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1.1 Basic ideas 1

1 Introduction toc

1.1 Basic ideas toc

The entity of primary interest is a group

Statistical methods deal with properties of groups or aggregates. In many applications

the entity of primary interest is an actual, physical group (population) of objects. These

objects may be animate (e.g., people or animals) or inanimate (e.g., farm field plots, trees,

or days). We will refer to the individual objects that comprise the group of interest as

units. In certain contexts we may refer to the unit as a population unit, a sampling unit,

an experimental unit, or a treatment unit.

Information about a unit – variables

In order to obtain information about a group of units we first need to obtain information

about each of the units in the group. A variable is a measurable characteristic of an indi-

vidual unit. Since our goal is to learn something about the group, we are most interested

in the distribution of the variable, i.e., the way in which the possible values of the

variable are distributed among the units in the group.

The population and the sample

The population is the collection of all of the units that we are interested in. The sample is

the subset of the population that we will examine. (We will define a sample more precisely

when we discuss random sampling.)

Figure 1.1 Population (box of balls) and sample. A ball represents a population unit.

The balls removed from the box represent the sample.

population sample
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When the units are actual, physical objects we define the population as the collection of all

of the units that we are interested in. In most applications it is unnecessary or undesirable

to examine the entire population. Thus we define a sample as a subset or part of the

population for which we have or will obtain data. The collection of observed values of one

or more variables corresponding to the individual units in the sample constitute the data.

Once the data are obtained we can use the distributions of the variables among the units in

the sample to characterize the sample itself and to make inferences or generalizations about

the entire population, i.e., inferences about the distributions of these variables among the

units in the population.

In some applications, such as experimental studies, the population is best viewed as a

hypothetical population of values of one or more variables. For example, suppose that we

are interested in the effects of an alternative diet on weight gain in some population of

experimental animals. We might conduct an experiment by randomly assigning animals to

two groups; feeding one group a standard diet and the other group the alternative diet; and

then recording the weight gained by each animal over some fixed period of time. In this

example we can envision two hypothetical populations of weight gains: The population of

weight gains we would have observed if all of the animals were given the standard diet;

and, the population of weight gains we would have observed if all of the animals were given

the alternative diet.

Information about a group – parameters and statistics

Recall that a variable is a measurable characteristic of an individual unit. One way to

characterize a group of units is to examine the values of the variable corresponding to all of

the units in the group and determine one or more suitable summary values. For example,

given a group of adults, we might compute the average age of the group or the proportion

who have full–time jobs. A parameter is a numerical characteristic of the population. A

statistic is a numerical characteristic of the sample. That is, a parameter is a number

which characterizes a population and a statistic is a number which characterizes a sample.

An illustration is provided in Figure 1.2 for a population of 10 balls and sample of 3

balls. In this figure the characteristic of interest is the color of the ball and the color red

(darker shade) is of particular interest. The parameter is the proportion of red balls in the

population, 6/10, and the statistic is the proportion of red balls in the sample, 2/3.
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Figure 1.2 Parameter and statistic for a population of 10 balls and sample of 3 balls.

parameter p = 6/10 statistic p̂ = 2/3

(population proportion red) (sample proportion red)

Example 1.1 NHANES The National Health and Nutrition Examination Survey (NHANES)

is a program of studies designed to assess the health and nutritional status of adults and

children in the United States. The survey is unique in that it combines interviews and

physical examinations. We will use some data from the 2013–2014 NHANES to illustrate

the basic ideas we are discussing. For now we will concentrate our attention on some body

size measurements for the 5588 adults (age 20 and over) in the 2013–2014 NHANES.

For present purposes we will view this group of N = 5588 adults as the population. In the

original context of the survey this is a sample. Thus, for our purposes:

1. A unit is an individual adult.

2. The population is the collection of N = 5588 adults about whom we have information.

3. The sample is a collection of n = 50 individuals (units) which I selected at random from

the population of N = 5588 adults.

4. We will consider six variables:

The sex of the person (male or female);

The age of the person (years);

The weight of the person (pounds);

The height of the person (inches);

The BMI (body mass index) of the person (kg/m2); and,

The waist circumference of the person (inches).
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Table 1.1 contains the values of the six variables for the n = 50 people in the sample. The

values in a particular row correspond to an individual (one unit).

Table 1.1 NHANES 2013-2014 simple random sample of n = 50.

line sex age weight height bmi waist

1 male 48 285.34 70.1181 40.9 48.8976
2 female 80 172.48 63.5433 30.1 41.6535
3 male 48 186.78 69.8819 26.9 37.5197
4 male 80 167.2 67.5591 25.8 37.0079
5 female 20 156.2 67.7953 23.9 32.2835
6 female 43 196.02 66.1811 31.5 46.8504
7 male 54 200.86 64.8425 33.7 42.5197
8 female 24 153.78 63.4252 26.9 40.7874
9 female 25 122.32 64.1732 20.9 29.0945

10 male 58 142.34 69.0157 21.1 34.252
11 female 74 154.22 63.1496 27.2 37.8346
12 female 74 173.8 61.378 32.5 45.3937
13 male 78 154.22 67.4016 23.9 33.4646
14 female 72 89.1 56.9291 19.4 29.1339
15 male 48 178.2 72.2835 24 36.811
16 male 64 231.66 62.874 41.3 51.7323
17 male 41 164.34 68.0315 25 36.7717
18 female 39 143.88 60.7874 27.4 33.7402
19 male 49 305.14 72.1654 41.3 missing
20 male 73 141.24 70.3937 20.1 37.4409
21 female 67 203.94 62.0079 37.4 44.7244
22 female 26 101.86 59.8031 20.1 29.0157
23 female 73 150.7 65.7087 24.6 38.189
24 male 60 199.32 72.1654 27 40.0394
25 male 40 206.58 67.4409 32 43.2677
26 male 27 181.94 67.3622 28.2 38.622
27 male 62 199.98 67.3622 31.1 43.3858
28 female 71 176.66 64.6063 29.8 42.9134
29 female 80 166.1 62.3228 30.1 39.3701
30 male 39 280.72 71.9291 38.2 52.0472
31 female 48 127.6 61.4173 23.8 31.2598
32 male 46 156.64 67.7953 24 missing
33 female 80 147.4 61.3386 27.6 40.7087
34 female 35 183.04 65.2362 30.3 41.2205
35 female 57 140.36 62.2047 25.6 34.9213

continued below
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Table 1.1 continuation of NHANES 2013-2014 simple random sample of n = 50.

line sex age weight height bmi waist

36 female 40 170.06 65.9055 27.6 35.748
37 female 56 182.6 59.685 36.1 39.4882
38 male 34 192.5 70.3937 27.4 37.9921
39 male 75 163.9 64.7244 27.6 48.8189
40 female 76 147.84 60.4724 28.5 36.6535
41 male 57 254.32 70.7087 35.8 43.8189
42 male 77 187.22 69.2126 27.5 40.1181
43 male 45 179.3 70.7087 25.3 36.5354
44 male 48 249.48 67.126 39 51.063
45 female 47 214.06 64.6457 36.1 42.5984
46 male 72 205.26 70.3543 29.2 42.8346
47 male 80 127.38 66.4567 20.3 missing
48 male 24 199.32 71.2205 27.7 40.6299
49 male 80 162.8 66.7323 25.8 39.4094
50 male 21 119.24 66.6929 18.9 26.3386

Some parameters and statistics (population and sample means) for the numerical variables

in this example are given in Table 1.2. With respect to the categorical variable sex of the

person; there are 2919 females and 2669 males in the population and there are 22 females

and 28 males in the sample. This gives the (parameter) population percentage female as

52.24% and the (statistic) sample percentage female as 44%.

Table 1.2 Population and sample means for the HANES example.

parameter statistic
variable population mean sample mean

age 49.15 54.70
weight 179.22 177.94
height 65.77 66.11

bmi 29.10 28.53
waist 39.05 39.47

Which direction? Probability versus statistics

Probability theory is used to model the outcomes of random processes. The basic proba-

bility situation is illustrated in Figure 1.3. Here we know all there is to know about the
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characteristics of the balls in the box and we want to make a statement about what will

happen when we select a ball at random from the box and examine it. For example, for

the box of Figure 1.2, where 60% of the balls in the box are red, if we select one ball at

random, there is a 60% chance (probability) that it will be red.

