossing a fair die until we get an ace. If a fair die is tossed repeatedly until

an ace (a one) appears, then the probability of observing this initial ace on the toss x is

( 5
6 )x−1( 1

6 ). For example:

The probability that the first ace appears on the first toss is ( 5
6 )0( 1

6 ) ≈ .1667;

The probability that the first ace appears on the second toss is ( 5
6 )1( 1

6 ) ≈ .1389;

The probability that the first ace appears on the third toss is ( 5
6 )2( 1

6 ) ≈ .1157;

while, the probability that the first ace appears on the tenth toss is ( 5
6 )9( 1

6 ) ≈ .0323;

and, the probability that the first ace appears on the twentieth toss is ( 5
6 )19( 1

6 ) ≈ .0052.

Example 7.9 Tossing a fair coin until we get a head. If a fair coin is tossed repeatedly

until a head appears, then the probability of observing this initial head on the toss x is

( 1
2 )x−1( 1

2 ) = (1
2 )x. For example:

The probability that the first ace appears on the first toss is ( 1
2 )1 = .5;

The probability that the first ace appears on the second toss is ( 1
2 )2 = .25;

The probability that the first ace appears on the third toss is ( 1
2 )3 = .125;

while, the probability that the first ace appears on the tenth toss is ( 1
2 )10 ≈ .0010;

and, the probability that the first ace appears on the twentieth toss is ( 1
2 )20 ≈ .000001.
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Graphical representations (with percentages) of the geometric distributions with p = 1/6

(the die tossing Example 7.8), p = 1/4 (the 5 red and 15 blue balls example), and p = 1/2

(the coin tossing Example 7.9) are provided in Figure 7.7. Note that in these plots the

x–axis is “X − 1” the number of failures before first success.

Terminology note: Some authors define the geometric random variable as Y = X − 1, the

number of failures before the first success.

Figure 7.7 Geometric distributions for p = 1/6, p = 1/4, p = 1/2 (first 30 terms)

In these plots the x–axis is “X − 1” the number of failures before first success.

p = 1/6 p = 1/4

p = 1/2
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7.6 The Poisson distribution toc

In many settings, the Poisson distribution provides a realistic model for a random variable

representing the number of occurrences of a “rare event”. Consider a sequence of events

occurring randomly in time or space and a count such as the number of radioactive particle

emissions per unit time, the number of meteorites that collide with a satellite during a

single orbit, the number of defects per unit length of some material, or the number of

weed seeds per unit volume in a large batch of wheat seeds. We can picture the time (or

location) of each occurrence as a point on the positive part of the number line. Consider

the following assumptions about the times (locations) of these occurrences:

1. The probability of exactly one occurrence in a small interval of length t is approximately

νt, where ν > 0 is the mean rate at which events occur per unit time (the mean rate of

occurrence).

2. The probability of more than one occurrence in a small interval of length t is negligible

compared to the probability of exactly one occurrence in a small interval of length t.

3. The numbers of occurrences in non–overlapping intervals are independent in the sense

that information concerning the number of events in one interval reveals nothing about

the number of events in any other interval.

If we let X denote the number of occurrences in a period of length t, then these three

assumptions imply that X follows the Poisson distribution with parameter λ = νt. The

possible values of X are 0, 1, . . ., with no theoretical upper bound on the value.

The Poisson probability mass function

Given a constant λ > 0. For x = 1, 2, 3 . . ., the Poisson probability mass function is

of the form

P (X = x) =
λx

x!
e−λ,

where e ≈ 2.718 is the base of the natural logarithm.

Two applications of the Poisson distribution are provided in the following examples.

Example 7.10 Example. Radioactive disintegrations. This example is taken from Feller

(1957), p. 149 and Cramér (1946) p. 436. In a famous experiment by Rutherford, Chad-

wick, and Ellis (Radiations from Radioactive Substances, Cambridge, 1920) a radioactive
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substance was observed during 2608 consecutive time intervals of length t = 7.5 seconds

each. The number of particles reaching a counter was recorded for each period. The results

are summarized in Table 7.3 and Figure 7.8. (In this table the observations greater than

or equal to 10 are grouped together. The data actually contain 10 tens, 4 elevens, and 2

twelves.) The last column of Table 7.3 contains expected relative frequencies (probabili-

ties) computed using a Poisson model with λ estimated from these data. These Poisson

probabilities appear to match the observed relative frequencies fairly well. A formal test

of the goodness of fit of this Poisson model to these data indicates that the model does fit

well (χ2 = 12.885, 9 d.f., P–value .17).

Table 7.3 Relative frequency distribution for
radioactive disintegrations.

observed expected
observed relative relative

number frequency frequency frequency

0 57 .0219 .0209
1 203 .0778 .0807
2 383 .1469 .1562
3 525 .2013 .2015
4 532 .2040 .1949
5 408 .1564 .1509
6 273 .1047 .0973
7 139 .0533 .0538
8 45 .0173 .0260
9 27 .0104 .0112
≥ 10 16 .0051 .0065

total 2608 .9991 .9999

Figure 7.8 Histogram for radioactive disintegrations (with ≥ 10 expanded).

0 1 2 3 4 5 6 7 8 9 10 11 12
number
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Example 7.11 Bacteria counts. This example is taken from Feller (1957), p.153. The

original source is T. Matuszewsky, J. Supinska, and J. Neyman (1936), Zentralblatt für

Bakteriologie, Parasitenkunde und Infektionskrankrankheiten, II Abt., 95. A Petri dish

with bacteria colonies was examined under a microscope. The dish was divided into small

squares and the number of bacteria colonies, visible as dark spots, was recorded for each

square. In this example t is the area the square within which the count is determined and

we will take this area to be one. If the bacteria colonies were randomly distributed over

the Petri dish, without being clustered together, then the Poisson model should hold. The

results for one of several experiments are summarized in Table 7.4 and Figure 7.9. The

last column of Table 7.4 contains expected relative frequencies (probabilities) computed

using a Poisson model, with λ estimated from these data. In this example the observed

relative frequency in the “≥ 6” line is for “exactly 6”, but, the expected relative frequency

is for all values greater than or equal to 6. These Poisson probabilities appear to match the

observed relative frequencies fairly well. Therefore, the evidence supports the contention

that the bacteria colonies are randomly distributed over the Petri dish. A formal test of

the goodness of fit of this Poisson model to these data indicates that the model does fit

well (χ2 = .8386, 5 d.f., P–value .9745).

Table 7.4 Relative frequency distribution for bacteria counts.

observed expected
observed relative relative

number frequency frequency frequency

0 5 .0424 .0533
1 19 .1610 .1562
2 26 .2203 .2290
3 26 .2203 .2239
4 21 .1780 .1641
5 13 .1102 .0962
≥ 6 8 .0678 .0772

total 118 1.0000 .9999
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Figure 7.9 Histogram for bacteria counts.

0 1 2 3 4 5 6
number

7.7 Expected value toc

There are many situations where we might wonder what value to expect when we perform

an experiment and observe the value of a particular random variable. Before we can

address this topic more formally we need to explain exactly what we mean when we say

“what value to expect”. The expected value of a random variable can be viewed as the

long run average value of the random variable. That is, the average of the values of the

random variable we would obtain if we conducted the experiment and observed the value

of the random variable a large number of times. Before we introduce a formal definition it

is helpful to consider a simple example of a real world application of an expected value.

Example 7.11 Expected winnings in roulette An American style roulette wheel, as shown

in Figure 7.10, has 38 pockets of which 18 are red, 18 are black, and 2 are green. We will

consider the expected winnings for a one dollar bet on red (a bet that the ball will land in

one of the 18 red pockets).

Figure 7.10 An American roulette wheel and betting table
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Let the random variable W denote our winnings. This random variable assumes two values:

W = 1 indicates that the ball lands in a red pocket and we win one dollar; while W = −1

indicates that the ball lands in a black or green pocket and we lose one dollar. Since 18 of

the 38 pockets are red, the probability mass function for W is given by

pW (w) =

{
18/38 if w = 1
20/38 if w = −1
0 otherwise

.

If we imagine placing this bet a large number of times, then we see that in about 18 out

of 38 tries (about 47.37% of the time) we will win a dollar (we will observe W = 1) and in

about 20 out of 38 tries (about 52.63% of the time) we will lose a dollar (we will observe

W = −1). Thus, on average in the long run, we expect to see an average winnings of

(18− 20)/38 = −2/38 dollars (about -.0526 dollars or -5.26 cents). That is, if we made a

large number of bets, on average, we would lose 5.26 cents per bet. The long run average

winnings we computed, (18− 20)/38 = −2/38 dollars, is called the expected values of W .

The notation for the expected value of W is E(W ).

We will now provide a formal definition of the expected value of a discrete random variable.

If X is a discrete r.v. with finite sample space ΩX = {x1, . . . , xN} and p.m.f. pX , then the

expected value of X, denoted by E(X) or µX , is defined as the weighted average of the

possible values of X (the elements of ΩX) obtained using the associated probabilities (the

corresponding values of pX(x)) as weights. In symbols we have

E(X) = x1pX(x1) + x2pX(x2) + · · ·+ xNpX(xN ) =
N∑
i=1

xipX(xi).

Example 7.12 Two distributions to illustrate computations Let X and Y denote r.v.’s with

the following p.m.f.’s

pX(x) =



.1 if x = 1

.2 if x = 2

.4 if x = 3

.2 if x = 4

.1 if x = 5
0 otherwise

pY (y) =



.1 if y = 1

.1 if y = 2

.2 if y = 3

.2 if y = 4

.4 if y = 5
0 otherwise

.

The expected values of X and Y are:

E(X) = .1(1) + .2(2) + .4(3) + .2(4) + .1(5) = .1 + .4 + 1.2 + .8 + .5 = 3
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E(Y ) = .1(1) + .1(2) + .2(3) + .2(4) + .4(5) = .1 + .2 + .6 + .8 + 2.0 = 3.7.

A tabular representation of these computations may be helpful. In these tabular represen-

tations the expected value is the sum of the xpX(x) column.

x pX(x) xpX(x) y pY (y) ypY (y)

1 .1 1× .1 = .1 1 .1 1× .1 = .1
2 .2 2× .2 = .4 2 .1 2× .1 = .2
3 .4 3× .4 = 1.2 3 .2 3× .2 = .6
4 .2 4× .2 = .8 4 .2 4× .2 = .8
5 .1 5× .1 = .5 5 .4 5× .4 = 2.0

E(X) = 3 E(Y ) = 3.7

If the sample space is countably infinite (as with the geometric or Poisson distribution),

then ΩX = {x1, x2, . . .} is countably infinite and the sum in the definition of E(X) has an

infinite number of terms (does not stop at a finite N).

An aside – existence of expected values

Some technicalities may arise when ΩX is countably infinite. The problem is that for some

choices of the p.m.f. pX the series (infinite sum) in the definition of the expected value

may not exist. (More formally, this series may not converge.) We do not need to worry

about this technicality, since the expected value does exist for all of the discrete random

variables with countably infinite sample spaces we will encounter.

Expected value as center of mass

If X is a discrete r.v. with finite sample space ΩX = {x1, . . . , xN} and p.m.f. pX , then,

as the name suggests, we can think of the probabilities pX(x1), . . . , pX(xN ) as masses

located at points x1, . . . , xN on a segment of the number line. With this interpretation the

center of mass of the distribution of X is located at E(X) = x1pX(x1) + · · ·+ xNpX(xN ).

Similarly, if ΩX = {x1, x2, . . .}, then the center of mass of the distribution of X is located

at E(X) = x1pX(x1) + x2pX(x2) + · · ·.
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Expected value as population mean

If an individual is selected at random from a population of N people and X represents

the individual’s height in inches so that ΩX represents the collection of distinct heights for

this population and pX(xi) is the proportion of individuals in the population with height

xi, then E(X) is the population mean height (the average height of all N people in the

population).

The expected value of a function of X

We will now show how the definition of the expected value of X can be extended to the

expected value of a function of X. The expected value of a function of X may be of

interest in some applications. Also, as we will see shortly, the variance of X is defined as

the expected value of a specific function of X. Let g denote the function of interest and

let ΩY denote the range of the function, that is, ΩY is the collection of values obtained

when the function g is applied to the elements of ΩX . If ΩX and ΩY are discrete, then

Y = g(X) is a discrete r.v. and there are two ways to compute the expected value of Y .

Letting ΩX = {x1, x2, . . . xN} and ΩY = {y1, y2, . . . yM}:
(1) We can find the p.m.f. pY of Y and compute the expected value of Y as

E(Y ) = y1pY (y1) + y2pY (y2) + · · ·+ yMpY (yM ) =
M∑
i=1

yipY (yi).

(2) We can use the p.m.f. pX of X to compute the expected value of Y as

E(Y ) = E(g(X)) = g(x1)pX(x1) + g(x2)pX(x2) + · · ·+ g(xN )pX(xN ) =

N∑
i=1

g(xi)pX(xi).

The analogous expressions with infinite sums apply in the countably infinite case. We will

demonstrate these computations in the context of finding the expected winnings of a bet

on red in the roulette example.

Example 7.11 Expected winnings in roulette (revisited) The 36 pockets on the roulette

wheel shown in Figure 7.10, are numbered as follows: pockets 0 and 00 are green;

pockets 1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34, and 36 are red; and,

pockets 2,4,6,8,10,11,13,15,17,20,22,24,26,28,29,31,33, and 35 are black. If we let X denote

the number on the pocket the ball lands in, then the r.v. X follows the uniform distribution

with ΩX = {0, 00, 1, 2, . . . , 36}. In terms of this X the function g which defines the
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winnings for a bet on red assigns the value 1 to the numbers associated with the red

pockets and assigns the value -1 to the numbers associated with the green and black

pockets so that the r.v. W = g(X) is the winnings for a bet on red. As noted earlier,

E(W ) = (1)18
38 + (−1) 20

38 = − 2
38 . Using the relationship W = g(X) and the uniform

distribution of X, with some regrouping, we have

E(W ) = (1) [pX(1) + pX(3) + · · ·+ pX(34) + pX(36)]

+ (−1) [pX(2) + pX(4) + · · ·+ pX(33) + pX(35) + pX(0) + pX(00)]

= (1)
18

38
+ (−1)

20

38
= − 2

38
,

since pX(x) = 1
38 for the 38 values in ΩX and there are 18 values with g(x) = 1 and 20

values with g(x) = −1.

Example 7.12 Two distributions to illustrate computations, revisited Recall that X and Y

denote r.v.’s with the following p.m.f.’s

pX(x) =



.1 if x = 1

.2 if x = 2

.4 if x = 3

.2 if x = 4

.1 if x = 5
0 otherwise

pY (y) =



.1 if y = 1

.1 if y = 2

.2 if y = 3

.2 if y = 4

.4 if y = 5
0 otherwise

.

We will now find the expected values of X2 and Y 2. The reason that these expected values

are of interest will become clear shortly.

