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Chapter 1

Introduction

1.1 Basic ideas

Statistical methods deal with properties of groups or aggregates. In many applications

the entity of primary interest is an actual, physical group (population) of objects. These

objects may be animate (e.g., people or animals) or inanimate (e.g., farm field plots, trees,

or days). We will refer to the individual objects that comprise the group of interest as

units. In certain contexts we may refer to the unit as a population unit, a sampling unit,

an experimental unit, or a treatment unit.

In order to obtain information about a group of units we first need to obtain infor-

mation about each of the units in the group. A variable is a measurable characteristic

of an individual unit. Since our goal is to learn something about the group, we are most

interested in the distribution of the variable, i.e., the way in which the possible values

of the variable are distributed among the units in the group.

When the units are actual, physical objects we define the population as the collec-

tion of all of the units that we are interested in. In most applications it is unnecessary

or undesirable to examine the entire population. Thus we define a sample as a subset or

part of the population for which we have or will obtain data. The collection of observed

values of one or more variables corresponding to the individual units in the sample consti-

tute the data. Once the data are obtained we can use the distributions of the variables

among the units in the sample to characterize the sample itself and to make inferences

or generalizations about the entire population, i.e., inferences about the distributions of

these variables among the units in the population.

When discussing the distribution of a variable we need to consider the structure pos-

sessed by the possible values of the variable. This leads to the following classification of

variables into four basic types.

A qualitative variable (categorical variable) classifies a unit into one of several possi-

ble categories. The possible values of a qualitative variable are names for these categories.

We can distinguish between two types of qualitative variables. A qualitative variable is

said to be nominal if there is no inherent ordering among its possible values. The sex of a

person (female or male) and the color of a person’s eyes (blue, brown, etc.) are examples

of nominal qualitative variables. If there is an inherent ordering of the possible values

of a qualitative variable, then it is said to be ordinal. The classification of a student

(freshman, sophomore, junior, or senior), the ranking of a unit with respect to several size

classes (small, medium, or large), and the degree to which a person agrees with a statement
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(recorded as strongly disagree, disagree, neutral, agree, or strongly agree) are examples of

ordinal qualitative variables.

A quantitative variable (numerical variable) assigns a meaningful numerical value

to a unit. Because the possible values of a quantitative variable are meaningful numerical

quantities, they can be viewed as points on a number line. Therefore, it makes sense to

talk about where the values of a quantitative variable are located on the number line,

whether one value is larger than another, and how far apart two values are. If the possible

values of a quantitative variable correspond to isolated points on the number line, then

there is a discrete jump between adjacent possible values and the variable is said to be

a discrete quantitative variable. The most common example of a discrete quantitative

variable is a count such as the number of babies in a litter of animals or the number of

plants in a field plot. If there is a continuous transition from one value of the variable

to the next, then the variable is said to be a continuous quantitative variable. For a

continuous quantitative variable there is always another possible value between any two

possible values, no matter how close together the values are. In practice all quantitative

variables are discrete in the sense that the observed values are rounded to a reasonable

number of decimal places. Thus the distinction between a continuous quantitative variable

and a discrete quantitative variable is often more conceptual than real. If a value of the

variable represents a measurement of the size of a unit, such as height, weight, or length,

or the amount of some quantity, then it is reasonable to think of the possible values of the

variable as forming a continuum of values on the number line and to view the variable as

continuous.

The values of ordinal variables are often recorded using numerical codes (ranks) such

as 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, or 5:strongly agree. This sort of

coding of an ordinal variable does not make it quantitative. For example, the fact that

these rankings are equally spaced points on the number line does not necessarily mean

that the difference between 1:strongly disagree and 2:disagree is the same as the difference

between 4:agree and 5:strongly agree. Therefore, the common practice of treating such

ranking variables as quantitative must be used with caution and the fact that the values

of the variable are simply ranks must be taken into account when interpreting an analysis

of such a ranking variable.