Figure 1.3 Probability: What will happen when we select a ball at random?

If we know all about the balls in the box,

then we can assign probabilities to the

outcomes we may observe when we select

a ball at random.

the population

Statistical theory is used to make inferences from a random sample to a population. The

basic statistics situation is illustrated in Figure 1.4. Here we know all there is to know about

the characteristics of the balls in the random sample and we want to make a statement

about what we would find if we examined all of the balls in the box (the entire population).

Figure 1.4 Statistics: What can we say about the balls in the box?

If we know all about the balls in the random

sample, then we can use statistics to make

inferences about the balls in the box.

the random sample
the population

1.2 Sampling toc

A sampling study is conducted by selecting a random sample of units from a population,

observing the values of a variable for the units in the sample, and then making inferences

or generalizations about the population. More specifically, the distribution of the values
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of the variable among the units in a random sample is used to make inferences about the

distribution of the variable among the units in the population. The first consideration in

planning or interpreting the results of a sampling study is the determination of exactly

which units could be in the sample. The second consideration concerns the proper selection

of the units which constitute the sample. We will discuss these considerations in more depth

in the rest of this section.

Sampling is the process of obtaining a sample from a population. Our ultimate goal is to

use the sample (which we will examine) to make inferences about the population (which

we will not examine in its entirety). If the sample is selected from the population in an

appropriate fashion, then we can use the information in the sample to make reliable and

quantifiable inferences about the population. When the sample is obtained we will use

the distribution of the variable among the units in the sample to make inferences about

the distribution of the variable among the units in the population. If the distribution of

the variable in the sample was exactly the same as the distribution of the variable in the

population, then it would be easy to make inferences about the population; but, this is

clearly too much to ask. Therefore we need to determine how to select a sample so that

the sample is representative of the population.

The first step in deciding whether a method of choosing a sample will yield a representative

sample requires a distinction between two populations. Before we obtain a sample we need

to decide exactly which population we are interested in. The target population is the

collection of all of the units that we want to make inferences about. We then need to

determine which population our sample actually comes from. The sampled population

is the collection of all of the units that could be in the sample. Notice that the sampled

population is determined by the method used to select the sample.

Ideally the sampling method is chosen so that the sampled population is exactly the same

as the target population and we can refer to this collection as the population. In practice,

there may be some differences between the target population and the sampled population.

When the sampled population is not identical to the target population we cannot be

confident that the sample (which comes from the sampled population) will be representative

of the target population. Furthermore, we cannot be confident that the statistic (which is

based on a sample from the sampled population) will be suitable for inference about the

parameter (which corresponds to the target population).
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If there is a difference between the sampled population and the target population, in the

sense that the distribution of the variable in the sampled population is different from

the distribution of the variable in the target population, then a sample (obtained from

the sampled population) is said to be biased for making inferences about the target

population. If we use a biased sample to make inferences about the target population, the

resulting inferences will not be appropriate. For example, a statistic based on a biased

sample, may provide a suitable estimate of the corresponding parameter in the sampled

population; but, it may not provide a suitable estimate of the corresponding parameter

in the target population. Therefore, if the sampled population is different from the target

population, then we must modify our goals by redefining the target population or we

must change the sampled population by modifying our sampling method, since we want

these two populations to be the same so that our inferences will be valid for our target

population. It may be possible to change the method of obtaining our sample so that all

of the units in the target population could be in our sample and these two populations are

the same. If it is not possible to change the sampling method, then we must change our

goals by restricting our inferences to the sampled population. In any case, once a sampling

method has been chosen, the sampled population is determined and we should restrict

our inferences to this sampled population. In conclusion, when making inferences from a

sample we must carefully consider the restrictions imposed by the sampling method, since

statistical theory can only justify inferences about the sampled population.

Assuming that we have defined a method of selecting a sample so that the sampled popula-

tion is the same as the target population, we next need to consider exactly how we should

select the units that constitute the sample. Since we are assuming that the sampled and

target populations are the same, we do not need to worry about the type of bias described

above. However, we might introduce bias if we do not select the units for the sample in

an appropriate fashion. The approach to sampling that we will adopt is called random

sampling. The idea behind random sampling is to eliminate potential bias (intentional

or unintentional) from the selection process by using impersonal random chance to select

the sample. In addition to eliminating bias random sampling also provides the basis for

theoretical justification and quantification of inferences based on the sample.

All of the sampling situations we consider can be viewed as being abstractly the same as

the simple situation of selecting a sample of balls from a box of balls. This scenario was

illustrated in Figure 1.1.
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The simplest type of random sample is called a simple random sample. A simple random

sample of size n is a sample of n units selected from the population in such a way that

every possible sample of n units has the same chance of being selected. This definition of a

simple random sample can be refined to distinguish between two versions of simple random

samples. If we require that the possible samples of n units are such that a particular unit

can occur at most once in a sample, then we refer to the sample as being a simple random

sample of size n, selected without replacement. On the other hand, if we allow a

particular unit to occur more than once in the sample, then we refer to the sample as a

simple random sample of size n, selected with replacement.

To obtain a simple random sample of size n from the balls in our box, we first mix the

balls in the box and select one ball at random (so that each ball in the box has the same

chance of being selected). We then determine the value of the variable for the selected ball

giving us the value of the variable for one of the balls in our random sample. If we are

sampling with replacement we return the ball to the box before the next draw. If we are

sampling without replacement we do not return the ball to the box. We then mix the balls

in the box and continue this process of selecting a ball from the box at random until n

balls have been selected. These n balls (or the values of the variable for these balls) form

the simple random sample of size n.

If the population from which we wish to select a random sample is not too large, then it

is possible to envision actually labeling each unit in the population, placing these labels

on a collection of balls, placing these labeled balls in a box, and selecting a simple random

sample of these balls as described above. In fact, state lotteries, where a simple random

sample of numbers is selected from a collection of allowable numbers (the units), are

conducted in this way. If you have ever observed the complicated mechanisms used to

select winning lottery numbers, you know that it is difficult to convince people that a

method of “drawing balls from a box” yields a proper simple random sample. For most

purposes it is best to use a computer or calculator to select a simple random sample. The

computer will simulate the process of drawing balls at random from a box.

When we take a simple random sample, all of the possible samples have the same chance

of being selected. There are situations where it is not appropriate for all of the possible

samples to have the same chance of being selected. Suppose that there are two or more

identifiable subsets of the population (subpopulations). If we obtain a simple random
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sample from the whole population, then it is possible for the resulting sample to come

entirely from one of the subpopulations so that the sample does not contain any units

from one or more of the subpopulations. If we know or suspect that the distribution of

the variable of interest varies among the subpopulations, then a sample which does not

contain any units from some of the subpopulations will not be representative of the whole

population. Therefore, in a situation like this we should not use a simple random sample

to make inferences about the whole population. Instead we should use a more complex

kind of random sample. One possibility is to use a sampling method known as stratified

random sampling which is described below in the context of a simple example.

Suppose we wish to estimate the proportion of all registered voters in the United States

who favor a particular candidate in an upcoming presidential election. We might expect

there to be differences in the proportion of registered voters who favor this candidate

among the various states. For example, we might expect support for this candidate to be

particularly strong in his or her home state. Because we are interested in the proportion

of all registered voters in the United States who favor this candidate, we want to be sure

that all of the states are represented fairly in our sample.

We can use the states to define strata (subpopulations), take a random sample from each

state (stratum), and then combine these samples to get a sample that is representative of

the entire country. This is an example of a stratified random sample. The simplest type

of stratified random sample is obtained as described in the following three steps.

1. Divide the population into appropriate strata (subpopulations).

2. Obtain a simple random sample within each stratum.

3. Combine these simple random samples to get the stratified random sample from the

whole population.