E(X2) = .1(12) + .2(22) + .4(32) + .2(42) + .1(52)

= .1(1) + .2(4) + .4(9) + .2(16) + .1(25)

= .1 + .8 + 3.6 + 3.2 + 2.5 = 10.2

E(Y 2) = .1(12) + .1(22) + .2(32) + .2(42) + .4(52)

= .1(1) + .1(4) + .2(9) + .2(16) + .4(25)

= .1 + .4 + 1.8 + 3.2 + 10.0 = 15.5.
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As before, a tabular representation of these computations may be helpful. In these tabular

representations the expected value of X2 is the sum of the x2pX(x) column.

x pX(x) x2pX(x) y pY (y) y2pY (y)

1 .1 1× .1 = .1 1 .1 1× .1 = .1
2 .2 4× .2 = .8 2 .1 4× .1 = .4
3 .4 9× .4 = 3.6 3 .2 9× .2 = 1.8
4 .2 16× .2 = 3.2 4 .2 16× .2 = 3.2
5 .1 25× .1 = 2.5 5 .4 25× .4 = 10.0

E(X2) = 10.2 E(Y 2) = 15.5

7.8 Variance toc

The expected value or mean of the distribution of X, E(X) = µX , provides an indication

of where the “center” of the distribution is located on the number line. It would also be

useful to have a measure of the amount of variability in the distribution of X. The variance

is one such measure of variability. The variance of the distribution of X is the long run

average value of the square of the distance between the points in the sample space ΩX and

the mean µX of the distribution. More formally, letting E(X) = µX denote the mean of

the distribution of X, and assuming that this mean exists, the function g(x) = (x− µX)2

(the squared deviation of x from the mean of the distribution of X) can be used to define

a measure of the variability in the distribution of X. The expected value of the r.v.

g(X) = (X − µX)2 is the variance of the distribution of X.

If X is a discrete r.v. with sample space ΩX = {x1, . . . , xN}, p.m.f. pX , and mean µX =

E(X), then the variance of X, denoted by var(X) or σ2
X , is defined by

var(X) = (x1 − µX)2pX(x1) + · · ·+ (xN − µX)2pX(xN ) =
N∑
i=1

(xi − µX)2pX(xi).

Similarly, if ΩX = {x1, x2, . . .}, then the variance is

var(X) = (x1 − µX)2pX(x1) + (x2 − µX)2pX(x2) + · · · =
∞∑
i=1

(xi − µX)2pX(xi).

Since squared distances are used in its definition the scale of measurement for the variance

of X is the square of the scale of measurement for X itself. For example, if X denotes
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the height of a person in inches, then the variance of X, which provides a measure of

variability among the heights of different individuals, is measured in inches squared. This

change of scale is undesirable in practical applications where we really need a measure

of variability on the original scale of measurement. To obtain a measure of variability

on the original scale of measurement we simply take the square root of the variance to

obtain the standard deviation. The principal (positive) square root of the variance of X,

SD(X) = σX =
√

var(X), is know as the standard deviation of X.

Example 7.12 Two distributions to illustrate computations, revisited Recall that X and Y

denote r.v.’s with the following p.m.f.’s

pX(x) =



.1 if x = 1

.2 if x = 2

.4 if x = 3

.2 if x = 4

.1 if x = 5
0 otherwise

pY (y) =



.1 if y = 1

.1 if y = 2

.2 if y = 3

.2 if y = 4

.4 if y = 5
0 otherwise

and that E(X) = 3 and E(Y ) = 3.7. We will now find the variances and standard

deviations of X and Y .

var(X) = .1(1− 3)2 + .2(2− 3)2 + .4(3− 3)2 + .2(4− 3)2 + .1(5− 3)2

= .1(−2)2 + .2(−1)2 + .4(0)2 + .2(1)2 + .1(2)2

= .4 + .2 + 0 + .2 + .4 = 1.2

var(Y ) = .1(1− 3.7)2) + .1(2− 3.7)2 + .2(3− 3.7)2 + .2(4− 3.7)2 + .4(5− 3.7)2

= .1(−2.7)2 + .1(−1.7)2 + .2(−0.7)2 + .2(0.3)2 + .4(1.3)2

= .729 + .289 + .098 + .018.676 = 1.81.

The standard deviations are SD(X) = σX =
√

1.2 ≈ 1.0954 and SD(Y ) = σY =
√

1.81 ≈
1.3454.

Again, a tabular representation of these computations may be helpful. In these tabular

representations the variance of X is the sum of the (x− E(X))2pX(x) column.

x pX(x) (x− E(X))2pX(x) y pY (y) (y − E(Y ))2pY (y)

1 .1 (−2)2 × .1 = .4 1 .1 (−2.7)2 × .1 = .729
2 .2 (−1)2 × .2 = .2 2 .1 (−1.7)2 × .1 = .289
3 .4 (0)2 × .4 = 0 3 .2 (−.7)2 × .2 = .098
4 .2 (1)2 × .2 = .2 4 .2 (.3)2 × .2 = .018
5 .1 (2)2 × .1 = .4 5 .4 (1.3)2 × .4 = .676

var(X) = 1.2 var(Y ) = 1.81



136 7.8 Variance

A computational formula for the variance

The variance of X can be computed by subtracting the square of the expected value of X

from the expected value of the square of X. In symbols,

var(X) = E(X2)− [E(X)]2.

Example 7.12 Two distributions to illustrate computations, revisited For the random vari-

ables X and Y of this example. We have E(X) = 3, E(Y ) = 3.7, E(X2) = 10.2, and

E(Y 2) = 10.5. Thus var(X) = 10.2−(3)2 = 1.2 and var(Y ) = 15.5−(3.7)2 = 15.5−13.69 =

1.81.

Some useful properties of expected values and variances

For these properties a and b denote constants, X and Y are discrete r.v.’s, and E(X),

E(Y ), and var(X) are assumed to exist.

(1) The expected value of a constant is that constant. In symbols,

E(a) = a.

(2) If X is bounded below by a (X is always greater than or equal to a or more formally X

is greater than or equal to a with probability one), then the expected value of X is greater

than or equal to a. In symbols,

if P (X ≥ a) = 1, then E(X) ≥ a.

(3) Similarly, if X is bounded above by b (X is always less than or equal to b or more

formally X is less than or equal to b with probability one), then the expected value of X

is less than or equal to b. In symbols, if

if P (X ≤ b) = 1, then E(X) ≤ b.

(4) Combining (2) and (3) we see that if X is always between a and b or more formally X

takes on a value between a and b, inclusive, with probability one, then the expected value

of X is between a and b, inclusive. In symbols,

if P (a ≤ X ≤ b) = 1, then a ≤ E(X) ≤ b.
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(5) If we transform the value of X by first multiplying X by a constant b and then adding

a constant a, then the expected value of X is transformed in the same way. In symbols,

E(a+ bX) = a+ bE(X).

(6) The expected value of the sum of two (or more) random variables is equal to the sum

of their expected values. In symbols,

E(X + Y ) = E(X) + E(Y ).

(7) We will now note what happens to the variance of X when we transform the value of

X by first multiplying X by a constant b and then adding a constant a. Since variance is

a measure of variability adding the constant a has no effect on the variance. Multiplying

X by the constant b changes the scaling of the values of X, if |b| > 1 the values get more

spread out on the number line, if |b| < 1 the values get closer together (less spread out) on

the number line, and if b < 0 then the ordering of the values is reversed. Therefore, the

transformation of X to a+bX has a multiplicative effect on the variance of X corresponding

to a multiplication by the square of the constant b. In symbols,

var(a+ bX) = b2var(X).

(8) The variance of a constant is zero,

var(a) = 0.

7.9 Means, variances, and pmf’s for several families of distributions toc

A family of distributions is a collection of distributions of a specified form which is known

up to the values of one or more parameters. For the families summarized below, the p.m.f.

is expressed as a function of one or more parameters and the family is obtained by varying

the parameter or parameters over all suitable values.
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Binomial distribution

The binomial distribution with parameters n (number of trials) and p (success probability).

Restrictions on the parameters: n is a positive integer (1, 2, 3, . . .) and 0 < p < 1.

Probability mass function:

pX(x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n

Mean and variance:

E(X) = np and var(X) = np(1− p)

Hypergeometric distribution

The hypergeometric distribution with parameters A (number of units of the first type in

the population), B (number of units of the second type in the population), and n (sample

size).

Restrictions on the parameters: A, B, and n are positive integers (1, 2, 3, . . .) with

n ≤ A+B.

Probability mass function:

pX(x) =

(
A
x

)(
B
n−x
)(

A+B
n

) for x = 0, 1, . . . , n subject to the restrictions below.

Notice that the values of A and B may impose restrictions on the values of x for which

this expression works. Specifically, we must have x ≤ A and n− x ≤ B.

Mean and variance:

E(X) = n

(
A

A+B

)
and var(X) = n

(
A

A+B

)(
B

A+B

)(
A+B − n
A+B − 1

)
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Geometric distribution

The geometric distribution with parameter p (success probability).

Restrictions on the parameter: 0 < p < 1.

Probability mass function:

pX(x) = (1− p)x−1p for x = 1, 2, 3, . . .

Mean and variance:

E(X) =
1

p
and var(X) =

1− p
p2

Uniform distribution

The discrete uniform distribution on the integers 1, 2, . . . , N .

Restrictions on the parameter: The parameter N is a positive integer (1, 2, 3, . . .).

Probability mass function:

pX(x) =
1

N
for x = 1, 2, . . . , N

Mean and variance:

E(X) =
N + 1

2
and var(X) =

N2 − 1

12

Poisson distribution

The Poisson distribution with parameter λ.

Restrictions on the parameter: λ > 0.

Probability mass function:

pX(x) =
λx

x!
e−λ for x = 0, 1, 2, 3, . . .

Mean and variance:

E(X) = λ and var(X) = λ
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8 Continuous random variables toc

8.1 Moving from a discrete to a continuous random variable toc

A continuous random variable is a random variable X for which the sample space ΩX is a

(bounded or unbounded) interval of values on the number line. The term continuous here

refers to the fact that when ΩX is an interval the possible values of the random variable

form a continuum. That is, there is a continuous transition from one possible value to the

next in contrast to the jumps between values with a discrete transition. We will begin

with a simple example showing how we can move from a discrete uniform distribution on

six integers to a continuous uniform distribution on an interval.

Figure 8.1 A spinner on a disk with six equiangular regions

Consider a spinner atop a disk and an experiment consisting of spinning the pointer and

noting its location on the circumference of the disk. In particular consider the spinner in

Figure 8.1 where the circumference of the disk is divided into six equal length arcs. If we

assume that the spinner is very well made and balanced, then it is reasonable to claim

that the six values on the disk are equally probable. (If the pointer lands exactly on one

of the boundaries, then we can simply spin again until the pointer lands inside a region.)

Hence, under these assumptions, the discrete random variable X, denoting the number on

the region where the pointer lands, follows the uniform distribution on the integers in the

sample space ΩX = {1, 2, 3, 4, 5, 6}.
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Figure 8.2 Uniform distributions on the interval from 0 to 360.

The first two graphs show probability histograms for discrete uniform distributions

on the midpoints of 6 and 24 equal length subintervals (arcs).

The third graph shows the continuous uniform density curve (p.d.f.).

Discrete Uniform – 6 arcs Discrete Uniform – 24 arcs

Continuous Uniform

On the other hand, if we think of the circumference of the disk as a continuum, then we

can represent an elementary outcome as a real number representing the angle of the radius

to the point where the pointer stops. Let the points on the circumference of the disk be

labeled in degrees starting with zero on the radius between 6 and 1 and moving clockwise

and let Y denote the angle corresponding to the point where the pointer lands. With

this convention the sample space is the interval from 0 to 360 degrees, i.e., ΩY = [0, 360),

with 0 < Y < 60 corresponding to X = 30, 60 < Y < 120 corresponding to X = 90,

120 < Y < 180 corresponding to X = 150, 180 < Y < 240 corresponding to X = 210,

240 < Y < 300 corresponding to X = 270, and 300 < Y < 360 corresponding to X = 330.
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If we think of these six arcs as six discrete outcomes corresponding to these six values of

X, then we can label and scale the probability histogram of X so that it lies on the interval

from 0 to 360 on the number line. As noted above, with this scaling the midpoints of the

arcs 30, 90, 150, 210, 270, and 330 are the values of X. This probability histogram is

shown in the first graph of Figure 8.2. Each of the rectangles in the probability histogram

has height 1/360.

It seems natural to argue that the continuous random variable Y should be uniformly

distributed on the sample space ΩY = [0, 360). More formally, it seems natural to require

that the probability that Y takes on a value within any arc of length θ (0 < θ < 360) is

equal to the length of the arc divided by 360, i.e., for 0 < θ < 360 and any arc of length θ,

the probability that Y belongs to this arc (that the pointer stops within this arc) is θ
360 .

As shown in Figure 8.2, the probability histogram for this continuous uniform distribution

on ΩY = [0, 360) is a single rectangle of height 1/360 located over the interval from 0 to

360.

The probability histogram for the discrete uniform distribution on 24 arcs in Figure 8.2 is

provided to indicate how we can think of the continuous uniform probability histogram as

the limiting version of the discrete uniform probability histogram (on this same interval)

which we would obtain if we made the rectangles narrower and narrower. That is, to

indicate that by increasing the number of arcs that the circle (interval) is partitioned into

the histogram of the discrete uniform distribution would approach the histogram of the

continuous uniform distribution.

Notice that with this continuous uniform distribution on the circumference of the disk the

probability that the pointer lands at a specified point is zero but the probability that it

lands in a specified arc, of length θ, which contains the point is θ
360 > 0. Notice also that

that if the length of the arc containing the point is made shorter and shorter, then the

arc degenerates to the point and the probability θ
360 approaches zero; thus, the notion of

a point having probability zero is consistent with this assignment of probability to an arc.

8.2 Continuous random variables toc

We will now consider probability models for the distribution of a continuous random vari-

able. Recall that a continuous random variable is a random variable X for which the

sample space ΩX is a (bounded or unbounded) interval of values on the number line. In
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Section 8.1 we showed how a continuous uniform distribution on an interval arises as a

sort of limiting version of a discrete uniform distribution on the same interval obtained by

letting the number of possible values increase without bound. If we modified our division

of the disk by allowing the lengths of the arcs to vary, our limiting argument would lead to

a non–uniform continuous distribution. We will now consider continuous random variables

more generally.

As noted above, the sample space of a continuous random variable is a (bounded or un-

bounded) interval of values on the number line. For simplicity, the sample space is often

the entire number line or the nonnegative part of the number line. We can characterize

the distribution of the continuous r.v. X by specifying a probability density function

(denoted p.d.f.) fX . We will emphasize the graph of the p.d.f. and we will also refer to the

p.d.f. as a density curve. A probability density function fX is a nonnegative valued func-

tion with the property that the area under the graph of the function (the density curve)

is one. That is, the area between the x–axis and the density curve is one. We can think of

the density curve as a smooth version of a probability histogram with the rectangles of the

histogram replaced by a smooth curve indicating where the tops of the rectangles would

be.

As noted above, the area under a density curve (p.d.f.) is one. The probability of an

event is equal to the area under the density curve over the interval corresponding to the

event. Thus, for any event A defined in terms of the continuous r.v. X with p.d.f fX , the

probability of event A is equal to the area under the graph of fX over the region A. For

example, if the event A is an interval, say A = (a, b), then the probability that X belongs

to A, P (a < X < b) is equal to the area under the p.d.f. fX (under the density curve)

over the interval (a, b). We can use a computer or a calculator to find such probabilities

(areas).