We can also classify variables with respect to the roles they play in a statistical anal-

ysis. That is, we can distinguish between response variables and explanatory variables. A

response variable is a variable that measures the response of a unit to natural or exper-

imental stimuli. A response variable provides us with a measurement or observation that

characterizes a unit with respect to a characteristic of primary interest. An explanatory

variable is a variable that can be used to explain, in whole or in part, how a unit responds
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to natural or experimental stimuli. This terminology is clearest in the context of an ex-

perimental study. Consider an experiment where a unit is subjected to a treatment (some

combination of conditions) and the response of the unit to the treatment is recorded. A

variable that describes the treatment conditions is called an explanatory variable, since

it may be used to explain the outcome of the experiment. A variable that measures the

outcome of the experiment is called a response variable, since it measures the response of

the unit to the treatment. An explanatory variable may also be used to subdivide a group

so that the distributions of a response variable can be compared among subgroups.

In some applications, such as experimental studies, the population is best viewed as

a hypothetical population of values of one or more variables. For example, suppose that

we are interested in the effects of an alternative diet on weight gain in some population of

experimental animals. We might conduct an experiment by randomly assigning animals to

two groups; feeding one group a standard diet and the other group the alternative diet; and

then recording the weight gained by each animal over some fixed period of time. In this

example we can envision two hypothetical populations of weight gains: The population of

weight gains we would have observed if all of the animals were given the standard diet;

and, the population of weight gains we would have observed if all of the animals were given

the alternative diet.

Statistics is often defined as a collection of methods for collecting, describing, and

drawing conclusions from data. Methods for collecting data fall under the heading of sam-

pling and experimentation; we will discuss these topics in Chapter 4. Descriptive statistical

methods are used to describe the distributions of the values of variables among the units in

a sample, i.e., to gain insight about the sample. We will discuss univariate (one variable)

descriptive statistical methods in Chapters 2 and 3 and bivariate (two variables) descrip-

tive methods in Chapter 9. Inferential statistical methods are used to make inferences or

generalizations, based on the data from the sample, about the distributions of the values

of variables among the units in the population, i.e., to gain insight about the population

based on information obtained from the sample. Inferential methods are probabilistic in

the sense that they are based on probability models for the distributions of variables. The

majority of this book deals with inferential statistics; probability models are introduced in

Chapter 4a.

We will use the following simple example to clarify the concepts and definitions from

above. The data presented in Table 1 were collected on the first day of classes during

the Spring 1999 semester. These data provide information about the 67 students who

were present on the first day of classes for two sections of the statistics course Stat 214 at

the University of Louisiana at Lafayette. Aside from being grouped by section, the data are
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Table 1. Statistics 214 class data, spring 1999.

line section classification sex age height weight siblings BMI

1 1 senior male 21 69 170 1 25.10
2 1 junior male 25 71 165 3 23.01
3 1 junior female 25 62 160 2 29.26
4 1 freshman male 18 72 162 1 21.97
5 1 junior female 22 63 170 1 30.11
6 1 freshman female 18 64 110 2 18.88
7 1 freshman female 18 60 103 1 20.11
8 1 freshman female 18 68 135 3 20.52
9 1 sophomore female 19 62 105 5 19.20
10 1 freshman male 18 74 190 2 24.39
11 1 sophomore female 20 70 150 1 21.52
12 1 senior female 21 61 116 1 21.92
13 1 freshman female 18 65 150 3 24.96
14 1 freshman female 19 64 140 4 24.03
15 1 freshman male 18 68 130 2 19.76
16 1 freshman female 18 63 110 2 19.48
17 1 sophomore female 21 62 125 1 22.86
18 1 freshman female 18 63 115 2 20.37
19 1 freshman female 19 64 135 3 23.17
20 1 freshman female 18 69 155 1 22.89
21 1 sophomore female 20 65 110 2 18.30
22 1 sophomore female 19 68 140 1 21.28
23 1 freshman female 47 66 110 1 17.75
24 1 sophomore female 20 70 145 2 20.80
25 1 freshman female 20 61 140 5 26.45
26 1 freshman female 18 63 180 0 31.88
27 1 junior male 22 70 175 2 25.11
28 1 freshman female 18 63 120 1 21.25
29 1 senior female 22 68 170 2 25.85
30 1 freshman female 18 66 125 3 20.17
31 1 junior male 22 75 205 2 25.62
32 1 freshman female 18 67 110 1 17.23
33 1 senior male 22 68 135 1 20.52
34 1 senior female 22 64 185 2 31.75
35 1 freshman female 41 61 96 1 18.14
36 1 junior female 22 59 95 5 19.19