To obtain a representative sample in the opinion poll example, we would need to determine

the number of registered voters in each state and select simple random samples of sizes

that are proportional to the numbers of registered voters in the states.
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1.3 Experimentation toc

An experimental study differs from a sampling study in that the units used in the ex-

perimental study are manipulated and the responses of the units to this experimental

manipulation are recorded. For an experimental study the relevant population or popu-

lations are hypothetical populations of values of the variable defined by the experimental

treatment(s) and corresponding to all of the units available for use in the experiment. That

is, the relevant population(s) is the population(s) of values of the variable which would

be observed if all of the available units were subjected to the experimental treatment(s).

In the context of a comparative experiment we cannot properly quantify inferences unless

the units are assigned to the treatments being compared using an appropriate method of

random assignment. This random assignment of units to treatments is analogous to the

random sampling of a sampling study.

In an experimental study we manipulate the units and observe their response to this

manipulation. In the experimental context, a particular combination of experimental con-

ditions is known as a treatment. The purpose of an experiment is to obtain information

about how the units in the population would respond to a treatment; or, to compare the

responses of the units to two or more treatments. The response of a unit to a particular

treatment is determined by measuring the value of a suitable response variable.

The steps involved in conducting a simple experimental study based on a random sample

are summarized below.

1. Obtain a random sample of units from the population of interest.

2. Subject the units in the sample to the experimental treatment of interest.

3. Obtain the data. That is, determine the values of the response variable for the units in

the sample.

4. Use the data to make inferences about the how the units in the population would

respond to the treatment. More specifically, use the distribution of the response variable

in the sample to make inferences about the distribution of the response variable in the

population from which the sample was taken. In this context it may be easiest to think

of the population as the hypothetical population of values of the response variable which

would result if all of the units in the population were subjected to the treatment.
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We will now discuss the basic ideas of experimentation in more detail in the context of a

simple hypothetical experiment. Suppose that a new drug has been developed to reduce

the blood pressure of hypertensive patients. The treatment of interest is the administration

of the new drug to a hypertensive patient. The change in a patient’s blood pressure will

be used as the response variable. For this example the plan of the simple experiment

described above is summarized in the steps below.

1. Obtain a random sample of n hypertensive patients.

2. Measure the blood pressure of each patient before the new drug is administered.

3. Administer the new drug to each of these patients.

4. After a suitable period of time, measure the blood pressure of each patient.

5. For each patient determine the change in his or her blood pressure by computing the

difference between the patient’s blood pressure before the drug was administered and the

patient’s blood pressure after the new drug was administered. This change or difference

will serve as the response variable for assessing the effects of the new drug. In this example

the relevant population is the hypothetical population of changes in blood pressure that we

would observe if all of the hypertensive patients in the population from which the sample

was selected had been subjected to this experiment.

Suppose that we actually conducted this experiment. Furthermore, suppose that the data

indicate that the hypertensive patients’ blood pressures tend to decrease after they are

given the new drug, i.e., suppose that the data indicate that most of the patients ex-

perienced a meaningful reduction in blood pressure. We can conclude that there is an

association between the new drug and a reduction in blood pressure. This association is

clear, since the patients (as a group) tended to experience a decrease in blood pressure

after they received the new drug. Can we conclude that the new drug caused this decrease

in blood pressure? The support for the contention that the new drug caused the decrease

in blood pressure is not so clear. In addition to the new drug there may be other fac-

tors associated with the observed decrease in blood pressure. For example, the decrease

in blood pressure might be explained, in whole or in part, as the physical manifestation

of the psychological effect of receiving medication. In other words, we might observe a

similar decrease in blood pressure if we administered a placebo to the patients instead of

the new drug. It is also possible that some other aspects of the experimental protocol are
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affecting the patients’ blood pressures. The way that this experiment is being conducted

does not allow us to separate out the effects of the many possible causes of the decrease in

blood pressure. If we hope to establish a cause and effect relationship between taking the

new drug and observing a decrease in blood pressure, then we need to use a comparative

experiment.

In a randomized comparative experiment baseline data is obtained at the same time

as the data concerning the treatment of interest. This is done by randomly dividing the

available units (patients) into two or more groups and comparing the responses for these

groups. In the drug example there is one treatment of interest, administer the new drug.

Therefore, in this situation we only need two groups, a control group and a treatment group.

The units (patients) in the control group do not receive the treatment (do not receive

the new drug). The units (patients) in the treatment group do receive the treatment

(do receive the drug). During the course of the experiment we need to keep all aspects of

the experiment, other than the treatment itself, as similar as possible for all of the units

in the study. The idea is that, if the only difference between the units in the control group

and the units in the treatment group is that the units in the treatment group received the

treatment, then any observed differences between the responses of the two groups must

be caused by the treatment. In the drug example it would be a good idea to administer

a placebo to the patients in the control group, so that they do not know that they did

not receive the new drug. It would also be a good idea to “blind” the patients and the

people administering the drug or placebo by not telling them which patients are receiving

the placebo and which patients are receiving the new drug. The purpose of such blinding

is to eliminate intentional or unintentional effects due to patient or administrative actions

which might affect a patient’s response. The steps for conducting such a randomized

comparative experiment are given below.

1. Randomly divide the group of available patients into two groups: a group of n1 patients

to serve as the control group and a group of n2 patients to serve as the treatment group.

These two groups are random samples of sizes n1 and n2 from the group of available

patients. The samples sizes n1 and n2 may be different.

2. Administer the placebo to the patients in the control group and administer the new

drug to the patients in the treatment group.
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3. Obtain the data. That is, measure the response variable for each of the n1 + n2

patients in the experiment. For example, we could determine the change (difference) in

each patient’s blood pressure as measured before and after administration of the placebo

or new drug.

4. Compare the responses of the patients in the treatment group to the responses of the

patients in the control group and make inferences about the effects of the new drug versus

the placebo.

In this example there are two hypothetical populations of changes in blood pressure. The

hypothetical population of changes in blood pressure that we would observe if all of the

available hypertensive patients were subjected to this experiment and given the placebo

and the hypothetical population of changes in blood pressure that we would observe if

all of the available hypertensive patients were subjected to this experiment and given the

new drug. Notice that, strictly speaking, our inferences in this example only apply to

the hypertensive patients who were available for assignment to the groups used in the

experiment. If we want to make inferences about a larger population of hypertensive

patients, then the group of available patients used in the study should form a random

sample from this larger population.

The experiment described above is designed to compare the effects of the new drug to the

effects of a placebo. Suppose that we wanted to compare the effects of the new drug to

the effects of a standard drug. To make this comparison we could design the experiment

with three groups: a control group, a treatment group for the new drug, and a treatment

group for the standard drug. If our only goal is to compare the two drugs (treatments),

then we could eliminate the placebo control group and run the experiment with the two

treatment groups alone.
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2 Descriptive Statistics toc

2.1 Tabular and graphical summary toc

Consider the problem of using data to learn something about the characteristics of the

group of units which comprise the sample. Recall that the distribution of a variable is

the way in which the possible values of the variable are distributed among the units in

the group. A variable is chosen to measure some characteristic of the units in the group;

therefore, the distribution of a variable contains all of the available information about

the characteristic (as measured by that variable) for the group. Other variables, either

alone or in conjunction with the primary variable, may also contain information about the

characteristic of interest. A meaningful summary of the distribution of a variable provides

an indication of the overall pattern of the distribution and serves to highlight possible

unusual or particularly interesting aspects of the distribution.

Generally speaking, it is hard to tell much about the distribution of a variable by examining

the data in raw form. Therefore, the first step in summarizing the distribution of a variable

is to tabulate the frequencies with which the possible values of the variable appear in the

sample. A frequency distribution is a table listing the possible values of the variable

and their frequencies (counts of the number of times each value occurs). A frequency

distribution provides a decomposition of the total number of observations (the sample

size) into frequencies for each possible value. In general, especially when comparing two

distributions based on different sample sizes, it is preferable to provide a decomposition

in terms of relative frequencies. A relative frequency distribution is a table listing

the possible values of the variable along with their relative frequencies (proportions). A

relative frequency distribution provides a decomposition of the total relative frequency of

one (100%) into proportions or relative frequencies (percentages) for each possible value.