This identification of the probability of an event with an area under a density curve is

illustrated in Figures 8.3 and 8.4. In these figures, X1 is a continuous random variable

with a symmetric distribution and X2 is a continuous random variable with a skewed right

distribution. In Figure 8.3 the probabilities are of the form P (X ≤ a) and in Figure 8.4

the probabilities are of the form P (a ≤ X ≤ b).



144 8.2 Continuous random variables

Figure 8.3 Continuous distributions – probability as area

symmetric distribution: X1, skewed right distribution: X2

P (X1 ≤ 1) = .028 P (X2 ≤ 1) = .1869

P (X1 ≤ 3) = .216 P (X2 ≤ 3) = .7447

P (X1 ≤ 5) = .5 P (X2 ≤ 5) = .9648
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Figure 8.4 Continuous distributions – probability as area

P (1 ≤ X1 ≤ 3) = .188 P (1 ≤ X2 ≤ 3) = .5578

P (3 ≤ X1 ≤ 5) = .284 P (3 ≤ X2 ≤ 5) = .2201

Notice that fX(x) is not a probability! With a continuous random variable only events

which can be represented as non–degenerate intervals (or unions of non–degenerate in-

tervals) can have positive probability, since probability is defined as the area under the

density curve and we need at least one non–degenerate interval to obtain a positive area.

Given a probability model for the distribution of a continuous random variable X, i.e.,

given a density curve for the distribution of X, we can define population parameters

which characterize relevant aspects of the distribution. For example, we can define the

population mean µ as the balance point of the unit mass bounded by the density curve

and the number line. We can also think of the population mean as the weighted average

of the infinite collection of possible values of X with weights determined by the density
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curve. We can similarly define the population median M as the point on the number line

where a vertical line would divide the area under the density curve into two equal areas

(each of size one–half).

The distribution of X can also be characterized in terms of its cumulative distribution

function (denoted c.d.f.) FX , the c.d.f. gives the probability of events of the form [X ≤ x],

thus

FX(x) = P (X ≤ x).

For a continuous random variable the value of the c.d.f. FX(x) is the area under the density

curve over the interval which ranges from minus infinity to x. As noted earlier, we can use

a computer or a calculator to determine such areas (integrals).

The cumulative distribution functions corresponding to the probability density functions of

Figure 8.3 are provided in Figure 8.5. In this figure lines at x = 3 and FX(3) are included

to show how the c.d.f yields the value of the corresponding area under the p.d.f over the

interval (0, 3) as shown in Figure 8.3.

Figure 8.5 Continuous distributions – cumulative distribution functions

cdf of the symmetric distribution cdf of the skewed right distribution

of X1 of Figure 8.3 of X2 of Figure 8.3

lines show x = 3 and FX1(3) = .216 lines show x = 3 and FX2(3) = .7447
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8.3 The normal distribution toc

The most widely used continuous probability model is the normal probability model or

normal distribution. The normal distribution with mean µ and standard deviation σ can

be characterized by its density curve. The density curve for the normal distribution with

mean µ and standard deviation σ is the familiar bell shaped curve. The standard normal

density curve, which has mean µ = 0 and standard deviation σ = 1, is shown in Figure

8.6. The standard normal cumulative distribution function is shown in Figure 8.7.

Figure 8.6 The standard normal p.d.f. (density curve).

Figure 8.7 The standard normal c.d.f.

The normal distribution with mean µ and its density curve are symmetric around µ, i.e.,

if we draw a vertical line through µ, then the two sides of the density curve are mirror

images of each other. Therefore the mean of a normal distribution µ is also the median of

the normal distribution. The mean µ locates the normal distribution on the number line so

that if we hold σ constant and change the mean µ, the normal distribution is simply shifted



148 8.3 The normal distribution

along the number line until it is centered at the new mean. In other words, holding σ fixed

and changing µ simply relocates the density curve on the number line; it has no effect on

the shape of the curve. Figure 8.8 provides the density curves for normal distributions

with respective means µ = 0, µ = 1, and µ = 2 and common standard deviation σ = 1.

Figure 8.8 Normal distributions with common standard deviation one and
means of zero, one, and two.

The standard deviation σ indicates the amount of variability in the normal distribution. If

we hold µ fixed and increase the value of σ, then the normal density curve becomes flatter,

while retaining its bell–shape, indicating that there is more variability in the distribution.

Similarly, if we hold µ fixed and decrease the value of σ, then the normal density curve

becomes more peaked around the mean µ, while retaining its bell–shape, indicating that

there is less variability in the distribution. Normal distributions with mean µ = 0 and

respective standard deviations σ = 1/2, σ = 1, and σ = 2 are plotted in Figure 8.9.
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Figure 8.9 Normal distributions with common mean zero and standard
deviations one–half, one, and two.

Computer programs and calculators can be used to compute normal probabilities or equiv-

alently to compute areas under the normal density curve. These probabilities can also be

calculated using tables of standard normal distribution probabilities such as Table 8.12.

To use this table or a calculator which only handles the standard normal distribution, you

need re–express probability statements in terms of a standard normal random variable.

The relationship between the standard normal random variable Z and the general normal

random variable X, when X has mean E(X) = µ and standard deviation σ, is

Z =
X − µ
σ

or equivalently X = µ+ Zσ.

This relationship implies that a probability statement about the normal variable X can

be re–expressed as a probability statement about the standard normal variable Z by re–

expressing the statement in terms of standard deviation units from the mean. Given

two constants a < b, observing a value of X between a and b (observing a ≤ X ≤ b)

is equivalent to observing a value of Z = (X − µ)/σ between (a − µ)/σ and (b − µ)/σ

(observing (a − µ)/σ ≤ (X − µ)/σ ≤ (b − µ)/σ). Furthermore, Z = (X − µ)/σ behaves

in accordance with the standard normal distribution so that the probability of observing
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a value of X between a and b, denoted by P (a ≤ X ≤ b), is equal to the probability that

the standard normal variable Z takes on a value between (a− µ)/σ and (b− µ)/σ, i.e.,

P (a ≤ X ≤ b) = P

(
a− µ
σ
≤ Z ≤ b− µ

σ

)
.

In terms of areas this probability equality says that the area under the normal density

curve with mean µ and standard deviation σ over the interval from a to b is equal to the

area under the standard normal density curve over the interval from (a−µ)/σ to (b−µ)/σ.

Similarly, given constants c < d, we have the analogous result that

P (c ≤ Z ≤ d) = P (µ+ cσ ≤ X ≤ µ+ dσ).

Table 8.12 provides cumulative standard normal probabilities of the form P (Z ≤ a) for

values of a (Z in the table) between 0 and 3.69. Computer programs usually produce

cumulative probabilities like these. To use these cumulative probabilities to compute a

probability of the form P (a ≤ Z ≤ b) note that

P (a ≤ Z ≤ b) = P (Z ≤ b)− P (Z ≤ a)

and note that the symmetry of the normal distribution implies that

P (Z ≤ −a) = P (Z ≥ a) = 1− P (Z ≤ a).

Calculators often provide probabilities of the form P (a ≤ Z ≤ b) directly.

Example 8.1 NHANES The National Health and Nutrition Examination Survey (NHANES)

We will use some data from the 2013–2014 NHANES (see Example 1.1) to illustrate some

cases where the normal distribution does and does not provide a suitable model for the dis-

tribution of a variable. We will consider the distributions of three variables: age, height,

and weight. All available data for the 5588 adults (age 20 and over) in the 2013–2014

NHANES are used. For females the samples sizes are: n = 2919 for age and n = 2888

for height and weight. For males we have: n = 2669 for age, n = 2642 for height, and

n = 2645 for weight. The data for the females is summarized graphically in Figure 8.10

and that for the males in Figure 8.11. Two density curves are superimposed on the his-

tograms in the left column of these figures. There is a normal density curve, with µ and σ
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chosen to match the data, and there is a “kernel” density curve which is basically a smooth

version of the histogram. It is somewhat tricky to properly compare distributions based

on histograms or density curves. Cumulative distribution functions, and associated graphs

and statistics, form a better basis for such comparisons. The graphs in the right column

contain an empirical (sample) cumulative distribution function and the cumulative distri-

bution function for the fitted normal distribution. The empirical c.d.f is a “step function”

based on the observed data values. The “steps” in this function are most pronounced in

the graphs for the age distributions. The fact that the empirical (sample) and theoretical

(normal) c.d.f.’s for the height distributions (females and males) are essentially indistin-

guishable indicates that the normal distribution provides a reasonable model for the height

distribution. The weight distributions (females and males) are not modeled very well by a

normal distribution. For both sexes the weight distributions are too strongly skewed right

for the normal model to fit well. The age distributions are clearly non-normal. Actually,

the reason that I included these age distributions is so that you could more easily see the

appearance (steps) of an empirical c.d.f.
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Figure 8.10 NHANES 2013–2014 height, weight, and age distributions for females
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Figure 8.11 NHANES 2013–2014 height, weight, and age distributions for males
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Z

Probability

Table 8.12 Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

continued on next page
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Z

Probability

Table 8.12 (continuation) Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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8.4 The exponential distribution toc

Exponential distributions are often used to model the time until the occurrence of an

event. For example, we might use an exponential distribution to model the amount of

time (starting from now) until an earthquake occurs or until a machine malfunctions.

The exponential distribution is defined for nonnegative values, that is, the sample space

for an exponential random variable is the nonnegative part of the x–axis. An exponential

distribution is determined by the value of a single parameter λ > 0. The p.d.f. of the

exponential distribution with parameter λ > 0 is given by

fX(x) = λe−λx

for x ≥ 0. If X denotes a random variable which follows this exponential distribution

with parameter λ, then E(X) = 1/λ and var(X) = 1/λ2. The p.d.f’s of exponential

distributions with respective means 1/2, 1, and 2 (respective parameters λ = 2, λ = 1,

and λ = 1/2) are graphed in Figure 8.13. Figure 8.14 shows the p.d.f and c.d.f of the

exponential distribution with mean one.

Figure 8.13 Exponential distributions with means one–half, one, and two.
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Figure 8.14 p.d.f. and c.d.f. of exponential distribution with mean one

There is an important connect between the Poisson distribution and the exponential distri-

bution. As noted earlier, exponential distributions are often used to model the time until

the occurrence of an event. In Section 7.6 we listed three assumptions about the times of

occurrence of events which justify the use of the Poisson distribution to model a count of

the number of occurrences of an event. If the events of interest behave in accordance with

these assumptions, then the time until the occurrence of an event and the time between

any two successive events will follow an exponential distribution.
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9 Inference for a Proportion toc

9.1 Introduction toc

A dichotomous population is a collection of units which can be divided into two nonover-

lapping subcollections corresponding to the two possible values of a dichotomous variable,

e.g. male or female, dead or alive, pass or fail. It is conventional to refer to one of the two

possible values which dichotomize the population as “success” and the other as “failure.”

These generic labels are not meant to imply that success is good. Rather, we can think

of choosing one of the two possible classifications and asking “does the unit belong to

the subcollection of units with this classification?” with the two possibilities being yes (a

success) and no (a failure). When a unit is selected from the population and the unit is

found to belong to the success subgroup we say that a success has occurred. Similarly,

when a member of the failure subgroup is selected we say that a failure has occurred.

The proportion of units in the population that belong to the success subgroup (the units

classified as successes) is the population success proportion. This population success

proportion is denoted by the lower case letter p. The population success proportion p is a

parameter, since it is a numerical characteristic of the population. The sample success

proportion or observed proportion of successes in a sample from a dichotomous popula-

tion is denoted by p̂ (read this as p hat). The observed success proportion p̂ is a statistic,

since it is a numerical characteristic of the sample.

We can use the selection of balls from a box of balls as a model for sampling from a

dichotomous population. Consider a box containing balls of which some are red (successes)

and the rest are green (failures). The population success proportion, p, is the proportion

of red balls in the box. If we select a random sample of n balls from this box, then

the sample success proportion, p̂, is the proportion of red balls in the sample. Thus, in

this model, a ball is a unit, the box of balls is the population, selecting a red ball is a

success, the proportion of red balls in the box p is the parameter (the population success

proportion), and the proportion of red balls in the sample p̂ is the statistic (the sample

success proportion).
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9.2 The sampling distribution and the normal approximation toc

We will now discuss how the sample proportion p̂ can be used to make inferences about

the population proportion p. Assuming that the sample size n is reasonably large, it seems

reasonable to view the sample proportion p̂ as an estimate of the population proportion

p. Clearly there will be some variability from sample to sample in the computed values of

the statistic p̂. That is, if we took several random samples from the population, we would

not expect the observed sample success proportions, the p̂’s, to be exactly the same. In

the box of balls example, if we took several samples from the box we would expect the

proportion of red balls in the sample to vary from sample to sample.

Two questions we might ask about the sample proportion p̂ as an estimator of the popu-

lation proportion p are:

(1) Can we expect the sample proportion p̂ to be close to the population proportion p?

(2) Can we quantify how close p̂ will be to p?

The sampling distribution of p̂, which describes the sample to sample variability in p̂, can

be used to address these questions.

In general, the sampling distribution of a statistic is the distribution of the possible

values of the statistic that could be obtained from random samples. We can think of

the sampling distribution of a statistic as a theoretical relative frequency distribution for

the possible values of the statistic which describes the sample to sample variability in the

statistic. The form of the sampling distribution of a statistic depends on the nature of the

population the sample is taken from, the size of the sample, and the method used to select

the sample.

For example, suppose that we select a simple random sample of n = 10 balls, with re-

placement, from a box containing six red balls and four green balls. If we identify red as

a success, then, in this example, the population success proportion is p = .6, since 60%

of the balls in the box are red. The possible values of the sample success proportion p̂

when n = 10 are: 0, .1, .2, . . . , 1. The sampling distribution of p̂ summarized in Figure 9.1

gives the probabilities corresponding to these possible values. As you would expect, the

probabilities are highest for values near p = .6 and very small for values far away from

p = .6. In particular, when we select a simple random sample of size n = 10 from this box,

25.08% of the time we would observe p̂ = .6, 20.07% of the time we would observe p̂ = .5,

and 21.50% of the time we would observe p̂ = .7. On the other hand, it would be possible
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but very unlikely to observe p̂ = .2 (only 1.06% of the time) or p̂ = .9 (only 4.03% of the

time).

Figure 9.1 Sampling distribution of p̂ when n = 10 and p = .6

The mean and the standard deviation of the sampling distribution are of particular interest.

The mean of the sampling distribution indicates whether the statistic is biased as an

estimator of the parameter of interest. If the mean of the sampling distribution is equal to

the parameter of interest, then the statistic is said to be unbiased as an estimator of the

parameter. Otherwise, the statistic is said to be biased as an estimator of the parameter.