This table is continued on the next page.
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Table 1. Statistics 214 class data (continuation).

line section classification sex age height weight siblings BMI

37 2 junior female 20 66 110 1 17.75
38 2 junior male 20 72 180 1 24.41
39 2 junior female 21 66 120 1 19.37
40 2 sophomore female 21 61 105 3 19.84
41 2 freshman female 18 68 134 7 20.37
42 2 freshman female 28 66 130 4 20.98
43 2 sophomore female 26 64 135 4 23.17
44 2 sophomore female 19 64 117 1 20.08
45 2 freshman female 20 66 140 4 22.59
46 2 junior female 20 64 130 1 22.31
47 2 senior female 48 66 140 3 22.59
48 2 junior female 22 67 115 2 18.01
49 2 sophomore female 19 66 170 2 27.44
50 2 freshman male 18 66 190 3 30.66
51 2 sophomore female 21 67 135 4 21.14
52 2 freshman female 20 68 140 2 21.28
53 2 sophomore female 19 62 115 2 21.03
54 2 sophomore female 20 60 110 2 21.48
55 2 freshman male 18 72 185 3 25.09
56 2 senior male 23 72 190 2 25.77
57 2 senior male 24 69 170 4 25.10
58 2 junior male 21 72 140 3 18.98
59 2 junior female 20 65 112 2 18.64
60 2 junior female 21 62 130 1 23.77
61 2 freshman female 18 64 120 1 20.60
62 2 sophomore female 25 66 145 2 23.40
63 2 junior male 19 65 156 6 25.96
64 2 freshman female 18 67 125 0 19.58
65 2 junior female 44 66 165 4 26.63
66 2 sophomore male 19 71 155 3 21.62
67 2 sophomore female 19 62 133 2 24.32

presented in no particular order. These data correspond to a convenience sample of stu-

dents which may or may not be representative of some larger population of students.

Values are provided for eight variables: the section the student was registered in (1 or 2);

the classification of the student (freshman, sophomore, junior, or senior); the sex of the

student (female or male); the age of the student (in years); the height of the student (in

inches); the weight of the student (in pounds); the number of siblings the student had

(0, 1, 2, . . .); and the body mass index (BMI) of the student. The derived or constructed
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variable BMI (in kg/m2) is the weight of the student (in kilograms) divided by the square

of the student’s height (in meters).

The sex of a student (with possible values of female and male) and the section the

student was registered in (with possible values 1 and 2) are nominal qualitative variables.

The classification of a student (with possible values of freshman, sophomore, junior, and

senior) is an ordinal qualitative variable. The other variables are quantitative. The number

of siblings that the student had (with possible values of 0, 1, 2, . . .) is inherently discrete.

The other quantitative variables, age (in years), height (in inches), weight (in pounds),

and BMI (in kg/m2) can be viewed as continuous variables.

The section that the student was registered in was included as a potentially interesting

explanatory variable which could be used to divide these students into two subgroups so

that the distributions of the other variables for these subgroups could be compared. For an

initial analysis of these data we would probably view all of the other variables as response

variables. That is, a first analysis might consist of examination of the distributions of these

response variables for the entire group or comparisons of these distributions by section.

After looking at the overall distributions of the variables we might also want to group the

students by sex (treat the sex of a student as an explanatory variable) and compare the

distributions of height, weight, and BMI for the two sexes.

1.2 Some examples

This section contains a collection of examples which will be used in exercises and as

examples in the sequel.

Example. DiMaggio and Mantle. Joe DiMaggio and Mickey Mantle were two

well known baseball players. DiMaggio played center field for the New York Yankees for

13 years and was succeeded by Mantle who played center field for 18 years. There has

been some argument about which of these two players was better at hitting home runs.

The data given in Table 2 are the numbers of home runs hit by the player during each of

the seasons he played. For each player these numbers of home runs are listed in order by

the seasons he played.

Table 2. Home run data.