Many aspects of the distribution of a variable are most easily communicated by a graph-

ical representation of the distribution. The basic idea of a graphical representation of a

distribution is to use area to represent relative frequency. The total area of the graphical

representation is taken to be one (100%) and sections with area equal to the relative fre-

quency (percentage) of occurrence of a value are used to represent each possible value of

the variable.
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2.2 Types of variables toc

When discussing the distribution of a variable we need to consider the structure possessed

by the possible values of the variable. This leads to the following classification of variables

into four basic types.

A qualitative variable (categorical variable) classifies a unit into one of several possible

categories. The possible values of a qualitative variable are names for these categories.

We can distinguish between two types of qualitative variables. A qualitative variable is

said to be nominal if there is no inherent ordering among its possible values. If there is

an inherent ordering of the possible values of a qualitative variable, then it is said to be

ordinal. For example the sex (female or male) of a college student is nominal while the

classification (freshman, sophomore, junior, senior) is ordinal.

A quantitative variable (numerical variable) assigns a meaningful numerical value to

a unit. Because the possible values of a quantitative variable are meaningful numerical

quantities, they can be viewed as points on a number line. If the possible values of a

quantitative variable correspond to isolated points on the number line, then there is a

discrete jump between adjacent possible values and the variable is said to be a discrete

quantitative variable. The most common example of a discrete quantitative variable is

a count such as the number of babies in a litter of animals or the number of plants in

a field plot. If there is a continuous transition from one value of the variable to the

next, then the variable is said to be a continuous quantitative variable. For a continuous

quantitative variable there is always another possible value between any two possible values,

no matter how close together the values are. In practice all quantitative variables are

discrete in the sense that the observed values are rounded to a reasonable number of

decimal places. Thus the distinction between a continuous quantitative variable and a

discrete quantitative variable is often more conceptual than real. If a value of the variable

represents a measurement of the size of a unit, such as height, weight, or length, or the

amount of some quantity, then it is reasonable to think of the possible values of the variable

as forming a continuum of values on the number line and to view the variable as continuous.

We can also classify variables with respect to the roles they play in a statistical analy-

sis. That is, we can distinguish between response variables and explanatory variables. A

response variable is a variable that measures the response of a unit to natural or exper-

imental stimuli. A response variable provides us with a measurement or observation that
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characterizes a unit with respect to a characteristic of primary interest. An explanatory

variable is a variable that can be used to explain, in whole or in part, how a unit responds

to natural or experimental stimuli. This terminology is clearest in the context of an ex-

perimental study. Consider an experiment where a unit is subjected to a treatment (some

combination of conditions) and the response of the unit to the treatment is recorded. A

variable that describes the treatment conditions is called an explanatory variable, since

it may be used to explain the outcome of the experiment. A variable that measures the

outcome of the experiment is called a response variable, since it measures the response of

the unit to the treatment. An explanatory variable may also be used to subdivide a group

so that the distributions of a response variable can be compared among subgroups.

2.3 Qualitative data toc

Bar graphs are used to summarize the distribution of a qualitative variable. A bar graph

consists of a collection of bars (rectangles) such that the combined area of all the bars is

one (100%) and the area of a particular bar is the relative frequency of the corresponding

value of the variable. Two other common forms for such a graphical representation are

segmented bar graphs and pie graphs. A segmented bar graph consists of a single bar

of area one (100%) that is divided into segments with a segment of the appropriate area

for each observed value of the variable. A segmented bar graph can be obtained by joining

the separate bars of a bar graph. If the bar of the segmented bar graph is replaced by a

disk, the result is a pie graph or pie chart. In a pie graph or pie chart the interior of a

disk (the pie) is used to represent the total area of one (100%); and the pie is divided into

slices of the appropriate area or relative frequency, with one slice for each observed value

of the variable.

Example 2.1 Immigrants to the United States. The data concerning immigrants admitted

to the United States summarized by decade as raw frequency distributions in Table 2.1

were taken from the 2002 Yearbook of Immigration Statistics, USCIS, (www.uscis.gov).

Immigrants for whom the country of last residence was unknown are omitted. For this

example a unit is an individual immigrant and these data correspond to a census of the

entire population of immigrants, for whom the country of last residence was known, for

these decades. Because the region of last residence of an immigrant is a nominal variable

and its values do not have an inherent ordering, the values in the bar graphs (and relative

frequency distributions) in Figure 2.1 have been arranged so that the percentages for the

1931–1940 decade are in decreasing order.
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Table 2.1 Region of last residence for immigrants to USA.

period

region 1931–1940 1961–1970 1991–2000

Europe 347,566 1,123,492 1,359,737
Asia 16,595 427,692 2,795,672
North America 130,871 886,891 2,441,448
Caribbean 15,502 470,213 978,787
Central America 5,861 101,330 526,915
South America 7,803 257,940 539,656
Africa 1,750 28,954 354,939
Oceania 2,483 25,122 55,845

total 528,431 3,321,634 9,052,999

Two aspects of the distributions of region of origin of immigrants which are apparent in

these bar graphs are: The decrease in the proportion of immigrants from Europe; and,

the increase in the proportion of immigrants from Asia. In 1931–1940 a large majority

(65.77%) of the immigrants were from Europe but for the later decades this proportion

steadily decreases. On the other hand, the proportion of Asians (only 3.14% in 1931–1940)

steadily increases to 30.88% in 1991–2000. Also note that the proportion of immigrants

from North America is reasonably constant for these three decades. The patterns we

observe in these distributions may be attributable to several causes. Political, social, and

economic pressures in the region of origin of these people will clearly have an impact on

their desire to immigrate to the US. Furthermore, political pressures within the US have

effects on immigration quotas and the availability of visas.
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Figure 2.1 Region of last residence for immigrants to USA, by decade.

1931–1940

Europe 65.77%

North America 24.77%

Asia 3.14%

Caribbean 2.93%

South America 1.48%

Central America 1.11%

Oceania .47%

Africa .33%

1961–1970

Europe 33.82%

North America 26.70%

Asia 12.88%

Caribbean 14.16%

South America 7.77%

Central America 3.05%

Oceania .76%

Africa .87%

1991–2000

Europe 15.02%

North America 26.97%

Asia 30.88%

Caribbean 10.81%

South America 5.96%

Central America 5.82%

Oceania .62%

Africa 3.92%
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2.4 Quantitative data toc

The tabular representations used to summarize the distribution of a discrete quantitative

variable, i.e., the frequency and relative frequency distributions, are defined the same as

they were for qualitative data. Since the values of a quantitative variable can be viewed as

points on the number line, we need to indicate this structure in a tabular representation.

In the frequency or relative frequency distribution the values of the variable are listed in

order and all possible values within the range of the data are listed even if they do not

appear in the data.

We will use a graphical representation called a histogram to summarize the distribution of

a discrete quantitative variable. Like the bar graph we used to represent the distribution

of a qualitative variable, the histogram provides a representation of the distribution of a

quantitative variable using area to represent relative frequency. A histogram is basically

a bar graph modified to indicate the location of the observed values of the variable on

the number line. For ease of discussion we will describe histograms for situations where

the possible values of the discrete quantitative variable are equally spaced (the distance

between any two adjacent possible values is always the same). We will use the following

weed seed example to illustrate the methodology.

Example 2.2 Weed seeds. C. W. Leggatt counted the number of seeds of the weed po-

tentilla found in 98 quarter–ounce batches of the grass Phleum praetense. This example

is taken from Snedecor and Cochran, Statistical Methods, Iowa State, (1980), 198; the

original source is C. W. Leggatt, Comptes rendus de l’association international d’essais de

semences, 5 (1935), 27. The 98 observed numbers of weed seeds, which varied from 0 to

7, are summarized in the relative frequency distribution of Table 2.2 and the histogram of

Figure 2.2. In this example a unit is a batch of grass and the number of seeds in a batch

is a discrete quantitative variable with possible values of 0, 1, 2, . . ..
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Table 2.2 Weed seeds relative
frequency distribution.

number frequency relative
of seeds frequency

0 37 .3776
1 32 .3265
2 16 .1633
3 9 .0918
4 2 .0204
5 0 .0000
6 1 .0102
7 1 .0102

total 98 1.0000

Figure 2.2 Histogram for number of weed seeds.