To say that a statistic is unbiased means that, even though the statistic will overestimate

the parameter for some samples and will underestimate the parameter for other samples,

it will do so in such a way that, in the long run, the values of the statistic will average

to give the correct value of the parameter. When the statistic is biased the statistic will

tend to consistently overestimate or consistently underestimate the parameter; therefore,

in the long run, the values of a biased statistic will not average to give the correct value

of the parameter. The standard deviation of the sampling distribution is known as the

standard error of the statistic. The standard error of the statistic provides a measure of

the sample to sample variability in the values of the statistic. The standard error of the

statistic can be used to quantify how close we can expect the value of the statistic to be

to the value of the parameter.
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Returning to our discussion of the sampling distribution of p̂ we first present two important

properties of this sampling distribution. The observed proportion p̂ in a simple random

sample selected with replacement from a population with population proportion p has a

sampling distribution with the following properties.

1. The mean of the sampling distribution of p̂ is the population probability p. Therefore,

p̂ is unbiased as an estimator of p.

2. The population standard error of p̂, denoted by SE(p̂), is

SE(p̂) =

√
p(1− p)

n
.

The inferential methods we will consider are based on a large sample size normal approx-

imation to the sampling distribution of p̂. A detailed discussion of the exact form of the

sampling distribution of p̂, the normal distribution, and the normal approximation to the

sampling distribution of p̂ can be found in a separate document. Here we will provide an

indication of some basic properties of the sampling distribution of p̂ in terms of some graph-

ical representations of the probability histogram of the distribution of p̂ with superimposed

fitted normal density curves.

First consider how the sampling distribution of p̂ depends on the sample size n. From the

expression given above for the population standard error of p̂ we can see that, as you would

expect, the variability in p̂ as an estimator of p decreases as the sample size increases. This

behavior of the sampling distribution is illustrated in Figure 9.2.
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Figure 9.2 The sampling distribution of p̂ with normal approximation for p = .6.

Histograms are provided for n = 10, 20, 30, 40, 50, and 60. All of these distributions are

centered at p = .6. Notice how the variability in the distribution decreases as the sample

size n increases and how much better the normal density curve matches the histogram.

n = 10 n = 20 n = 30

n = 40 n = 50 n = 60

Next consider how the sampling distribution of p̂ depends on the value of the population

success proportion p. The sampling distribution of p̂ is unimodal (single peaked) with its

peak at p. If p = .5, then the sampling distribution of p̂ is symmetric. If p < .5, then

sampling distribution of p̂ is skewed right. If p > .5, then sampling distribution of p̂ is

skewed left. Since p̂ is unbiased as an estimator of p, the mean of the distribution of p̂ is p.

Thus, the probability histogram of the distribution of p̂ has its balance point at p. From

the expression given above for the population standard error of p̂ we can see that, for fixed

n, the variability in p̂ as an estimator of p is highest when p = .5 and decreases as p moves

away from .5. These properties of the sampling distribution are illustrated in Figure 9.3.
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Figure 9.3 The sampling distribution of p̂ with normal approximation for n = 20.

Histograms are provided for p = .5, .6, .7, .8, and .9. Each distribution is centered at its p.

Notice how the variability in the distribution decreases as p moves away from .5.

Notice also how the distribution becomes more skewed left as p moves away from .5.

p = .5 p = .6 p = .7

p = .8 p = .9

The normal approximation to the sampling distribution of p̂ is illustrated graphically in

Figure 9.4. In this figure, the probability histogram of the sampling distribution of p̂ for

the situation when a simple random sample of size n = 20 is selected with replacement

from a dichotomous population with p = .6 is given along with the approximating normal

density curve. The exact probabilities which correspond to the areas of the rectangles of

the histogram are given as percentages, e.g., the probability of observing p̂ = .06 is .17971

(17.97%). The normal approximation, explained more fully below, basically says that, over

a specified range of p̂ values, the area under the normal density curve and the area in the

rectangles of the histogram are similar. You can see that the curve matches the histogram

reasonably well in Figure 9.4.
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Figure 9.4 The sampling distribution of p̂ with normal approximation for n = 20 and p = .6.

This assumes a simple random sample selected with replacement. If the p̂ values were converted

to counts, X = np̂, then this would be a binomial distribution.

The normal approximation to the sampling distribution of p̂ says that, for large values

of n, the standardized value of p̂ obtained by subtracting the population proportion p

from p̂ and dividing this difference by the population standard error of p̂, behaves in

approximate accordance with the standard normal distribution. That is, for large values

of n the quantity Z = (p̂− p)/SE(p̂) behaves like a standard normal variable. This means,

as will be shown below, that we can use an area under the standard normal density curve

(a probability in terms of Z) to approximate an area in the probability histogram of the

sampling distribution of p̂ (a probability in terms of p̂). The relationship between p̂ and p

indicated by this expression for Z and the normal distribution itself allow us to use p̂ to

make formal, quantifiable inferences about p.

9.3 Estimation of p toc

As noted above, the sample proportion p̂ is an unbiased estimator of the population pro-

portion p. We can think of p̂ as our “best guess” of the value of p. To allow for sampling

variability it would be more useful to report a range or interval of plausible values for p.
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In particular, given the data we would like to be able to say, with a reasonable level of

confidence, that the true value of p is between two particular limiting values. We will now

use the normal approximation to the sampling distribution of p̂ to develop such an interval

estimate of p.

The probability that a standard normal variable Z takes on a value between −1.96 and

1.96 is equal to .95, i.e., P (−1.96 ≤ Z ≤ 1.96) = .95. Thus, when we observe the value

of a standard normal variable Z, 95% of the time we will find that −1.96 ≤ Z ≤ 1.96.

Graphically this means that the area under the standard normal density curve over the

interval from -1.96 to 1.96 is .95. Thus, for sufficiently large values of n we have the

approximation,

P

[
−1.96 ≤ p̂− p

SE(p̂)
≤ 1.96

]
= .95

or equivalently

P [p− 1.96 · SE(p̂) ≤ p̂ ≤ p+ 1.96 · SE(p̂)] = .95.

Note that this indicates that 95% of the time when a simple random sample is selected and

p̂ is computed the observed value of p̂ will be between p− 1.96 ·SE(p̂) and p+ 1.96 ·SE(p̂),

i.e., p̂ will be within 1.96 population standard error units of p. We will refer to the interval

from p− 1.96 · SE(p̂) to p+ 1.96 · SE(p̂) as the central 95% interval of the distribution of

p̂, since it is centered at p and it will contain the observed value of p̂ 95% of the time.

The relationship between p̂ and p is illustrated, for n = 100 and p = .6, in Figure 9.5. In

this case, p = .6, SE(p̂) =
√
.6(.4)/100 = .0490, and p1 = .6 − 1.96 · SE(p̂) = .5040 and

p2 = .6 + 1.96 · SE(p̂) = .6960 are the limits of the central 95% interval of the distribution

of p̂. The shaded region with area .95 in Figure 9.5 indicates that 95% of all samples

will yield a sample proportion p̂ which is between p1 and p2. That is, when p = .6 and

n = 100, 95% of all samples will yield a sample proportion p̂ which is between p1 = .5040

and p2 = .6960. In terms of a box of balls this means that, if exactly 60% of the balls in

the box were red, then 95% of the time when we selected n = 100 balls from the box, at

random and with replacement, we would find between 51 and 69 red balls (between 50.40

and 69.60) among the 100 balls in the sample.

The plot on the right in Figure 9.5 shows how the endpoints of the central 95% interval

of the distribution of p̂ depend on p. In this plot the sample size is n = 100. (The

pattern is similar for other values of n.) The upper (red) curve gives values of p + 1.96 ·
SE(p̂) = p+ 1.96

√
p(1− p)/n as a function of p and the lower (blue) curve gives values of
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p− 1.96 · SE(p̂) = p− 1.96
√
p(1− p)/n as a function of p. The intersections of a vertical

line draw at a particular value of p with these curves are the endpoints of the central

95% interval of the distribution of p̂ for that value of p. The lines drawn in the figure

demonstrate this for the case p = .6. Note that, as mentioned above, p1 = .5040 and

p2 = .6960, and these are the endpoints of the interval in the plot on the left in Figure 9.5.

Figure 9.5 The plot on the left shows the central 95% interval of the distribution of p̂

for n = 100 and p = .6.

The curves in the plot on the right show the endpoints, p± 1.96
√
p(1− p)/n, of the

central 95% interval of the distribution of p̂ as a function of p for n = 100.

The endpoints for the case p = .6 are indicated by the lines marking the intersections

at p1 = .5040 and p2 = .6960.

A confidence interval for p

As noted above, for a particular value of p, 95% of all samples will yield a value of p̂ within

the corresponding central 95% interval from p−1.96SE(p̂) to p+ 1.96SE(p̂). Thus for each

possible value of p we can find an interval of likely values for p̂. But we need an interval

of plausible values for p not for p̂ ! We will now show how the central 95% intervals of

the distribution of p̂ can be used to form a 95% confidence interval estimate of p. We will

provide a formal definition of a 95% confidence interval estimate later.

Suppose that a simple random sample has been selected and let p̂obs denote the observed

value of p̂. Given this p̂obs, we want to know which values of p are plausible. More

precisely, we want to know which values of p determine sampling distributions for p̂ under

which seeing p̂ = p̂obs would not be surprising. We can formalize this goal by saying that
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we want to know which values of p determine a sampling distributions for p̂ for which the

central 95% interval of the distribution of p̂ contains the observed value p̂obs.

The plot on the right in Figure 9.5 shows how the central 95% interval of the distribution

of p̂ depends on the value of p. We want to determine which values of p yield central

95% intervals which contain p̂obs. This requires using the graph of Figure 9.5 in the other

direction. In Figure 9.6 a horizontal line is drawn at p̂obs and its intersections, pL and

pU , with the two curves are indicated. Notice that pL is the smallest value of p for which

the central 95% interval of the distribution of p̂ contains p̂obs and pU is the largest value

of p for which the central 95% interval of the distribution of p̂ contains p̂obs. (Figure 9.6

is drawn for n = 100 and p̂obs = .55. In this case, pL = .4524 and pU = .6439.) Thus, if

we draw a vertical line, as in Figure 9.5, at any value of p between pL and pU , then the

corresponding central 95% interval of the distribution of p̂ contains p̂obs.

Figure 9.6 The smallest and largest values of p, pL and pU , for which the central 95%

interval of the distribution of p̂ contains p̂obs.

This example is drawn for n = 100 and p̂obs = .55.

In order to determine the value of pL we simply set p+ 1.96SE(p̂) equal to p̂obs and solve

for p (draw the horizontal line as in Figure 6 and project down at the intersection with the

upper (red) curve). To determine the value of pU we set p− 1.96SE(p̂) equal to p̂obs and

solve for p (draw the horizontal line as in Figure 9.6 and project down at the intersection

with the lower (blue) curve).
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Table 9.1 Central 95% intervals [p1, p2] of the distribution of p̂ for selected values

of p when n = 100. The intervals for p = .46 through p = .64 contain p̂obs = .55.

central 95% interval
p p1 p2

.10 .041 .159

.20 .122 .278

.30 .210 .390

.40 .304 .496

.45 .352 .548 ***

.46 .362 .558

.47 .372 .568

.48 .382 .578

.49 .392 .588

.50 .402 .598

.51 .412 .608

.52 .422 .618

.53 .432 .628

.54 .442 .638

.55 .452 .648

.56 .463 .657

.57 .473 .667

.58 .483 .677

.59 .494 .686

.60 .504 .696

.61 .514 .706

.62 .525 .715

.63 .535 .725

.64 .546 .734

.65 .556 .743 ***

.70 .610 .790

.80 .722 .878

.90 .841 .959

A simple example will help to clarify this discussion. Consider a box containing a large

number of balls. Suppose that some of the balls in the box are red. Let p denote the

proportion of red balls in the box. Now suppose that a simple random sample of n = 100

balls has been selected and 55 of the 100 balls found to be red. In this example 55% of the

balls in the sample are red, i.e., p̂obs = .55. Table 9.1 contains central 95% intervals of

the distribution of p̂ for n = 100 and selected values of p. Notice that when p is between

.46 and .64 the intervals contain p̂obs = .55.
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For example, when p = .50, 95% of all samples will yield a p̂ value between .402 and .598.

In a case like this, where the central interval contains .55, it would not be surprising to see

p̂obs = .55 and the correspond value of p would be deemed plausible. That is, if exactly

50% of the balls in the box were red, then 95% of the time when we selected a random

sample of n = 100 balls we would find that between 40.2% and 59.8% of the 100 balls in

the sample were red. Since 55% belongs to this range it is plausible that exactly 50% of

all the balls in the box are red (p = .50).

On the other hand, if p = .30, 95% of all samples will yield a p̂ value between .210 and

.390. Thus, if exactly 30% of the balls in the box were red, then 95% of the time when we

selected a random sample of n = 100 balls we would find that between 21.0% and 39.0%

of the 100 balls in the sample were red. Since this entire interval is less than 55%, it would

be surprising to see p̂ as large as .55 when p was .30. Therefore, when we see p̂obs = .55 it

is reasonable to conclude that the percentage of red balls in the box is not 30% (p 6= .30).

Similarly, if p = .70, 95% of all samples will yield a p̂ value between .610 and .790. Thus,

if exactly 70% of the balls in the box were red, then 95% of the time when we selected a

random sample of n = 100 balls we would find that between 61.0% and 79.0% of the 100

balls in the sample were red. Since this entire interval is greater than 55%, it would be

surprising to see p̂ as small as .55 when p was .70. Therefore, when we see p̂obs = .55 it is

reasonable to conclude that the percentage of red balls in the box is not 70% (p 6= .70).

In cases like the last two, where the entire interval is less than .55 or the entire interval is

greater than .55, it would be surprising to see p̂obs = .55 and the correspond value of p

would not be deemed plausible. From the table we can see that pL ≈ .45, since the upper

endpoint of the central 95% interval p2 is approximately .55 when p = .45, and pU ≈ .64,

since the lower endpoint p1 of the central 95% interval is approximately .55 when p = .64.

More precise computation indicates that pL = .4524 and pU = .6439. Using this reasoning,

we see that when n = 100 and we observe p̂obs = .55 we can argue that values of p between

pL = .4524 and pU = .6439 are plausible. In other words, if we selected a simple random

sample of n = 100 balls from the box and found that 55% of the balls in the sample were

red, then we would conclude that somewhere between 45.24% and 64.39% of all the balls

in the box are red.

The interval of plausible values for p with endpoints pL and pU discussed above is a 95%

confidence interval estimate of p. In the preceding example, the more formal way of stating
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the conclusion is as follows. If we selected a simple random sample of n = 100 balls from

the box and found that 55% of the balls in the sample were red, then we would conclude

that we were 95% confident that the percentage of red balls in the box was somewhere

between 45.24% and 64.39% (in terms of p, .4524 ≤ p ≤ .6439).

A confidence interval for p – more formally

We will now give a more formal definition of a confidence interval estimate of p. The

purpose of a confidence interval estimate is to provide a range or interval of plausible

values for p. In particular, given the data we would like to be able to say, with a reasonable

level of confidence (95% in the example above), that the true value of p is between two

particular values (pL and pU in the example above). A confidence interval estimate of p

consists of two parts. There is an interval of plausible values for p and a corresponding

level of confidence. We will adopt the usual convention of using a confidence level of 95%.

The confidence level indicates our confidence that the unknown p actually belongs to the

corresponding interval.