Joe DiMaggio: 29 46 32 30 31 30 21 25 20 39 14 32 12

Mickey Mantle: 13 23 21 27 37 52 34 42 31 40 54 30 15 35 19 23 22 18

Example. Weed seeds. C. W. Leggatt counted the number of seeds of the weed

potentilla found in 98 quarter–ounce batches of the grass Phleum praetense. This example

is taken from Snedecor and Cochran, Statistical Methods, Iowa State, (1980), 198; the

original source is C. W. Leggatt, Comptes rendus de l’association international d’essais de
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semences, 5 (1935), 27. The 98 observed numbers of weed seeds, which varied from 0 to

7, are summarized in Table 3.

Table 3. Weed seed
frequency distribution.

number frequency
of seeds

0 37
1 32
2 16
3 9
4 2
5 0
6 1
7 1

total 98

Example. Vole reproduction. An investigation was conducted to study repro-

duction in laboratory colonies of voles. This example is taken from Devore and Peck,

Statistics, (1997), 33; the original reference is the article “Reproduction in laboratory

colonies of voles”, Oikos, (1983), 184. The data summarized in Table 4 are the numbers

of babies in 170 litters born to voles in a particular laboratory.

Table 4. Vole baby
frequency distribution.

number frequency
of babies

1 1
2 2
3 13
4 19
5 35
6 38
7 33
8 18
9 8
10 2
11 1

total 170

Example. Wooly–bear caterpillar cocoons. A study was conducted to investi-

gate the relationship between air temperature and the temperature inside a wooly–bear
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caterpillar cocoon. It seems quite reasonable to expect the temperature inside a cocoon

to be higher than the air temperature (outside the cocoon). The data given in Table 5

are pairs of air and cocoon temperatures made on 12 days at a location in the high arctic

region. Each cocoon temperature is actually the average of two cocoon temperatures. This

example comes from Kevan, P.C., T.S. Jensen, and J.D. Shorthouse, “Body temperatures

and behaviorial thermoregulation of high arctic wooly–bear caterpillars and pupae (Gy-

naephora rossii, Lymantridae: Lepidoptera) and the importance of sunshine”, Arctic and

Alpine Research, 14, (1982).

Table 5. Wooly–bear temperature data.

Day Cocoon Air Day Cocoon Air
temp temp temp temp

1 15.1 10.4 7 3.6 1.7
2 14.6 9.2 8 5.3 2.0
3 6.8 2.2 9 7.0 3.0
4 6.8 2.6 10 7.1 3.5
5 8.0 4.1 11 9.6 4.5
6 8.7 3.7 12 9.5 4.4

Example. Homophone confusion and Alzheimer’s disease. A study was con-

ducted to investigate the relationship between Alzheimer’s disease and homophone spelling

confusion. A homophone pair is a pair of words with the same pronunciation having dif-

ferent meanings and spellings. Twenty patients with Alzheimer’s disease were asked to

spell 24 homophone pairs (given in random order) and the number of homophone confu-

sions, e.g. spelling doe given the context bake bread dough, was recorded for each patient.

One year later, the same patients were again asked to spell the same 24 homophone pairs

and the number of homophone confusions was again recorded. The data given in Table

6 are the numbers of homophone confusions at the two times of measurement for the 20

Alzheimer’s patients. This example comes from Neils, J., D.P. Roeltgen, and F. Con-

stantinidou, “Decline in homophone spelling associated with loss of semantic influence on

spelling in Alzheimer’s disease”, Brain and Language, 49, (1995).
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Table 6. Alzheimer’s homophone confusion data.

Patient Time 1 Time 2 Patient Time 1 Time 2

1 5 5 11 7 10
2 1 3 12 0 3
3 0 0 13 3 9
4 1 1 14 5 8
5 0 1 15 7 12
6 2 1 16 10 16
7 5 6 17 5 5
8 1 2 18 6 3
9 0 9 19 9 6
10 5 8 20 11 8

Example. Gear tooth strength. The data used in this example were published

by B. Gunter, “Subversive data analysis, Part II: More graphics, including my favorite

example”, Quality Progress, Nov., 1988, 77–78. This description is adapted from Wild and

Seber, Chance Encounters, Wiley, (2000), 118. These data concern gear blanks purchased

by the Ford Motor Company. Ford engineers found that the teeth on these gears were

breaking at too low a stress. The data given below are the impact strengths (in lb–ft)

required to break a gear tooth. Each gear had 12 equally spaced teeth. The position

numbers for these teeth begin with 1 at 12 o’clock and proceed in a clockwise direction.