0 1 2 3 4 5 6 7
number of seeds

Consider the histogram for the number of weed seeds in a batch of grass of Figure 2.2. This

histogram is made up of rectangles of equal width, centered at the observed values of the

variable. The heights of these rectangles are chosen so that the area of a rectangle is the

relative frequency of the corresponding value of the variable. There is not a gap between

two adjacent rectangles in the histogram unless there is an unobserved possible value of

the variable between the corresponding adjacent observed values. For this example there

is a gap at 5 since none of the batches had exactly 5 weed seeds.

In this histogram we are using an interval of values on the number line to indicate a single

value of the variable. For example, the rectangle centered over 1 in the histogram of Figure

2.2 represents the relative frequency that a batch of grass contains exactly 1 weed seed;
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but, its base extends from .5 to 1.5 on the number line. Because it is impossible for the

number of weed seeds to be strictly between 0 and 1 or strictly between 1 and 2, we are

identifying the entire interval from .5 to 1.5 on the number line with the actual value of

1. This identification of an interval of values with the possible value at the center of the

interval eliminates gaps in the histogram that would incorrectly suggest the presence of

unobserved, possible values.

The histogram for the distribution of the number of weed seeds in Figure 2.2 has a mound

shaped appearance with a single peak at zero, indicating that the most common number of

weed seeds is zero. In fact, 37.76% of the batches of grass contain no weed seeds. Among

the batches that do contain weed seeds we see that 32.65% contain one weed seed and

16.33% contain two. Thus, 86.74% of the 98 batches of grass contain two or fewer weed

seeds and 95.92% contain three or fewer weed seeds. In summary, the majority of these

batches of grass have a small number of weed seeds; but, there are a few batches with

relatively high numbers of weed seeds.

The histogram of Figure 2.2, or the associated distribution, is not symmetric. That is,

the histogram (distribution) is not the same on the left side (smaller values) as it is on

the right side (larger values). This histogram or distribution is said to be skewed to the

right. The concept of a distribution being skewed to the right is often explained by saying

that the right “tail” of the distribution is “longer” than the left “tail”. That is, the area

in the histogram is more spread out along the number line on the right than it is on the

left. For this example, the smallest 25% of the observed values are zeros and ones while

the largest 25% of the observed values include values ranging from two to seven. In the

present example we might say that there is essentially no left tail in the distribution.

The number of weed seeds histogram provides an example of a very common type of

histogram (distribution) which is mound shaped and has a single peak. (A distribution

with a single peak is said to be unimodal.) This type of distribution arises when there is a

single value (or a few adjacent values) which occurs with highest relative frequency, causing

the histogram to have a single peak at this location, and when the relative frequencies of

the other values taper off (decrease) as we move away from the location of the peak.

Three examples of mound shaped distributions with a single peak are provided in Figure

2.3. For these illustrations a smooth curve is used to indicate the shape of the histogram.

The symmetric distribution is such that the histogram has two mirror image halves. The
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skewed distributions are more spread out along the number line on one side (the direction

of the skewness) than they are on the other side.

Figure 2.3 Distribution shapes – symmetry and skewness

skewed left skewed right

There is a fundamental difference between summarizing and describing the distribution

of a discrete quantitative variable and summarizing and describing the distribution of a

continuous quantitative variable. Since a continuous quantitative variable has an infinite

number of possible values, it is not possible to list all of these values. Therefore, some

changes to the tabular and graphical summaries used for discrete variables are required.

In practice, the observed values of a continuous quantitative variable are discretized, i.e.,

the values are rounded so that they can be written down. Therefore, there is really no

difference between summarizing the distribution of a continuous variable and summarizing
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the distribution of a discrete variable with a large number of possible values. In either

case, it may be impossible or undesirable to actually list all of the possible values of the

variable within the range of the observed data. Thus, when summarizing the distribution

of a continuous variable, we will group the possible values into intervals.

Figure 2.4 NHANES 2013–2014 adult height distribution histograms.

Example 1.1 NHANES (revisited). We will use some data from the 2013–2014 NHANES

to illustrate the basic ideas we are discussing. For this application we will use all of the

5588 adults (age 20 and over) in the 2013–2014 NHANES for whom a height or weight

measurement is available. This group forms a random sample from the population of all

adults (age 20 and over) in the US at the time of the survey. Histograms for the heights

and weights of the adult participants in the 2013–2014 NHANES, grouped by sex, are

given in Figures 2.4 and 2.5. A smooth version of each histogram (smooth curve) is also

provided. The height distributions are both unimodal and reasonably symmetric. The

weight distributions are both unimodal and skewed to the right. We will discuss these

distributions in more depth shortly.
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Figure 2.5 NHANES 2013–2014 adult weight distribution histograms.

Notice that the data have been grouped into intervals in order to construct these his-

tograms. For the height distributions the intervals are of length one inch. For the weight

distributions the intervals are of length 20 pounds. (In the context of histograms these

intervals are also know as bins.) For example, in the weight histograms the area of the

rectangle centered over 100 is the proportion of the individuals in the group who had a

weight between 90 and 110 pounds.

2.5 Numerical summary toc

For many purposes a few well–chosen numerical summary values (statistics) will suffice

as a description of the distribution of a quantitative variable. A statistic is a numerical

characteristic of a sample. More formally, a statistic is a numerical quantity computed

from the values of a variable, or variables, corresponding to the units in a sample. Thus

a statistic serves to quantify some interesting aspect of the distribution of a variable in

a sample. Summary statistics are particularly useful for comparing and contrasting the

distribution of a variable for two different samples.
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If we plan to use a small number of summary statistics to characterize a distribution or to

compare two distributions, then we first need to decide which aspects of the distribution

are of primary interest. If the distributions of interest are essentially mound shaped with

a single peak (unimodal), then there are three aspects of the distribution which are often

of primary interest. The first aspect of the distribution is its location on the number

line. Generally, when speaking of the location of a distribution we are referring to the

location of the “center” of the distribution. The location of the center of a symmetric,

mound shaped distribution is clearly the point of symmetry. There is some ambiguity in

specifying the location of the center of an asymmetric, mound shaped distribution and we

shall see that there are at least two standard ways to quantify location in this context.

The second aspect of the distribution is the amount of variability or dispersion in the

distribution. Roughly speaking, we would say that a distribution exhibits low variability

if the observed values tend to be close together on the number line and exhibits high

variability if the observed values tend to be more spread out in some sense. For example,

the female height distribution histogram of Figure 2.4 is more peaked than the male height

distribution histogram, which is somewhat flatter or more spread out. This indicates that,

for this NHANES data, there is less variability among the heights of the females than

there is among the heights of the males. The weight distribution histograms of Figure 2.5

suggest that the variability among the weights of the females is similar to the variability

among the weights of the males. The third aspect is the shape of the distribution and in

particular the degree of skewness in the distribution.

As a starting point consider the minimum (smallest observed value) and maximum

(largest observed value) as statistics. We know that all of the data values lie between

the minimum and the maximum, therefore, the minimum and the maximum provide a

crude quantification of location and variability. In particular, we know that all of the

values of the variable are restricted to the interval from the minimum to the maximum;

however, the minimum and the maximum alone tell us nothing about how the data values

are distributed within this interval. If the distribution is reasonably symmetric and mound

shaped, then the midrange, defined as the average of the minimum and the maximum,

may provide a suitable quantification of the location of the center of the distribution. The

median and mean, which are defined below, are generally better measures of the center of

a distribution.
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The range, defined as the distance from the minimum to the maximum can be used to

quantify the amount of variability in the distribution. Note that the range is the positive

number obtained by subtracting the minimum from the maximum. When comparing two

distributions the distribution with the larger range will generally have more variability than

the distribution with the smaller range; however, the range is very sensitive to extreme

observations so that one or a few unusually large or small values can lead to a very large

range.

We will now consider an approach to the quantification of the shape, location, and vari-

ability of a distribution based on the division of the histogram of the distribution into

sections of equal area. This is equivalent to dividing the data into groups, each containing

the same number of values. We will first use a division of the histogram into halves. We

will then use a division of the histogram into fourths.

The median is used to quantify the location of the center of the distribution. In terms of

area, the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the

median. Here and in the sequel we will use a lower case n to denote the sample size, i.e., n

will denote the number of units in the sample. In terms of the n observations, the median

is the number with the property that at least n/2 of the observed values are less than or

equal to the median and at least n/2 of the observed values are greater than or equal to

the median.