There is some chance for confusion about what it means to say we are 95% confident that

p is between pL and pU . The important thing to remember is that it is the endpoints of

the interval pL and pU that vary from sample to sample. The population proportion p

is a fixed, unknown parameter which does not vary. Therefore, the 95% confidence level

applies to the method used to generate the confidence interval estimate. That is, the

method (obtain a simple random sample and compute the numbers pL and pU forming the

confidence interval is such that 95% of the time it will yield a pair of confidence interval

limits which bracket the population success proportion p. Therefore, when we obtain a

sample, compute the confidence interval, and say that we are 95% confident that this

interval contains p what we mean is that we feel “pretty good” about claiming that p is in

this interval, since the method used to construct the interval works for 95% of all possible

samples and so it probably worked for our sample.
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A 95% confidence interval for p – summary and computation.

As noted above, a 95% confidence interval estimate of p is an interval of plausible values

for p constructed using a method of generating such intervals with the property that this

method will work, in the sense of generating an interval that contains p, for 95% of all

possible samples.

The Wilson (score) 95% confidence interval for p.

The 95% confidence interval estimate of the population proportion p discussed above is

usually called the Wilson interval or the score interval. The graphical derivation above is

readily modified for a confidence level other that 95%. The requisite modification is to

change the 95% confidence level multiplier 1.96 to the value appropriate for the desired

confidence level, e.g., the multiplier 1.645 leads to a 90% confidence interval.

Computation of the Wilson (score) 95% confidence interval for p.

Computations of the Wilson 95% confidence interval estimate of p for the box of balls

example with n = 100 and 55 red balls are illustrated in Figures 9.7–9.10. Recall that

in this example, we selected a simple random sample of n = 100 balls from the box and

found that 55% of the balls in the sample were red, then we concluded that we were 95%

confident that the percentage of red balls in the box was somewhere between 45.24% and

64.39% (in terms of p, .4524 ≤ p ≤ .6439).
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Figure 9.7 SAS output giving the Wilson 95% confidence interval for the box of balls

example with n = 100 and p̂obs = .55 with SAS command file.

SAS command file: boxofballs onepropexample.sas

/* box of balls example */
data boxofballs;

input outcome $ count;
/* the coding outcome $ indicates that outcome is character valued */
cards;
red 55
green 45
;
proc freq data=boxofballs order=data;

tables outcome / alpha=.05 binomial(cl=wilson level=’red’);
weight count;

title ’box of balls example’;
/* tables option

-- alpha=.05 requests 95% confidence level
this is the default Use alpha=.10 to
get a 90% confidence interval and use
the appropriate endpoint of the 90% CI
as a 95% lower/upper confidence bound */

/* binomial options
-- cl=wilson Wilson confidence interval
-- level=’red’ define "success" default is

the first level which is "red" in this example */
run;
/* ---------------------------------------------------------*/

Figure 9.8 R commands and output giving the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

R commands and output for the box of balls example

R Commands:

# box of balls example
prop.test(55,100,correct=0)

R Output:

1-sample proportions test without continuity correction

data: 55 out of 100, null probability 0.5
X-squared = 1, df = 1, p-value = 0.3173
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4524460 0.6438546
sample estimates:

p
0.55



9.3 Estimation of p 173

Figure 9.9 JMP commands and output giving the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

Distributions

color

green

red

Frequencies

Level

green

red

Total

Count

45

55

100

Prob

0.45000

0.55000

1.00000

N Missing 0

2 Levels

Confidence Intervals

Level

green

red

Total

Count

45

55

100

Prob

0.45000

0.55000

Lower CI

0.356145

0.452446

Upper CI

0.547554

0.643855

1-Alpha

0.950

0.950

Note: Computed using score confidence intervals.

JMP directions for the box of balls example

step 1: create a data table: file --> new --> data table
input in columns 1 and 2 as:

color count
red 55
green 45

step 2: analyze --> distribution
assign variables as:

y, columns : color
freq : count

under the "color tab" select options
display options --> horizontal layout
histogram options --> vertical
confidence interval --> .95

Figure 9.10 TI84 program “WILSON2” screen captures followed by command listing.

This output shows how to get the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

Example 9.1 Insects in an apple orchard. The manager of a large apple orchard is concerned

with the presence of a particular insect pest in the apple trees in the orchard. An insecticide
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that controls this particular insect pest is available. However, application of this insecticide

is rather expensive. It has been determined that the cost of applying the insecticide is not

economically justifiable unless more than 20% of the apple trees in the orchard are infested.

The manager has decided to assess the extent of infestation in the orchard by examining a

simple random sample of 200 apple trees. In this example a unit is an apple tree and the

target population is all of the apple trees in this orchard. We will assume that the simple

random sample is selected from all of the apple trees in the orchard so that the sampled

population is the same as the target population. We will also assume that the 200 trees in

the sample form a small proportion of all of the trees in the entire orchard so that we do

not need to worry about whether the sample is chosen with or without replacement. An

appropriate dichotomous variable is whether an apple tree is infested with possible values

of yes (the tree is infested) and no (the tree is not infested). Since we are interested in

the extent of the infestation we will view a tree that is infested as a success. Thus, the

population success proportion p is the proportion of all of the apple trees in the entire

orchard that are infested.

Two (related) questions of interest in this situation are:

(1) What proportion of all of the trees in this orchard are infested? (What is p?)

(2) Is there sufficient evidence to justify the application of the insecticide? (Is p > .20?)

We will consider four hypothetical outcomes for this scenario to demonstrate how a 95%

confidence interval estimate can be used to address these questions. The SAS output for

these examples is provided in Figures 9.11a and 9.11b.
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Figure 9.11a SAS output for the apple orchard example – confidence intervals

Case 1. Suppose that 35 of the 200 apple trees in the sample are infested so that p̂ = .175.

In this case we know that 17.5% of the 200 trees in the sample are infested and we can

conjecture that a similar proportion of all of the trees in the entire orchard are infested.

However, we need a confidence interval estimate to get a handle on which values of the

population success proportion p are plausible when we observe 17.5% infested trees in a

sample of size 200. Using the Wilson method we get a 95% confidence interval ranging

from .1286 to .2336 (see Figure 9.11a). Thus we can conclude that we are 95% confident

that between 12.86% and 23.36% of all of the trees in this orchard are infested. Notice that

this confidence interval does not exclude the possibility that more than 20% of the trees

in the entire orchard are infested, since the upper limit of the confidence interval 23.36%

is greater than 20%. In other words, even though less than 20% of the trees in the sample

were infested, when we take sampling variability into account we find that it is possible

that more than 20% (as high as 23.36%) of the trees in the entire orchard are infested. Of

course the interval also indicates that it is possible that less than 20% (as low as 12.86%)

of the trees in the entire orchard are infested.
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Case 2. Suppose that 26 of the 200 apple trees in the sample are infested so that p̂ = .13.

In this case we know that 13% of the 200 trees in the sample are infested. Using the Wilson

method we get a 95% confidence interval ranging from .0903 to .1837 (see Figure 9.11a).

Thus we can conclude that we are 95% confident that between 9.03% and 18.37% of all of

the trees in this orchard are infested. In this case the entire confidence interval is below

20% excluding the possibility that more than 20% of the trees in the entire orchard are

infested. Therefore, in this case we have sufficient evidence to conclude that less than 20%

of the trees in the entire orchard are infested, i.e., that p < .20.

Figure 9.11b SAS output for the apple orchard example – confidence intervals

Case 3. Suppose that 45 of the 200 apple trees in the sample are infested so that p̂ = .225.

In this case we know that 22.5% of the 200 trees in the sample are infested. Using the

Wilson method we get a 95% confidence interval ranging from .1726 to .2877 (see Figure

9.11b). Thus we can conclude that we are 95% confident that between 17.26% and 28.77%

of all of the trees in this orchard are infested. Notice that this confidence interval does not

exclude the possibility that less than 20% of the trees in the entire orchard are infested,

since the lower limit of the confidence interval 17.26% is less than 20%. In other words,

even though more than 20% of the trees in the sample were infested, when we take sampling

variability into account we find that it is possible that less than 20% (as low as 17.26%)
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of the trees in the entire orchard are infested. Of course the interval also indicates that it

is possible that more than 20% (as high as 28.77%) of the trees in the entire orchard are

infested.

Case 4. Finally, suppose that 54 of the 200 apple trees in the sample are infested so

that p̂ = .27. In this case we know that 27% of the 200 trees in the sample are infested.

Using the Wilson method we get a 95% confidence interval ranging from .2132 to .3354

(see Figure 9.11b). Thus we can conclude that we are 95% confident that between 21.32%

and 33.54% of all of the trees in this orchard are infested. In this case the entire confidence

interval is above 20% excluding the possibility that less than 20% of the trees in the entire

orchard are infested. Therefore, in this case we have sufficient evidence to conclude that

more than 20% of the trees in the entire orchard are infested, i.e., that p > .20.

A formula for the Wilson (score) 95% confidence interval for p.

Some readers may find an algebraic expression for the Wilson confidence interval use-

ful. Refer to the computer code and output of Figures 9.7–9.10 for an illustration of the

computations of the Wilson 95% confidence interval for a simple example. For greater

generality we will provide these expressions in terms of k, where k is the multiplier for the

desired confidence level. For a 95% confidence level k = 1.96 and for a 90% confidence

level k = 1.645. The Wilson confidence interval estimate of p is given by

p̃k −ME(p̃k) ≤ p ≤ p̃k + ME(p̃k),

(read p̃k as p tilde sub k) where

p̃k =
np̂+ k2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

ME(p̃k) =

√
p̃2k −

np̂2

n+ k2

determines the length of the interval.

If we use k = 1.96 in these expressions, then we can claim that we are 95% confident that

the population success proportion p is between p̃k −ME(p̃k) and p̃k + ME(p̃k). As noted

above, there is some chance for confusion about what this statement actually means.

The important thing to remember is that it is the statistic p̃k and the margin of error
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ME(p̃k) that vary from sample to sample. The population proportion p is a fixed, unknown

parameter which does not vary. Therefore, the 95% confidence level applies to the method

used to generate the confidence interval estimate. That is, the method (obtain a simple

random sample and compute the numbers p̃ −ME(p̃) and p̃ + ME(p̃)) used to generate

the limits of the confidence interval is such that 95% of the time it will yield a pair of

confidence interval limits which bracket the population success proportion p. Therefore,

when we obtain a sample, compute the confidence interval, and say that we are 95%

confident that this interval contains p what we mean is that we feel “pretty good” about

claiming that p is in this interval, since the method works for 95% of all possible samples

and so it probably worked for our sample.

Aside – derivation of the Wilson interval formula.

This aside contains an algebraic derivation of the Wilson confidence interval for p. The

starting point for this derivation is the interval p − kSE(p̂) ≤ p̂ ≤ p + kSE(p̂) for p̂.

Notice that we can re–express this relationship as |p̂ − p| ≤ kSE(p̂). Since |p̂ − p|, k, and

SE(p̂) =
√
p(1− p)/n are positive, we can square each side of the inequality

|p̂− p| ≤ kSE(p̂)

to get the equivalent inequality

(p̂− p)2 ≤ k2

n
(p− p2).

Straightforward algebra allows us to re–express this inequality as the following quadratic

inequality in p

(n+ k2)p2 − 2(np̂+
k2

2
)p+ np̂2 ≤ 0.

Treating this inequality as an equality and solving for p gives the two values

p̃k ±ME(p̃k),

where p̃k =
np̂+ k2

2

n+ k2
and ME(p̃k) =

√
p̃2k −

np̂2

n+ k2
.

Thus, letting C denote the desired confidence level, the probability statement

P
[
|p̂− p| ≤ kSE(p̂)

]
= C.
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is equivalent to the probability statement

P
[
p̃k −ME(p̃k) ≤ p ≤ p̃k + ME(p̃k)

]
= C.

The endpoints of this interval, which are functions of n, p̂, and k, are computable. There-

fore, the Wilson confidence interval is given by

p̃k −ME(p̃k) ≤ p ≤ p̃k + ME(p̃k).

9.4 Testing a hypothesis about p toc

In the apple orchard example we used a confidence interval estimate of p to decide whether

the data supported the contention that more than 20% of the apple trees in the entire

orchard were infested. We will now develop some formal methodology for assessing the

evidence in favor of such a contention. We will start with some terminology.

A hypothesis (statistical hypothesis) is a conjecture about the nature of the population.

When the population is dichotomous, a hypothesis is a conjecture about the value of the

population success proportion p.

A hypothesis test (test of significance) is a formal procedure for deciding between two

complementary hypotheses. These hypotheses are known as the null hypothesis (H0 for

short) and the research (or alternative) hypothesis (H1 for short). The research hypothesis

is the hypothesis of primary interest, since the testing procedure is designed to address the

question: “Do the data support the research hypothesis?” The null hypothesis is defined as

the negation of the research hypothesis. The test begins by tentatively assuming that the

null hypothesis is true (the research hypothesis is false). The data are then examined to

determine whether the null hypothesis can be rejected in favor of the research hypothesis.

The probability of observing data as unusual (surprising) or more unusual as that actually

observed under the tentative assumption that the null hypothesis is true is computed. This

probability is known as the P–value of the test. (The P in P–value indicates that it is

a probability it does not refer to the population success proportion p.) A small P–value

indicates that the observed data would be unusual (surprising) if the null hypothesis was

actually true. Thus if the P–value is small enough, then the null hypothesis is judged

untenable and the test rejects the null hypothesis in favor of the research (alternative)

hypothesis. On the other hand, a large (not small) P–value indicates that the observed

data would not be unusual (not surprising) if the null hypothesis was actually true. Thus
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if the P–value is large (not small enough), then the null hypothesis is judged tenable and

the test fails to reject the null hypothesis.

There is a strong similarity between the reasoning used for a hypothesis test and the

reasoning used in the trial of a defendant in a court of law. In a trial the defendant is

presumed innocent (tentatively assumed to be innocent) and this tentative assumption

is not rejected unless sufficient evidence is provided to make this tentative assumption

untenable. In this situation the research hypothesis states that the defendant is guilty and

the null hypothesis states that the defendant is not guilty (is innocent). The P–value of

a hypothesis test is analogous to a quantification of the weight of the evidence that the

defendant is guilty with small values indicating that the evidence is unlikely under the

assumption that the defendant is innocent.

We will introduce hypothesis testing in the context of the apple orchard example. Details

and formalization will follow the example.

Example 9.1 Insects in an apple orchard (revisited). Recall that the manager of a large

apple orchard examined a simple random sample of 200 apple trees to gauge the extent of

insect infestation in the orchard. The manager has determined that applying the insecticide

is not economically justifiable unless more than 20% of the apple trees in the orchard

are infested. Since the manager does not want to apply the insecticide unless there is

evidence that it is needed, the question of interest here is: “Is there sufficient evidence

to justify application of the insecticide?” In terms of the population success proportion p

(the proportion of all of the apple trees in this orchard that are infested) the research

hypothesis is H1 : p > .20 (more than 20% of all the trees in the orchard are infested);

and the null hypothesis is H0 : p ≤ .20 (no more than 20% of all the trees in the orchard

are infested).

A test of the null hypothesis H0 : p ≤ .20 versus the research hypothesis H1 : p > .20

begins by tentatively assuming that no more than 20% of all the trees in the orchard are

infested. Under this tentative assumption it would be surprising to observe a proportion

of infested trees in the sample, p̂, that was much larger than .20. For example, when

n = 200 and p = .2, the central 95% interval for p̂ ranges from .1446 to.2554 and the

central 99% interval for p̂ ranges from .1272 to.2728. Therefore, if exactly 20% of all the

trees in the orchard were infested, then it would be surprising to see much more than about
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25% infested trees in the sample (above the central 95% interval) and it would be very

surprising to see more than about 27% infested trees in the sample (above the central 99%

interval). On the other hand, if exactly 30% of all the trees in the orchard were infested,

then the central 95% interval for the sample percentage ranges from 23.65% to 36.35% and

the central 99% interval for the sample percentage ranges from 21.65% to 38.35%, so that

sample percentages around 25% to 28% would not be surprising. Thus the test should

reject H0 : p ≤ .20 in favor of H1 : p > .20 if the observed value of p̂ is sufficiently large

relative to .20. That is, if p̂ is large enough to make us doubt our tentative assumption

that p itself is not larger than .20.

Figure 9.12a SAS output for the apple orchard example – tests and confidence intervals.

The commands to produce this output are provided in Figure 9.12b.

Case 1. Suppose that 52 of the 200 apple trees in the sample are infested so that p̂ = .26.

In this case we know that 26% of the 200 trees in the sample are infested and we need

to decide whether this suggests that the proportion of all the trees in the orchard that

are infested, p, exceeds .20. More specifically, we need to determine whether observing

52 or more infested trees in a simple random sample of 200 trees would be surprising if

in fact no more than 20% of all the trees in the orchard were infested. Assuming that
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exactly 20% of all the trees in the orchard are infested, we find that the probability of

observing 52 or more infested trees in a sample of 200 trees (seeing p̂ ≥ .26), is .0169 (this

is the P–value of the test). In the SAS output of Figure 9.12a (case 5) this P–value is

labeled “one–sided Pr > Z”. In other words, if no more than 20% of all the trees in the

orchard were infested, then a simple random sample of 200 trees would give p̂ ≥ .26 about

1.69% of the time. Therefore, observing 52 infested trees in a sample of 200 would be

very surprising if no more than 20% of all the trees in the orchard were infested and we

have sufficient evidence to reject the null hypothesis H0 : p ≤ .20 in favor of the research

hypothesis H1 : p > .20. In the case we would conclude that there is sufficient evidence to

contend that more than 20% of all the trees in the orchard are infested and, in this sense,

application of the insecticide is justifiable. Referring to the SAS output, we see that we

can also conclude with 95% confidence that between 20.41% and 32.49% of all the trees

in the entire orchard are infested. As expected, we find that the entire 95% confidence

interval is above 20%. Note, however, that values as low as 20.41%, which is not much

above 20%, are deemed plausible here.

The SAS commands which produced the output in Figure 9.12a are provided in Figure

9.12b.

Case 2. Next suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. Assuming that exactly 20% of all the trees in the orchard are infested, we find

that the probability of observing 45 or more infested trees in a sample of 200 trees (seeing

p̂ ≥ .225), is .1884 (this is the P–value of the test). In the SAS output of Figure 9.12a (case

6) this P–value is labeled “one–sided Pr > Z”. In other words, if no more than 20% of

all the trees in the orchard were infested, then a simple random sample of 200 trees would

give p̂ ≥ .225 about 18.84% of the time. Therefore, observing 45 infested trees in a sample

of 200 would not be very surprising if no more than 20% of all the trees in the orchard were

infested and we do not have sufficient evidence to reject the null hypothesis H0 : p ≤ .20

in favor of the research hypothesis H1 : p > .20. In the case we would conclude that there

is not sufficient evidence to contend that more than 20% of all the trees in the orchard are

infested and, in this sense, application of the insecticide not is justifiable. Referring to the

SAS output, we see that we can also conclude with 95% confidence that between 17.26%

and 28.77% of all the trees in the entire orchard are infested. As expected, we see that the

95% confidence interval contains values which are both above and below 20%.
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Figure 9.12b SAS commands for the apple orchard example – tests and confidence intervals

SAS command file: Apple orchard examples cases 5 and 6

/* apple orchard example */
data orchard;

input case outcome : $ 11. count;
/* the coding outcome : $ 11. indicates that we want

to allocate 11 characters for outcome */
cards;
5 infested 52
5 notinfested 148
6 infested 45
6 notinfested 155
;
proc freq data=orchard order=data;

tables outcome / alpha=.05 binomial(cl=wilson p=.2 level=’infested’);
weight count;
by case;

title ’apple orchard example’;
/* binomial options

-- cl=wilson Wilson confidence interval
-- p=.2 use p_0=.2 in the hypothesis
-- level=’infested’ define "success" default is

the first level which is infested in this example */
run;

The research hypothesis in the apple orchard example is a directional hypothesis of the

form H1 : p > p0, where p0 = .20. We will now discuss the details of a hypothesis test

for a directional research hypothesis of this form. For the test procedure to be valid the

specified value p0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.

Testing a directional hypothesis of the form p > p0

Research question. Is there sufficient evidence to conclude that the population propor-

tion p is greater than the hypothesized value p0?

Research hypothesis. H1 : p > p0, The population proportion p is greater than the

hypothesized value p0.

Tentative assumption – null hypothesis. H0 : p ≤ p0, We tentatively assume that

the population proportion p is not greater than the hypothesized value p0.
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Evidence in favor of the research hypothesis. The relationship between the observed

proportion of successes in the sample p̂ and the hypothesized value p0 will be used to assess

the strength of the evidence in favor of the research hypothesis. Generally, we would

expect to observe larger values of p̂ more often when the research hypothesis H1 : p > p0

is true than when the null hypothesis H0 : p ≤ p0 is true. In particular, we can view the

observation of a value of p̂ that is sufficiently large relative to p0 as constituting evidence

against the null hypothesis H0 : p ≤ p0 and in favor of the research hypothesis H1 : p > p0.

Assessment of the strength of the evidence – the P–value of the test. Deciding

whether the observed value of p̂ is “sufficiently large relative to p0” is based on the P–value

of the test. The P–value for testing the null hypothesis H0 : p ≤ p0 versus the research

hypothesis H1 : p > p0 is the probability of observing a value of p̂ as large or larger than

the value of p̂ that we actually do observe. The P–value quantifies the consistency of the

observed data with the null hypothesis and may be interpreted as a, somewhat indirect,

measure of the strength of the evidence in the data in favor of the research hypothesis and

against the null hypothesis. Because the P–value is computed under the assumption that

the null hypothesis is true (and the research hypothesis is false), the smaller the P–value

is, the less consistent the observed data are with the null hypothesis. Therefore, since one

of the hypotheses must be true, when we observe a small P–value we can conclude that the

research hypothesis is more consistent with the observed data than is the null hypothesis.

Computation of the P–value. The P–value of the test is computed under the assump-

tion that the research hypothesis H1 : p > p0 is false and the null hypothesis H0 : p ≤ p0 is

true. Because the null hypothesis only specifies that p ≤ p0, we need to choose a particular

value of p (that is no larger than p0) in order to compute the P–value. It is most appropri-

ate to use p = p0 for this computation. (Recall that in the apple orchard example we used

p0 = .20 to compute the P–value.) Using p = p0, which defines the boundary between

p ≤ p0, where the null hypothesis is true, and p > p0, where the research hypothesis is

true, provides some protection against incorrectly rejecting H0 : p ≤ p0.

The derivation below is meant to clarify the procedure. We can use a suitable calculator or

computer program to perform these computations. We will use the normal approximation

to the sampling distribution of p̂ to compute the P–value. As noted above we will use the
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hypothesized value p0 in our computation of the P–value. Thus we will use the population

standard deviation of p̂

SE(p̂) =

√
p0(1− p0)

n

in our computation of the Z–score. The calculated Z statistic or Z score corresponding to

the observed value of p̂, denoted by Zcalc, is

Zcalc =
p̂− p0
SE(p̂)

=
p̂− p0√

p0(1− p0)/n
.

Recall that the P–value for testing the null hypothesis H0 : p ≤ p0 versus the research

hypothesis H1 : p > p0 is the probability of observing a value of p̂ as large or larger than

the value of p̂ that we actually do observe, computed assuming that p = p0. Using the

normal approximation, this P–value is equal to the probability that a standard normal

variable takes on a value at least as large as Zcalc. This P–value is

P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, i.e., this P–value is the area under the

standard normal density curve to the right of Zcalc, as shown in Figure 9.13. Notice that

the P value (the area to the right of Zcalc) is small when Zcalc is far to the right of zero

which is equivalent to p̂ being far to the right of p0.

Figure 9.13 P–value for H0 : p ≤ p0 versus H1 : p > p0.

0 Zcalc

Once the P–value has been computed we need to decide whether the P–value is small

enough to justify rejecting the null hypothesis in favor of the research hypothesis. In the

apple orchard example we argued that observing 52 infested trees in a sample of 200 would

be very surprising if no more than 20% of all the trees in the orchard were infested, since

the corresponding P–value of .0169 was very small. We also argued that observing 45
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infested trees in a sample of 200 would not be very surprising if no more than 20% of all

the trees in the orchard were infested, since the corresponding P–value of .1884 is fairly

large. Deciding whether a P–value is small enough to reject a null hypothesis requires

a subjective judgment by the investigator in the context of the problem at hand. Some

guidelines for interpreting a P–value are provided below.

Returning to our discussion for the directional research hypothesis H1 : p > p0. The final

steps for performing a hypothesis test for

H0 : p ≤ p0 versus H1 : p > p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂ − p0)/SE(p̂), and SE(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the right of Zcalc, as shown in Figure 9.13. This P–value is the “one–sided Pr > Z” of the

SAS output.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p > p0 over H0 : p ≤ p0. That is, if the P–value is small

enough, then there is sufficient evidence to conclude that the population success proportion

p is greater than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p > p0 over H0 : p ≤ p0. That is, if

the P–value is not small enough, then there is not sufficient evidence to conclude that the

population success proportion p is greater than p0.

Remarks and guidelines about P–values.

The following general remarks regarding the use of P–values to assess the evidence against

a null hypothesis and in favor of a research hypothesis apply to hypothesis tests in general,

not just hypothesis tests for a proportion.

One approach to hypothesis testing is to use a fixed cutoff value to decide whether the

P–value is “large” or “small”. The most common application of this approach is to con-

clude that there is sufficient evidence to reject the null hypothesis in favor of the research
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hypothesis only when the P–value is less than .05. When a fixed cutoff value like .05 (5%)

is used to decide whether to reject the null hypothesis in favor of the research hypothesis

this cutoff value is known as the significance level of the test. Hence, if we adopt the rule

of rejecting the null hypothesis in favor of the research hypothesis only when the P–value

is less than .05, then we are performing a hypothesis test at the 5% level of significance.

In accordance with this terminology, the P–value is also known as the observed signif-

icance level of the test and if the P–value is less than the prescribed significance level,

then the results are said to be statistically significant.

To perform a hypothesis test at the 5% level of significance we compute the appropriate

P–value and compare it to the fixed significance level .05. If the P–value is less than .05,

then we conclude that there is sufficient evidence, at the 5% level of significance, to reject

the null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is less

than .05, then the data do support H1. If the P–value is not less than .05, then we

conclude that there is not sufficient evidence, at the 5% level of significance, to reject the

null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is not less

than .05, then the data do not support H1.

Instead of, or in addition to, using a fixed significance level like 5% we can use the P–value

as a measure of the evidence (in the data) against the null hypothesis H0 and in favor of

the research hypothesis H1. Some guidelines for deciding how strong the evidence is in

favor of the research hypothesis H1 are given below.

Guidelines for interpreting a P–value:

1. If the P–value is greater than .10, there is no evidence in favor of H1.

2. If the P–value is between .05 and .10, there is suggestive but very weak evidence in

favor of H1.

3. If the P–value is between .04 and .05, there is weak evidence in favor of H1.

4. If the P–value is between .02 and .04, there is moderately strong evidence in favor of

H1.

5. If the P–value is between .01 and .02, there is strong evidence in favor of H1.

6. If the P–value is less than .01, there is very strong evidence in favor of H1.
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Whether you choose to use a fixed significance level or the preceding guidelines based

on the P–value you should always report the P–value since this allows someone else to

interpret the evidence in favor of H1 using their personal preferences regarding the size of

a P–value.

In the U.S. legal system there is a similar set of guidelines for assessing the level of proof or

weight of the evidence against the null hypothesis of innocence and in favor of the research

hypothesis of guilt. The weakest level of proof is “the preponderance of the evidence” (this

is similar to a reasonably small P–value), the next level of proof is “clear and convincing

evidence” (this is similar to a small P–value), and the highest level of proof is “beyond a

reasonable doubt” (this is similar to a very small P–value).

Example 9.2 Acceptance sampling for electronic devices. A large retailer receives a ship-

ment of 10,000 electronic devices from a supplier. The supplier guarantees that no more

than 6% of these devices are defective. In fact, if more than 6% of the devices in the ship-

ment are defective, then the supplier will allow the retailer to return the entire shipment,

provided this is done with 10 days of receiving the shipment. Therefore, the retailer needs

to decide between accepting the shipment and returning the shipment to the supplier. This

decision will be based on the information provided by examining a simple random sample

of electronic devices selected from the shipment.

In this example one of these electronic devices is a unit and the collection of 10,000 units

constituting the shipment is the population. Notice that, in this example, the target

population and the sampled population are the same (each is the shipment of 10,000

devices). A suitable variable for the indicated objective is whether an electronic device

is defective with the two possible values: yes (it is defective) and no (it is not defective).

A relevant parameter is the proportion p of defective devices in the shipment of 10,000

devices. The corresponding statistic p̂ is the proportion of defective devices in the sample

of devices that is examined.

The boundary between the null and research hypotheses is clearly p0 = .06, since we need

to decide whether the population proportion of defective devices p exceeds .06. Assuming

that the supplier is trustworthy, it would seem to be a reasonable business practice to

accept the shipment of electronic devices unless we find sufficient evidence, by examining

the sample of devices, to conclude that more than 6% of the devices in the shipment
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are defective. Hence, we will use a hypothesis test to determine whether there is sufficient

evidence to conclude that the population defective proportion p exceeds .06. More formally,

our research hypothesis is H1 : p > .06 and our null hypothesis is H0 : p ≤ .06.

To continue with this example we need to know the sample size n and the results of the

examination of the sample of electronic devices. Suppose that the simple random sample

contains n = 200 electronic devices. For a sample of size n = 200 the standard error of p̂

for testing a hypothesis with p0 = .06 is

SE(p̂) =

√
(.06)(.94)

200
= .0168.

Figure 9.14 SAS output for the acceptance sampling example

Case 1. Suppose that 16 of the 200 devices in the sample are defective so that p̂ = .08.

In this case we know that 8% of the 200 devices in the sample are defective and we need

to decide whether this suggests that more than 6% of all the devices in the shipment are

defective. The calculated Z statistic is

Zcalc =
p̂− p0
SE(p̂)

=
.08− .06

.0168
= 1.1910
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and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 1.1910) = .1168.