A simple procedure for finding the median, which is easily generalized to fractions other

that 1/2, is outlined below.

Median computation procedure.

step 1. Arrange the data (observations) in increasing order from the smallest (obs. no.

1) to the largest (obs. no. n). Be sure to include all n values in this list, including repeats

if there are any.

step 2. Compute the quantity n/2.

step 3a. If n/2 is not a whole number, round it up to the next largest integer. The

observation at the location indicated by the rounded–up value in the ordered listing of the

data is the median.

step 3b. If n/2 is a whole number, then we need to average two values to get the median.

The two observations to be averaged are obs. no. n/2 and the next observation (obs. no.
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n/2 + 1) in the ordered listing of the data. Find these two observations and average them

to get the median.

We can use the distance between the minimum and the median and the distance between

the median and the maximum to quantify the amount of skewness in the distribution.

The distance between the minimum and the median is the range of the lower (left) half of

the distribution, and the distance between the median and the maximum is the range of

the upper (right) half of the distribution. If the distribution is symmetric, then these two

distances (median – minimum) and (maximum – median) will be equal. If the distribution

is skewed, then we would expect to observe a larger range (indicating more variability)

for the half of the distribution in the direction of the skewness. Thus if the distribution

is skewed to the left, then we would expect (median – minimum) to be greater than

(maximum – median). On the other hand, if the distribution is skewed to the right, then

we would expect (maximum – median) to be greater than (median – minimum).

Example 2.2 Weed seeds (revisited). Recall that this example is concerned with the number

of weed seeds found in n = 98 quarter–ounce batches of grass. Since 98/2 = 49, the median

for this example is the average of observations 49 and 50. Referring to Table 2.2 we find

that the minimum number of weed seeds is 0, the maximum is 7, and the median is 1, since

observations 49 and 50 are each 1. The range for this distribution is 7 − 0 = 7. Notice

that the range of the right half of this distribution (maximum – median) = 7 − 1 = 6 is

much larger than the range of the left half (median – minimum) = 1 − 0 = 1 confirming

our observation that this distribution is strongly skewed to the right.

A more detailed quantification of the shape and variability of a distribution can be obtained

from a division of the distribution into fourths. In order to divide a distribution into

fourths, we need to specify three numbers or points on the number line. These statistics

are called quartiles, since they divide the distribution into quarters. In terms of area,

the first quartile, denoted by Q1 (read this as Q sub one), is the number (point on the

number line) with the property that the area in the histogram to the left of Q1 is equal to

one fourth and the area to the right of Q1 is equal to three fourths. The second quartile,

denoted by Q2, is the median. The third quartile, denoted by Q3, is the number (point

on the number line) with the property that the area in the histogram to the left of Q3 is

equal to three fourths and the area to the right of Q3 is equal to one fourth. In terms of

the n observations, Q1 is the number with the property that at least n/4 of the observed
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values are less than or equal to Q1 and at least 3n/4 of the observed values are greater

than or equal to Q1. Similarly, Q3 is the number with the property that at least 3n/4 of

the observed values are less than or equal to Q3 and at least n/4 of the observed values

are greater than or equal to Q3.

The method for finding the median given above is readily modified for finding the first and

third quartiles. For Q1, we simply replace n/2 by n/4 and replace the words ‘the median’

by Q1. To find Q3, use exactly the same method but count down from the largest value

instead of counting up from the smallest value. Some calculators and computer programs

use variations of the methods given above for finding Q1 and Q3. These variations may

give slightly different values for Q1 and Q3.

Example 2.1 Weed seeds (revisited). Since 98/4 = 24.5, the quartiles Q1 and Q3 for this

example are the observations located at position 25 counting up for Q1 and counting down

for Q3. Referring to Table 2.2 we find that Q1 = 0 and Q3 = 2. Notice that the range

of the lower three–fourths of this distribution, Q3 – minimum, is 2 while the range of the

upper fourth, maximum – Q3 is 5. This indicates that 75% (a large proportion) of the

batches of grass have relatively few weed seeds, and the skewness in this distribution is

due to the high amount of variability among the numbers of weed seeds in the 25% of the

batches with between 2 and 7 weed seeds.

Previously we introduced the range as a measure of variability. An alternative measure of

variability is provided by the interquartile range. The interquartile range (IQR) is the

distance between the first quartile Q1 and the third quartile Q3, i.e., the interquartile range

is the positive number obtained by subtracting Q1 from Q3. Notice that the interquartile

range is the range of the middle half of the distribution. The interquartile range is less

sensitive to the presence of a few extreme observations in the data than is the range. For

example, if there are one or two unusually large or unusually small values, then these values

may have the effect of making the range much larger than it would be if these unusual

values were not present. In such a situation, we might argue that the range is too large

to be deemed an appropriate overall measure of the variability of the distribution. The

interquartile range is not affected by a few unusual values, since it only depends on the

middle half of the data. We could use the range of a larger part of the middle of the

distribution, say the middle 75% or 90%, as a compromise between the range and the

interquartile range.



30 2.5 Numerical summary

The five summary statistics: the minimum (min), the first quartile (Q1), the median (med),

the third quartile (Q3), and the maximum (max), constitute the five number summary

of the distribution. Each of these five statistics provides a quantification of a particular

aspect of the distribution. They quantify where the distribution begins, where the first

quarter of the distribution ends, and so on. Furthermore, the distances between these five

statistics can be used to quantify the shape (skewness) of the distribution.

The four distances: (Q1 – min), (med – Q1), (Q3 – med), and (max – Q3), are the ranges

of the first, second, third, and fourth quarters of the distribution, respectively. These

distances can be used to quantify the amount of variability in the corresponding parts of

the distribution. Comparisons of appropriate pairs of these distances provide indications

of certain aspects of the shape of the distribution. The relationship between (med – Q1)

and (Q3 – med) can be used to quantify the shape (skewness) of the middle half of the

distribution. Since (Q1 – min) and (max – Q3) are the lengths of the tails (lower and

upper fourths) of the distribution, the relationship between these numbers can be used to

quantify skewness in the tails of the distribution.



2.5 Numerical summary 31

Figure 2.6. Mound shaped, single peak, symmetric distribution

The distribution of Figure 2.6 is mound shaped with a single peak (mode) at .5. This

distribution is symmetric. Since this distribution is symmetric we see that the range of

the left half of this distribution .5 is equal to the range of the right half; the range of the

left tail .409 is equal to the range of the right tail; and, the median .5 is exactly half way

between Q1 = .409 and Q3 = .591.
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Figure 2.7 Mound shaped, single peak, skewed right distribution

The distribution of Figure 2.7 is mound shaped with a single peak (mode) around .15.

This distribution is clearly skewed right. The fact that the range of the right half of this

distribution .799 is about 4 times .201 the range of the left half shows extreme skewness

to the right. This skewness is mostly due to the fact that the range of the right tail .697 is

almost 6 times .121 the range of the left tail. Notice that the middle half of the distribution

is reasonably symmetric since the median .201 is about half way between Q1 = .121 and

Q3 = .303.
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Figure 2.8 Mound shaped, single peak, skewed left distribution

The distribution of Figure 2.8 is mound shaped with a single peak (mode) around .85. This

distribution is clearly skewed left. The fact that the range of the left half of this distribution

.799 is about 4 times .201 the range of the right half shows extreme skewness to the left.

This skewness is mostly due to the fact that the range of the left tail .697 is almost 6 times

.121 the range of the right tail. Notice that the middle half of the distribution is reasonably

symmetric since the median .799 is about half way between Q1 = .697 and Q3 = .879.

We can use the five number summary values to form a simple graphical representation of a

distribution known as a boxplot or a box and whiskers plot. A boxplot provides a useful

graphical impression of the shape of the distribution as well as its location and variability.