In the SAS output of Figure 9.14 this P–value is labeled “one–sided Pr > Z. Since this

P–value is large there is not sufficient evidence to reject the null hypothesis p ≤ .06 in

favor of the research hypothesis p > .06. Therefore, if we observe 16 defective devices in a

random sample of n = 200 devices, then we should accept the shipment of devices, since

there is not sufficient evidence to conclude that more than 6% of the shipment of 10,000

devices is defective.

Case 2. Now suppose that 20 of the 200 devices in the sample are defective so that

p̂ = .10. In this case

Zcalc =
p̂− p0
SE(p̂)

=
.10− .06

.0168
= 2.3820

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 2.3820) = .0086.

In the SAS output of Figure 9.14 this P–value is labeled “one–sided Pr > Z. This P–value

is very small indicating that we have strong evidence against the null hypothesis p ≤ .06

and in favor of the research hypothesis p > .06. Therefore, if we observe 20 defective

devices in a random sample of n = 200 devices, then we are justified in returning the

shipment of devices, since there is strong evidence that more than 6% of the shipment of

10,000 devices is defective.

In both of the cases described above, in addition to the conclusion of the hypothesis test

the retailer might also wonder exactly what proportion of devices in the shipment of 10,000

devices are defective. We can use a 95% confidence interval estimate of p to answer this

question.

In the first case there are 16 defective devices in the sample of n = 200 giving an observed

proportion of defective devices of p̂ = .08. From the SAS output in Figure 9.14, we are

95% confident that the actual proportion of defective devices in the shipment of 10,000 is

between .0498 and .1260. As expected, since we did not reject the tentative assumption

that p ≤ .06, we see that this confidence interval includes proportions that are both less

than .06 and greater than .06.
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In the second case there are 20 defective devices in the sample of n = 200 giving p̂ = .10.

From the SAS output in Figure 9.14, we are 95% confident that the actual proportion of

defective devices in the shipment of 10,000 is between .0656 and .1494. As expected, since

we did reject the tentative assumption that p ≤ .06, we see that all of the values in this

confidence interval are greater than .06. Notice that in this case the P–value .0086 is quite

small indicating that there is very strong evidence that the proportion of defective devices

in the shipment is larger than .06. However, from the 95% confidence interval estimate

of p we find that this proportion of defective devices might actually be as small as .0656,

which is not much larger than .06. Thus, the small P–value indicates strong evidence that

p is greater than .06 but it does not necessarily indicate that p is a lot larger than .06. Of

course the 95% confidence interval estimate also indicates that p may be as large as .1494

which is a good bit larger than .06.

The scenario in the acceptance sampling example where there is strong evidence that

p > .06 (P–value .0086) but the lower limit of the 95% confidence interval .0656 is not

much larger than .06 highlights the need for a confidence interval to estimate the value

of p in addition to a hypothesis test to clarify the practical importance of the result of

the test. Bear in mind that a hypothesis test addresses a very formal distinction between

two complementary hypotheses and that in some situations the results may be statistically

significant (in the sense that the P–value is small) but of little practical significance (in

the sense that p is not very different from p0).

Testing a directional hypothesis of the form p < p0

The procedure for testing the null hypothesis H0 : p ≤ p0 versus the research hypothesis

H1 : p > p0 given above is readily modified for testing the null hypothesis H0 : p ≥ p0

versus the research hypothesis H1 : p < p0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population success proportion p is less than the

particular, hypothesized value p0, i.e., consider a situation where the research hypothesis

is H1 : p < p0 and the null hypothesis is H0 : p ≥ p0. For these hypotheses values of the

observed success proportion p̂ that are sufficiently small relative to p0 provide evidence in

favor of the research hypothesis H1 : p < p0 and against the null hypothesis H0 : p ≥ p0.

Therefore, the P–value for testing H0 : p ≥ p0 versus H1 : p < p0 is the probability of

observing a value of p̂ as small or smaller than the value actually observed. As before, the
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P–value is computed under the assumption that p = p0. The calculated Z statistic Zcalc

is defined as before; however, in this situation the P–value is the area under the standard

normal density curve to the left of Zcalc, since values of p̂ that are small relative to p0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : p ≥ p0 versus H1 : p < p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≤ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂ − p0)/SE(p̂), and SE(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the left of Zcalc as shown in Figure 9.15. This P–value is the “one–sided Pr < Z” of the

SAS output.

Figure 9.15 P–value for H0 : p ≥ p0 versus H1 : p < p0.

Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p < p0 over H0 : p ≥ p0. That is, if the P–value is small

enough, then there is sufficient evidence to conclude that the population success proportion

p is less than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p < p0 over H0 : p ≥ p0. That is, if

the P–value is not small enough, then there is not sufficient evidence to conclude that the

population success proportion p is less than p0.
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Bernoulli trials

Some applications of these inferential methods for a proportion, such as the following

machine parts example, correspond to a sequence of n trials. In this context a dichotomous

trial is a process of observation or experimentation which results in one of two distinct

outcomes (success or failure).

A sequence of n trials is said to constitute a sequence of n Bernoulli trials with success

probability p if the following conditions are satisfied.

1. There is a common probability of success p for every trial. That is, on every trial the

probability that the outcome of the trial will be a success is p.

2. The outcomes of the trials are independent of each other. That is, if we knew the

outcome of a particular trial or trials this would provide no additional information about

the probability of observing a success (or failure) on any other trial. For example, if

we knew that a success (or failure) occurred in the first trial, this would not change the

probability of success in any other trial.

The simple example below will help to clarify the definition of a sequence of n Bernoulli

trials and the connection between sampling from a dichotomous population and Bernoulli

trials.

Example 9.3 Tossing a fair die. Let a trial consist of tossing a fair (balanced) die and

observing the number of dots on the upturned face. Define a success to be the occurrence

of a 1, 2, 3, or 4. Since the die is fair, the probability of a success on a single trial is

p = 4/6 = 2/3. Furthermore, if the die is always tossed in the same fashion, then the

outcomes of the trials are independent. Therefore, with success defined as above, tossing

the fair die n times yields a sequence of n Bernoulli trials with success probability p = 2/3.

Note that this process of tossing a die is abstractly the same as the process of selecting a

ball at random from a box containing six balls with the balls numbered from 1 to 6. Thus

tossing the die n times is equivalent to selecting a simple random sample of size n with

replacement from this box containing six balls.
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Example 9.4 Machine parts. The current production process used to manufacture a partic-

ular machine part is known (from past experience) to produce parts which are unaccept-

able, in the sense that they require further machining, 35% of the time. A new production

process has been developed with the hope that it will reduce the chance of producing un-

acceptable parts. Suppose that 200 parts are produced using the new production process

and that 54 of these parts are found to be unacceptable.

In this example we have a sequence of 200 dichotomous trials, where a trial consists of

producing a part with the new production process and determining whether it is unac-

ceptable. In this example p denotes the probability that a part produced using the new

production process will be unacceptable. We will model these 200 trials as a sequence of

n = 200 Bernoulli trials with population success probability p. This assumption is reason-

able provided: (1) the probability that a part is unacceptable is essentially constant from

part to part; and, (2) whether a specific part is unacceptable or not has no effect on the

probability that any other part is unacceptable.

In this example the boundary between the null and research hypotheses is clearly p0 = .35.

Since these data were collected to determine if the new production process is better than

the old process, we want to know whether there is sufficient evidence to conclude that less

than 35% of the parts produced using the new production process would be unacceptable.

Thus our research hypothesis is H1 : p < .35 and our null hypothesis is H0 : p ≥ .35. Since

54 of the 200 parts in our sample are unacceptable we know that p̂ = .27 and we need

to determine whether this is small enough to suggest that the corresponding population

probability p is also less than .35. For a sample of size n = 200 the standard error of p̂ for

testing a hypothesis with p0 = .35 is

SE(p̂) =

√
(.35)(.65)

200
= .0337.

The calculated Z statistic is

Zcalc =
p̂− p0
SE(p̂)

=
.27− .35

.0337
= −2.3739

and the P–value is

P–value = P (Z ≤ Zcalc) = P (Z ≤ −2.3739) = .0088.
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You can find these values in the SAS output of Figure 9.16. Since this P–value is very

small, there is sufficient evidence to reject the null hypothesis p ≥ .35 in favor of the

research hypothesis p < .35. Hence, based on this sample of 200 parts there is very strong

evidence that the new production process is superior in the sense that the probability of

producing an unacceptable part is less than .35.

Clearly this conclusion should be accompanied by an estimate of how much smaller this

probability is likely to be. Observing 54 unacceptable parts in the sample of n = 200 gives

p̂ = .27 and a 95% confidence interval ranging from .2132 to .3354. Therefore, we are 95%

confident that the probability of a part produced using the new production process being

unacceptable is between .2132 and .3354. As expected, since we did reject the tentative

assumption that p ≥ .35, we see that all of the values in this confidence interval are less

than .35. The P–value .0088 is quite small indicating that there is very strong evidence

that the probability of producing an unacceptable part is less than .35. However, from the

95% confidence interval estimate of p we find that this probability might actually be as

large as .3354 which is not much smaller than .35. Of course the 95% confidence interval

estimate also indicates that p may be as small as .2132 which is a good bit smaller than

.35.

Figure 9.16 SAS output for the machine parts example



196 9.4 Testing a hypothesis about p

Testing a nondirectional research hypothesis

The hypothesis tests we have discussed thus far are only appropriate when we have enough

a priori information, i.e., information that does not depend on the data to be used for

the hypothesis test, to postulate that the population success proportion p is on one side

of a particular value p0. That is, we have only considered situations where the research

hypothesis is directional in the sense of specifying either that p > p0 or that p < p0. In

some situations we will not have enough a priori information to allow us to choose the

appropriate directional research hypothesis. Instead, we might only conjecture that the

population success proportion p is different from some particular value p0. In a situation

like this our research hypothesis specifies that the population success proportion p is dif-

ferent from p0, i.e., H1 : p 6= p0 and the corresponding null hypothesis specifies that p is

exactly equal to p0, i.e., H0 : p = p0. As we will see in the inheritance model considered

below, when testing to see whether p is equal to a specified value p0 the null hypothesis

H0 : p = p0 often corresponds to the validity of a particular theory or model and the

research hypothesis or alternative hypothesis specifies that the theory is invalid.

Testing a nondirectional research (alternative) hypothesis of the form

p 6= p0.

Research question. Is there sufficient evidence to conclude that the population propor-

tion p is different from the hypothesized value p0?

Research hypothesis. H1 : p 6= p0, The population proportion p is not equal to the

hypothesized value p0.

Tentative assumption – null hypothesis. H0 : p = p0, We tentatively assume that

the population proportion p is exactly equal to the hypothesized value p0.

Evidence in favor of the research hypothesis. As with the directional hypothesis

cases, the relationship between the observed proportion of successes in the sample p̂ and

the hypothesized value p0 will be used to assess the strength of the evidence in favor of

the research hypothesis. Generally, we would expect to observe values of p̂ farther away

from p0 more often when the research hypothesis H1 : p 6= p0 is true than when the null

hypothesis H0 : p = p0 is true. In particular, we can view the observation of a value of p̂

that is sufficiently far away from p0, in either direction, as constituting evidence against

the null hypothesis H0 : p = p0 and in favor of the research hypothesis H1 : p 6= p0.
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Assessment of the strength of the evidence – the P–value of the test. Deciding

whether the observed value of p̂ is “sufficiently far away from p0 in either direction” is

based on the P–value of the test. The P–value for testing the null hypothesis H0 : p = p0

versus the research hypothesis H1 : p 6= p0 is the probability of observing a value of p̂ for

which the distance |p̂ − p0| (the absolute value of the difference between p̂ and p0) is as

large or larger than the value of this distance that we actually do observe.

Computation of the P–value. The P–value of the test is computed under the assump-

tion that the research hypothesis H1 : p 6= p0 is false and the null hypothesis H0 : p = p0

is true. In this situation the calculated Z statistic Zcalc is the absolute value of the Z

statistic that would be used for testing a directional hypothesis. That is, the calculated Z

statistic is

Zcalc =

∣∣∣∣ p̂− p0SE(p̂)

∣∣∣∣ =

∣∣∣∣∣ p̂− p0√
p0(1− p0)/n

∣∣∣∣∣ .
In terms of this Z statistic the P–value is the probability that the absolute value of a

standard normal variable Z would take on a value as large or larger than Zcalc assuming

that p = p0. This probability is the sum of the area under the standard normal density

curve to the left of −Zcalc and the area under the standard normal density curve to the

right of Zcalc, as shown in Figure 9.17. We need to add these two areas (probabilities)

since we are finding the probability that the observed success proportion p̂ would be as far

or farther away from p0 in either direction as is the value that we actually observe, when

p = p0. Notice that this P value (the area to the left of −Zcalc plus the area to the right

of Zcalc) is small when Zcalc is far away from zero in one direction or the other which is

equivalent to p̂ being far away from p0 in one direction or the other.

Figure 9.17 P–value for H0 : p = p0 versus H1 : p 6= p0.

Zcalc-Zcalc 0
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The steps for performing a hypothesis test for

H0 : p = p0 versus H1 : p 6= p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|Z| ≥ Zcalc) =

P (Z ≤ −Zcalc) + P (Z ≥ Zcalc), where Z denotes a standard normal variable, Zcalc =

|(p̂− p0)/SE(p̂)|, and SE(p̂) =
√
p0(1− p0)/n. This P–value is the sum of the area under

the standard normal density curve to the left of −Zcalc and the area under the standard

normal density curve to the right of Zcalc as shown in Figure 9.17. This P–value is the

“two–sided Pr > |Z|” of the SAS output.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p 6= p0 over H0 : p = p0. That is, if the P–value is small

enough, then there is sufficient evidence to conclude that the population success proportion

p is different from p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p 6= p0 over H0 : p = p0. That is, if

the P–value is not small enough, then there is not sufficient evidence to conclude that the

population success proportion p is different from p0.

Example 9.5 Inheritance in peas (flower color). In his investigations, during the years

1856 to 1868, of the chromosomal theory of inheritance Gregor Mendel performed a series

of experiments on ordinary garden peas. One characteristic of garden peas that Mendel

studied was the color of the flowers (red or white). When Mendel crossed a plant with red

flowers with a plant with white flowers, the resulting offspring all had red flowers. But

when he crossed two of these first generation plants, he observed plants with white as well

as red flowers. We will use the results of one of Mendel’s experiments to test a simple

model for inheritance of flower color. Mendel observed 929 pea plants arising from a cross

of two of these first generation plants. Of these 929 plants he found 705 plants with red

flowers and 224 plants with white flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers
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(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (ordered combinations) RR,Rr, rR,

and rr. The three genotypes RR,Rr, and rR, which include the dominant R allele, will

yield red flowers while the fourth genotype rr will yield white flowers. If a red flowered

RR genotype parent is crossed with a white flowered rr genotype parent, then all of the

offspring will have genotype Rr and will produce red flowers. If two of these first generation

Rr genotype plants are crossed, each of the four possible genotypes RR,Rr, rR, and rr is

equally likely and plants with white as well as red flowers will occur. Under this simple

model for inheritance, with each of the four genotypes having the same probability of

occurring (and with each plant possessing only one genotype), the probability that a plant

will have red flowers is p = 3/4 and the probability that a plant will have white flowers is

1− p = 1/4. In other words, this model for inheritance of flower color says that we would

expect to see red flowers 3/4 of the time and white flowers 1/4 of the time.

We can test the validity of this model by testing the null hypothesis H0 : p = 3/4 versus

the alternative hypothesis H1 : p 6= 3/4. Notice that the model is valid under the null

hypothesis and the model is not valid under the alternative hypothesis. Mendel observed

705 plants with red flowers out of the n = 929 plants giving an observed proportion of

plants with red flowers of p̂ = 705/929 = .7589. The standard error of p̂, computed under

the assumption that p = p0 = 3/4, is

SE(p̂) =

√
(.75)(.25)

929
= .0142

and the calculated Z statistic is Zcalc = .6251 giving a P–value of

P–value = P (|Z| ≥ Zcalc) = P (|Z| ≥ .6251) = .5319.

You can find these values in the SAS output of Figure 9.18. This P–value is quite large

and we are not able to reject the null hypothesis; therefore, we conclude that the observed

data are consistent with Mendel’s model. Technically, we should say that the data are not

inconsistent with the model in the sense that we cannot reject the hypothesis that p = 3/4.

In this example, the 95% confidence interval estimate of p ranges from .7303 to .7853.
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Figure 9.18 SAS output for the Mendel pea flower color example

9.5 Directional confidence bounds toc

In our discussion of hypothesis testing we considered directional research hypotheses of

the form p > p0 and p < p0 as well as nondirectional research hypotheses of the form

p 6= p0. However, in our discussion of 95% confidence intervals for p we only considered

“nondirectional” confidence intervals of the form pL ≤ p ≤ pU . A 95% confidence interval

of this form, consisting of a lower bound pL for p and an upper bound pU for p, gives a

range of plausible values for p. In a situation where we have enough a priori information to

justify a directional research hypothesis we might argue that it would be more appropriate

to determine a 95% confidence bound (a lower bound or an upper bound) for p instead of

a range of values.

A lower confidence bound on p allows us to estimate the smallest value of p which is

plausible in light of the observed value of p̂. Similarly, an upper confidence bound on p

allows us to estimate the largest value of p which is plausible in light of the observed value

of p̂. For example, in the acceptance sampling example we might argue that we are less

concerned with a limit on how large p might be than with a limit on how small it might be.
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Therefore, we might be satisfied with an estimate of the smallest value of p which would

be consistent with the data, i.e., we might only need a 95% confidence lower bound for p.

The reasoning which led to the “nondirectional” Wilson interval ( a range of values for

p) can be adapted to yield a directional interval (a lower or upper confidence bound for

p). Recall that our development of the Wilson 95% confidence interval estimate of p was

based on the observation that, for each possible value of p, we can view the central 95%

interval from p − 1.96SE(p̂) to p + 1.96SE(p̂) as an interval which is likely to contain p̂.

This starting point led us to a confidence interval estimate of p which provided a range of

values between a lower limit and an upper limit. If we use an upper 95% interval for p̂ or

a lower 95% interval for p̂ instead, we will end up with a directional confidence interval,

i.e., we will end up with a 95% confidence bound (lower or upper) for p. In practice, 95%

confidence bounds are usually computed by selecting the appropriate endpoint of a 90%

confidence interval. That is, if pL ≤ p ≤ pU is a 90% confidence interval estimate of p,

then PL is a 95% lower confidence bound for p and pU is a 95% upper confidence bound

for p.

We will illustrate some applications of confidence bounds in the context of some of the

examples we discussed earlier. Detailed derivations of 95% lower and upper confidence

bounds are provided after the examples.

Example 9.2 Acceptance sampling for electronic devices (revisited). Recall that in this

example the retailer had received a shipment of 10,000 electronic devices from a supplier

with a guarantee that no more than 6% of these devices were defective. The retailer is

interested in p, the value of the proportion of defective devices in the shipment of 10,000

devices. In particular, the retailer is concerned that this proportion might be too large

(greater than .06). Thus we proposed a test of the null hypothesis H0 : p ≤ .06 versus the

research hypothesis H1 : p > .06. We considered two cases to illustrate the corresponding

hypothesis testing procedure. We will now show how a directional confidence bound can

supplement the formal hypothesis test.

As noted above, in this example, we are less concerned with a limit on how large p might

be than with a limit on how small it might be. Therefore, we might be satisfied with an

estimate of the smallest value of p which would be consistent with the data, i.e., we might

only need a 95% confidence lower bound for p. Note that a lower confidence bound will
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always include values greater than .06 (6%). The important consideration is whether it

also includes values less than .06.

Figure 9.19 SAS output for the acceptance sampling example

Case 1 If there are 16 defective devices in a sample of n = 200, then the observed

proportion of defective devices is p̂ = .08. The lower endpoint .0538 of the 90% confidence

interval in the SAS output for case 1 in Figure 9.19 is the 95% confidence lower bound

for p. Hence, we can conclude that we are 95% confident that the actual percentage of

defective devices in the shipment of 10,000 is at least 5.38%. More importantly, with 95%

confidence we can say that the percentage could be as low as 5.38%. Since this lower

bound is less than 6% we do not have sufficient evidence to claim that more than 6% of

the 10,00 devices are defective.

Recall that, in this case, the P–value for testing H0 : p ≤ .06 versus H1 : p > .06 was .1168

and we concluded that there is not sufficient evidence to claim that more than 6% of the

10,000 devices are defective. Thus the lower confidence bound and the formal hypothesis

test lead to the same conclusion.

Case 2 If there are 20 defective devices in a sample of n = 200, then the observed

proportion of defective devices is p̂ = .10. The lower endpoint .0703 of the 90% confidence
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interval in the SAS output for case 2 in Figure 9.19 is the 95% confidence lower bound for

p. In this case we can conclude that we are 95% confident that the actual percentage of

defective devices in the shipment of 10,000 is at least 7.03%. That is, with 95% confidence

we can say that the percentage is not less than 7.03%. Since this lower bound is greater

than 6% we have sufficient evidence to claim that more than 6% of the 10,000 devices are

defective. Note also that the lower bound 7.03% indicates that the percentage of defective

devices among the 10,000 is at least 1.03 percentage points higher than the 6% cutoff value.

In this case, the P–value for testing H0 : p ≤ .06 versus H1 : p > .06 was .0086 and

we concluded that there is strong evidence that more than 6% of the 10,000 devices are

defective. Again, the lower confidence bound and the test lead to the same conclusion.

Example 9.4 Machine parts (revisited). Recall that, in this example, the current production

process used to manufacture a particular machine part is known (from past experience) to

produce parts which are unacceptable, in the sense that they require further machining,

35% of the time. A new production process has been developed with the hope that it

will reduce the chance of producing unacceptable parts. In this example p denotes the

probability that a part produced using the new production process will be unacceptable

and our goal is to decide whether this probability is less than .35. A sample of 200

parts was produced using the new production process and 54 of these parts were found

to be unacceptable. The SAS output for this example is provided in Figure 9.20. In

this example, the P–value for testing H0 : p ≥ .35 versus H1 : p < .35 is .0088 and we

concluded that there is very strong evidence that the new production process is superior

in the sense that the probability of producing an unacceptable part is less than .35. Using

the upper endpoint of the 90% confidence interval in the SAS output of Figure 9.20, we can

conclude that we are 95% confident that the probability that a part produced using the

new production process will be unacceptable is no larger than .3245. Since this value is less

than .35, the 95% confidence upper bound leads to the conclusion that the new production

process is superior to the old process and indicates the extent of the improvement.
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Figure 9.20 SAS output for the machine parts example

For completeness, we will now provide detailed derivations of 95% lower and upper con-

fidence bounds. The probability that a standard normal variable Z takes on a value less

than 1.645 is equal to .95, P (Z ≤ 1.645) = .95. That is, when we observe the value of a

standard normal variable Z, 95% of the time we will find that Z ≤ 1.645. Graphically this

means that the area under the standard normal density curve over the interval from −∞
to 1.645 is .95. Thus, for sufficiently large values of n we have the approximation,

P

[
p̂− p
SE(p̂)

≤ 1.645

]
= .95.

Note that this indicates that 95% of the time when a simple random sample is selected

and p̂ is computed the observed value of p̂ will be between zero and p + 1.645SE(p̂), i.e.,

p̂ will be no more than 1.645 population standard error units above p. We will refer to

the interval from zero to p+ 1.645SE(p̂) as the lower 95% interval of the distribution of p̂,

since it will contain the observed value of p̂ 95% of the time.

The plots in Figure 9.21 show how the lower 95% interval of the distribution of p̂ depends

on the value of p. On the left we have a representation of the lower 95% interval, the

interval from p1 = 0 to p2. The plot on the right shows how p2 depends on p. We want to

determine the values of p which yield lower 95% intervals which contain p̂obs. To do this
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we need to use the graph on the right of Figure 9.21 in the other direction, as shown in

Figure 9.22. In Figure 9.22 a horizontal line is drawn at p̂obs and its intersection, pL, with

the upper curve is indicated. Notice that pL is the smallest value of p for which the lower

95% interval of the distribution of p̂ contains p̂obs. (Figure 9.22 is drawn for n = 100 and

p̂obs = .55. In this case, pL = .4679.) Thus, if we draw a vertical line, as in Figure 9.21,

at any value of p between pL and pU = 1, then the corresponding lower 95% interval of

the distribution of p̂ contains p̂obs. Note that pL is the 95% confidence lower bound for p.

Figure 9.21 The plot on the left shows the lower 95% interval of the distribution of p̂

for n = 100 and p = .6.

The upper (red) curve in the plot on the right shows the upper endpoint,

p+ 1.645
√
p(1− p)/n, of the lower 95% interval of the distribution of p̂ as a

function of p for n = 100. The upper endpoint for the case p = .6 is indicated by the line

marking the intersections at p2 = .6806. (The lower endpoint is zero.)

In order to determine the value of pL we simply set p+1.645SE(p̂) equal to p̂obs and solve

for p (draw the horizontal line as in Figure 9.22 and project down at the intersection with

the upper (red) curve).

An analogous argument starting with the upper 95% interval of the distribution of p̂, i.e.,

the interval from p− 1.645SE(p̂) to one, leads to a 95% confidence upper bound for p. In

this case, as shown in Figure 9.23, we start with the upper 95% interval of the distribution

of p̂, the interval from p1 = p− 1.645SE(p̂) to one. The graph on the right in Figure 9.23

shows how the upper 95% interval of the distribution of p̂ depends on value of p.
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Figure 9.22 The smallest value of p, pL, for which the lower 95% interval of the

distribution of p̂ contains p̂obs. (The interval goes from pL to pU = 1.)

This example is drawn for n = 100 and p̂obs = .55. Here pL = .4679.

Figure 9.23 The plot on the left shows the upper 95% interval of the distribution of p̂

for n = 100 and p = .6.

The lower (blue) curve in the plot on the right shows the lower endpoint,

p− 1.645
√
p(1− p)/n, of the upper 95% interval of the distribution of p̂ as a

function of p for n = 100. The lower endpoint for the case p = .6 is indicated by the line

marking the intersections at p1 = .6806. (The upper endpoint is one.)

In Figure 9.24 a horizontal line is drawn at p̂obs and its intersection, pU , with the lower

curve is indicated. Notice that pU is the largest value of p for which the upper central

95% interval of the distribution of p̂ contains p̂obs. (Figure 9.24 is drawn for n = 100 and

p̂obs = .55. In this case, pU = .6806.) Thus, if we draw a vertical line, as in Figure 9.23,

at any value of p between pL = 0 and pU , then the corresponding upper 95% interval of
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the distribution of p̂ contains p̂obs. Note that pU is the 95% confidence upper bound for

p.

In order to determine the value of pU we simply set p−1.645SE(p̂) equal to p̂obs and solve

for p (draw the horizontal line as in Figure 9.24 and project down at the intersection with

the lower (blue) curve).

Figure 9.24 The largest value of p, pU , for which the upper 95% interval of the

distribution of p̂ contains p̂obs. (The interval goes from pL = 0 to pU .)

This example is drawn for n = 100 and p̂obs = .55. Here pU = .6294.



208 Index

Index toc

bar graph 17

Bayes’ theorem 106

Bernoulli distribution 120
Bernoulli trials 116, 193

binomial coefficient 79
binomial distribution 81, 85, 113, 116

binomial probability mass function 117

box and whiskers plot 33

Chebyshev’s rule 44

combinations 78, 79

complement 52

compound event 45

confidence interval 166
confidence interval for p 166, 170, 171, 177,

178
continuous 16
control group 13

cumulative distribution function 113, 146

cumulative normal probabilities 154

data 2
DeMorgan’s laws 56

discrete 16, 68, 110

discrete random variable 110
disjoint 53, 103

elementary outcome 45, 50

equally likely 68

equally probable 68

event 45, 50

expected value 129, 130

as center of mass 131
as population mean 132

of a discrete random variable 130
experimental study 11

explanatory variable 17

factorial 75
frequency distribution 15, 20

fundamental rule of counting 71

extension of the rule 72

geometric distribution 123

geometric probability mass function 124, 139

guidelines for interpreting a P–value 187

histogram 20

hypergeometric distribution 86, 89, 138

hypergeometric p.m.f. 121

hypothesis test 179

directional hypothesis 183, 191

nondirectional hypothesis 196

independent events 88, 103, 104

Conditional independence 105

Conditional probability 97, 99

Independence of several events 104

Pairwise independence 104

interquartile range 29

intersection 54, 55

location 26

maximum 26
mean 38
median 27
Mendel 120
midrange 26

minimum 26
mound shaped distributions 22

multinomial coefficient 91
multinomial distribution 90
multiple hypergeometric distribution 94

multiplication rule for probabilities 102

mutual independence 104

mutually exclusive 53, 103

nominal 16
normal distribution 147
null event 50

order statistics 38



Index 209

ordered sample 73

ordinal 16

pairwise independence 104

parameter 2

partition 59

percentile 37

permutations 75, 76

pie graphs 17

Poisson distribution 126, 139

Poisson probability mass function 126

population 2

population mean 132, 145

population median 146

population standard deviation 41

population variance 41

probabilities of nested events 64

probability density function 143

probability distribution 68

probability mass function 112

probability measure 63

P–value 180, 184, 186, 187, 197

qualitative 16

quantile 37, 38

quantitative 16

quartiles 28

random experiment 45

random variable 110
randomized comparative experiment 13

range 27

relative frequency distribution 15

remarks and guidelines about P–values 186

response variable 11, 16

sample 2

sample space 45, 50

sample standard deviation 40

sample variance 41

segmented bar graphs 17

sequence of independent Bernoulli trials 116

simple event 45

simple random sample 9

single peak 22

skewed 22, 23

standard deviation 40, 135

standard normal c.d.f. 147
standard normal density curve 147

statistic 2, 25

stochastically independent 103

strata 10
subpopulations 9

subset 50
success probability 116

sure event 50
symmetric 22

the 68%-95%-99.7% rule 43

the law of total probability 105

the multiplication rule 102

the probability of a union 65, 66

treatment group 13

triangular distribution 115

trinomial distribution 93

uniform distribution 114, 139

unimodal 22, 43

union 53
unordered sample 78

variability 26

variable 2
variance 134, 136

Z–score 43