Simple boxplots for unimodal mound shaped distributions similar to the distributions of

Figures 2.6, 2.7, and 2.8 are provided in Figure 2.9.
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Figure 2.9 Box plots for unimodal mound shaped distributions.

symmetric

skewed right

skewed left

Each boxplot has five vertical marks indicating the locations of the five number summary

values. The box which extends from the first quartile to the third quartile and is divided

into two parts by the median gives an impression of the distribution of the values in the

middle half of the distribution. In particular, a glance at this box indicates whether the

middle half of the distribution is skewed or symmetric and indicates the magnitude of the

interquartile range (the length of the box). The line segments (whiskers) which extend

from the ends of the box to the extreme values (the minimum and the maximum) give an

impression of the distribution of the values in the tails of the distribution. The relative

lengths of the whiskers indicate the contribution of the tails of the distribution to the

symmetry or skewness of the distribution.

Example 1.1 NHANES (revisited). Boxplots for the NHANES height and weight distribu-

tions are given in Figures 2.10 and 2.11. In these boxplots the whiskers are modified to

show extreme observations (indicated by o’s in these plots) in the tails of the distribution.

Summary information for the NHANES height and weight distributions is given in Tables

2.3 and 2.4.
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Figure 2.10 NHANES height distribution boxplots.

reasonably symmetric

reasonably symmetric

Table 2.3 NHANES height distribution summary information. (height in inches)

group
statistic females males

n 2888 2642
location

mean 63.15 68.63
median 63.25 68.58

variability
std deviation 2.82 3.06

variance 7.97 9.39
range 19.80 22.05
IQR 3.76 4.13

5 number summary
min 53.31 57.72
Q1 61.26 66.57

median 63.25 68.58
Q3 65.02 70.71

max 73.11 79.76
distances

Q1-min 7.95 8.85
med-Q1 1.99 2.01
Q3-med 1.77 2.13
max-Q3 8.09 9.05
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As noted earlier, the height distribution histograms for the adult males and the adult

females of Figure 2.4 are both unimodal and reasonably symmetric. The boxplots of

Figure 2.10 also indicate reasonable symmetry. We will now use the distances from Table

2.3 to quantify this claim of reasonable symmetry. For the adult males we see that the

range of the left tail 7.95 is almost the same as 8.09 the range of the right tail. Looking

at the middle half of the male height distribution we find that the range of the left side

med−Q1 = 1.99 is only slightly larger than the range of the right side Q3 −med = 1.77.

Similarly, for the adult females the range of the left tail 8.85 is almost the same as 9.05 the

range of the right tail; and, med−Q1 = 2.01 is only slightly smaller than Q3−med = 2.13.

Figure 2.11 NHANES weight distribution boxplots.

strongly skewed right

strongly skewed right

Turning to the weight distributions, recall that the weight distribution histograms for the

adult males and the adult females of Figure 2.5 are both unimodal and strongly skewed to

the right. The boxplots of Figure 2.11 also indicate strong skewness to the right. From each

of these boxplots it is clear that in both cases the skewness is due to the extreme variability

in the right tail of the distribution, that is, due to high variability among the weights of the

heaviest 25% of the group. Note also that in each case the middle half of the distribution is

reasonably symmetric. The distances in Table 2.4 readily support these observations. For

the male weights max−Q3 = 250.58 is much larger than Q1−min = 63.58, while, relatively

speaking, med − Q1 = 23.98 is only slightly smaller than Q3 − med = 34.32. Similarly,



2.6 Quantiles and percentiles in general 37

for the female weights max − Q3 = 276.32 is much larger than Q1 −min = 87.12, while,

relatively speaking, med−Q1 = 23.98 is only slightly smaller than Q3 −med = 30.14.

Table 2.4 NHANES weight distribution summary information. (weight in pounds)

group
statistic females males

n 2888 2645
location

mean 168.23 191.21
median 158.62 183.26

variability
std deviation 47.70 46.80

variance 2275 2190
range 372.46 417.56
IQR 58.30 54.12

5 number summary
min 71.06 72.16
Q1 134.64 159.28

median 158.62 183.26
Q3 192.94 213.40

max 443.52 489.72
distances

Q1-min 63.58 87.12
med-Q1 23.98 23.98
Q3-med 34.32 30.14
max-Q3 250.58 276.32

2.6 Quantiles and percentiles in general toc

We will now provide an extension of the method we used to compute the median and

quartiles to allow an arbitrary fraction. Given a proportion p (a fraction between zero and

one), the pth quantile (p × 100th percentile) of the distribution of X is the value Qp

with the property that if we choose a value of X at random, then X will be less than Qp

with probability p and X will be greater than Qp with probability 1− p, i.e., p× 100% of

the time X will be less than Qp and (1 − p) × 100% of the time X will be greater than

Qp. In terms of the histogram of the distribution of X this means that the area in the

histogram to the left of Qp is p and the area to the right of Qp is 1− p. Note that the first

quartile is the 25th percentile, the median is the 50th percentile, and the third quartile is

the 75th percentile.
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In terms of a sample of n values, the pth quantile is the number Qp with the property

that at least pn of the sample values are less than or equal to Qp and at least (1 − p)n
of the sample values are greater than or equal to Qp. In order to compute a quantile we

first need to sort (order) the data. Let x1, x2, . . . , xn denote the (unordered) data. Let

x(1), x(2), . . . , x(n) denote the ordered values with x(1) ≤ x(2) ≤ · · · ≤ x(n). These ordered

values are know as order statistics.

Quantile computation procedure. For 0 < p < 1, the pth quantile Qp of the n sample

values x1, . . . , xn of X is computed as follows. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the

sample values ordered from smallest to largest. There are two cases

case 1: If there is an integer k such that pn = k, then Qp =
x(k)+x(k+1)

2

case 2: If there is an integer k such that k < pn < k + 1, then Qp = x(k+1).

2.7 The mean and standard deviation toc

The approach that we have been using to form summary statistics is to select a single

representative value from the observed values of the variable (or the average of two adjacent

observed values) to quantify a particular aspect of the distribution. We have also considered

statistics that are distances between two such representative values.

An alternative approach to forming a summary statistic is to combine all of the observed

values to get a suitable statistic. The first statistic of this type that we consider is the

mean. The mean, which is the simple arithmetic average of the n data values, is used to

quantify the location of the center of the distribution. You could compute the mean by

adding all n data values together and dividing this sum by n; however, it is better to use a

calculator or a computer. The sample mean is often denoted by the symbol X (read this

as X bar).

Recall that the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the median.

The mean is the number (point on the number line) where the histogram would balance.

To understand what we mean by the balance point, imagine the histogram as being cut

out of a piece of cardboard. The mean is located at the point along the number line side of

this cutout where the histogram cutout would balance. These geometric characterizations

of the mean and the median imply that when the distribution is symmetric the mean will

be equal to the median. Furthermore, if the distribution is skewed to the right, then the

mean (the balance point) will be larger than the median (to the right of the median).
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Similarly, if the distribution is skewed to the left, then the mean (the balance point) will

be smaller than the median (to the left of the median).

The primary use of the mean, like the median, is to quantify the location of the center of

a distribution and to compare the locations (centers) of two distributions. Since both the

mean and the median can be used to quantify the location of the center of a distribution,

it seems reasonable to ask which is more appropriate. If the distribution is approximately

symmetric, then the mean and the median will be approximately equal. On the other

hand, if the distribution is not symmetric, then the median is likely to provide a better

indication of the center of the distribution. For example, if the distribution is strongly

skewed to the right, then the mean may be much larger than the median and the mean

may not be a good indication of the center of the distribution. For a specific application

it is a good idea to mark the locations of the mean and the median on a histogram of the

distribution and consider which seems more reasonable as an indicator of the center of the

distribution.

The two measures of variability we discussed earlier, the range and the interquartile range,

are distances between two representative values, the minimum and maximum for the range

and the first and third quartiles for the interquartile range. We will now discuss a more

complex measure of variability which is based on the distances between each of the obser-

vations and a single representative value. If the mean X is deemed suitable as a measure of

the center of the distribution of X, then the deviations (X−X) of the observed values of X

from their mean X contain information about the amount of variability in the distribution.

If there is little variability (the observed values of X are close together and they are close

to the mean X), then the deviations (X−X) will tend to be small in magnitude (absolute

value). On the other hand, if there is a lot of variability (at least some of the observed

values of X are far apart and they are not all close to the mean X), then the deviations

(X − X) will tend to be large in magnitude. It is this observation which suggests that

a summary statistic based on the distances between each of the observed values of the

variable and their mean can be used to measure the variability in the distribution. These

deviations from the mean are illustrated, for a small sample of values, in Figure 2.12.
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Figure 2.12 An example showing deviations from the mean.

X values: 1, 2, 4, 5, 8, 10, 12; n = 7; mean: X = 6

The most commonly used measure of variability based on these deviation from the mean is

the standard deviation. The standard deviation is the square root of the “average”

of the squared deviations of the observed values of the variable from their mean. The

formula for the standard deviation given below is not intended for computation purposes;

you should use a calculator or a computer to compute the standard deviation. The standard

notation for the sample standard deviation of the distribution of the variable X is SX

(read this as S sub X). The defining formula is

SX =

√
Σ(X −X)2

n− 1

In this formula the capital Greek letter sigma, Σ, represents the statement “the sum of”,

and (X−X)2 denotes the square of the distance from the observed value X to the mean X.

Therefore, as mentioned above, the expression under the square root sign in the formula

is the “average” of the squared deviations of the observed values of the variable from their

mean. The reason for the square root is so that the standard deviation of X and the

variable X are in the same units of measurement. The quantity

S2
X =

Σ(X −X)2

n− 1
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is the sample variance of the distribution of the variable X. The calculations corre-

sponding to these formulae are demonstrated below for the sample used in Figure 2.12.

Example 2.3 Computation of the standard deviation. Consider the sample of seven (n = 7)

X values: 1, 2, 4, 5, 8, 10, 12. The sample mean is

X =
1 + 2 + 4 + 5 + 8 + 10 + 12

7
=

42

7
= 6.

The sample variance is

S2
X =

(1− 6)2 + (2− 6)2 + (4− 6)2 + (5− 6)2 + (8− 6)2 + (10− 6)2 + (12− 6)2

7− 1

=
(−5)2 + (−4)2 + (−2)2 + (−1)2 + (2)2 + (4)2 + (6)2

6

=
25 + 16 + 4 + 1 + 4 + 16 + 36

6
=

102

6
= 17.

The sample standard deviation is

SX =
√

17.

The standard deviation is positive, unless there is no variability at all in the data. That

is, unless all of the observations are exactly the same, the standard deviation is a positive

number. The standard deviation is a very widely used measure of variability. Unfortu-

nately, the standard deviation does not have a simple, direct interpretation. The important

thing to remember is that larger values of the standard deviation indicate that there is

more variability in the data.

There are quotation marks around the word average in the definition of the sample standard

deviation because we divided by n− 1 even though there are n squared deviations in the

average. When the standard deviation (variance) is computed for the population this

divisor is changed to n and a lower case Greek sigma is used instead of an S. That is, the

population standard deviation is defined as

σX =

√
Σ(X −X)2

n

and the population variance is σ2
X .

Example 1.1 NHANES (revisited). We noted earlier that the shapes of the female and male

height distributions are very similar and that the shapes of the female and male weight
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distributions are also very similar. We will now use summary statistics from Tables 2.3

and 2.4 to compare and contrast the locations and the variability in these distributions.

We will first look at the height distributions. As you would expect the males tend to be

taller than the females. On average the males are about 5.5 inches taller than the females

(male mean height of 68.63 inches versus female mean height of 63.15 inches). Since the

height distributions are reasonably symmetric the median heights are very similar to the

mean heights. In terms of variability, there is slightly more variability among the heights

of the males: male height standard deviation of 3.06 inches verses female height standard

deviation of 2.82 inches; male height range of 22.05 inches verses female height range

of 19.80 inches; and, male height interquartile range of 4.13 inches verses female height

interquartile range of 3.76 inches.

Now we will look at the weight distributions. Again, as you would expect, the males

tend to be heavier than the females. On average the males are about 23 pounds heavier

than the females (male mean weight of 191.21 pounds versus female mean weight of 168.23

pounds). Since the both weight distributions are strongly skewed right each median weight

is smaller than the corresponding mean weight; but, as it turns out, the difference between

the median weights is similar to the difference between the mean weights (the median

weight difference is about 25 pounds). The weight distributions are quite similar in terms

of variability.

2.8 A measure of relative position toc

Percentiles can be used to quantify the location of a particular value of X relative to a

group. Another widely used measure of the relative position of a value within a group is

its Z–score. The Z–score of X quantifies the location of X relative to the mean X of the

sample in terms of the standard deviation SX of the sample. Since the Z–score is based

on X and SX , the Z–score is only appropriate when X and SX are appropriate measures

of the center and variability in the sample, respectively. We will develop the Z–score in

two stages.

First, we need a measure of the location of X relative to the center of the distribution

as determined by the mean X. The deviation, X −X, of X from the mean X is such a

measure. The deviation X −X is the signed distance from the particular value X to the

meanX. IfX−X is negative, thenX is below (smaller than) the mean. IfX−X is positive,
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then X is above (larger than) the mean. In summary, the sign of the deviation X − X
indicates the location of X relative to the mean X; and the magnitude of the deviation

|X − X| is the distance from X to the mean X, measured in the units of measurement

used for the observation X.

Second, we want a measure of the location of X relative to the mean X which takes the

amount of variability in the data into account. We will obtain such a measure by using

the standard deviation SX of the sample to standardize the deviation X − X. Given

a particular value X, the sample mean X, and the sample standard deviation SX , the

Z–score corresponding to X is

Z =
X −X
SX

.

The sign of the Z–score indicates the location of X relative to the mean X and the

magnitude of the Z–score is the distance from X to the mean X in terms of standard

deviation units. For example, if Z = 2, then X is two standard deviation units above the

mean (X = X + 2SX), and, if Z = −2, then X is two standard deviation units below the

mean (X = X − 2SX).

Interpretation of a Z–score requires some knowledge of the connection between Z–scores

and percentiles. The 68%−95%−99.7% rule given below allows us to associate a percentage

with a Z–score. This rule works best for distributions that are unimodal (single peaked),

mound shaped, and symmetric. A formal statement of the rule follows.

The 68%-95%-99.7% rule. For a distribution that is unimodal (has a single peak),

mound shaped, and reasonably symmetric:

i) Approximately 68% of the observed values will be within one standard deviation unit of

the mean. That is, approximately 68% of the observed values will have a Z–score that is

between -1 and 1.

ii) Approximately 95% of the observed values will be within two standard deviation units

of the mean. That is, approximately 95% of the observed values will have a Z–score that

is between -2 and 2.

iii) Approximately 99.7% of the observed values will be within three standard deviation

units of the mean. That is, approximately 99.7% of the observed values will have a Z–score

that is between -3 and 3. Notice that this indicates that almost all of the observed values

will be within three standard deviations of the mean.
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When it is applicable, the 68%− 95%− 99.7% rule, can be used to determine the relative

position of a particular value of a variable based on the corresponding Z–score. Notice

that this rule indicates that a fairly large proportion (68%) of the sample will lie within

one standard deviation of the mean; a very large proportion (95%) of the sample will lie

within two standard deviations of the mean; and, almost all (99.7%) of the sample will lie

within three standard deviations of the mean.

An aside – Chebyshev’s rule

Another connection between Z–scores and percentages is provided by Chebyshev’s rule.

Chebyshev’s rule is a mathematical fact that is true for any distribution. Unfortunately, the

universal applicability of Chebyshev’s rule forces its conclusions to be of more theoretical

than practical interest. That is, the conclusions of Chebyshev’s rule are valid for any

distribution; but, they are often so imprecise that they are of limited practical use.

Chebyshev’s rule. For any distribution:

i) At least 75% of the observed values will be within two standard deviation units of the

mean. That is, at least 75% of the observed values will have a Z–score that is between -2

and 2.

ii) At least 89% of the observed values will be within three standard deviation units of the

mean. That is, at least 89% of the observed values will have a Z–score that is between -3

and 3.

iii) In general, given a number k > 1, at least [1 − (1/k2)]100% of the observed values

will be within k standard deviation units of the mean, i.e., at least this percentage of the

observed values will have a Z–score that is between -k and k.