The tooth positions are important since they are related to the position of the tooth in

the mold used to make the gear. Teeth 1 and 7 are distinguishable; but, teeth located

symmetrically about a line drawn through positions 1 and 7 are not, since these positions

depend on which face of the gear is upward. Thus, observations for pairs of teeth in a

symmetrical position about a line through position 1 and 7 are grouped in Table 7.
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Table 7. Gear tooth strength data.

gear position

1 2 & 12 3 & 11 4 & 10 5 & 9 6 & 8 7

1976 2425 2228 2186 2228 2431 2287
1916 2000 2347 2521 2180 2250 2275
2090 2251 2251 2156 2114 2311 1946
2000 2096 2222 2216 2365 2210 2150
2323 2132 1940 2593 2299 2329 2228
1904 1964 1904 2204 2072 2263 1695
2048 1750 1820 2228 2323 2353 2000
2222 2018 2012 2198 2449 2251 2006
2048 1766 2204 2150 2300 2275 1945
2174 2144 2311 2078 1958 2006
1976 2305 2102 2150 2185 2209
2138 2042 2138 2377 2216
2455 2120 1982 2108 1934
1886 2419 2042 2257 1904
2246 2162 2030 2383 1958
2287 2251 2216 2323 1964
2030 2222 2305 2246 2066
2210 2204 2251 2222
2084 2198 2156 2066
2383 2204 2419 1964
2132 2162 2329 2150
2210 2120 2198 2114
2222 2108 2269 2125
1766 2030 2287 2210
2078 2180 2330 1588
1994 2251 2329 2234
2198 2210 2228 2210
2162 2216 2156
1874 2168 2204
2132 2210 1641
2108 2341 2263
1892 2000 2120
1671 2132 2156

Example. Immigrants to the United States. The data concerning immi-

grants admitted to the United States summarized by decade as raw frequency distribu-

tions in Table 8 were taken from the 2002 Yearbook of Immigration Statistics, USCIS,
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(www.uscis.gov). Immigrants for whom the country of last residence was unknown are

omitted.

Table 8. Region of last residence for immigrants to USA.

period

region 1931–1940 1961–1970 1991–2000

Europe 347,566 1,123,492 1,359,737
Asia 16,595 427,692 2,795,672
North America 130,871 886,891 2,441,448
Caribbean 15,502 470,213 978,787
Central America 5,861 101,330 526,915
South America 7,803 257,940 539,656
Africa 1,750 28,954 354,939
Oceania 2,483 25,122 55,845

total 528,431 3,321,634 9,052,999

Example. Cholesterol levels in Guatemalans. This example is taken from

Devore and Peck, Statistics, 3 ed., (1997), Duxbury, p. 23. The original source is “The

Blood Viscosity of Various Socioeconomic Groups in Guatemala” in The American Journal

of Clinical Nutrition, Nov., 1964, 303–307. The Institute of Nutrition of Central America

and Panama measured the serum total cholesterol levels for a group of 49 adult, low–

income rural Guatemalans and for a group of 45 adult, high–income urban Guatemalans.

The serum total cholesterol levels (in mg/dL) are provided in Table 9.

Table 9. Guatemalan cholesterol data.

Rural group cholesterol levels (in mg/dL).

95 108 108 114 115 124 129 129 131 131
135 136 136 139 140 142 142 143 143 144
144 145 146 148 152 152 155 157 158 158
162 165 166 171 172 173 174 175 180 181
189 192 194 197 204 220 223 226 231

Urban group cholesterol levels (in mg/dL).

133 134 155 170 175 179 181 184 188 189
190 196 197 199 200 200 201 201 204 205
205 205 206 214 217 222 222 227 227 228
234 234 236 239 241 242 244 249 252 273
279 284 284 284 330
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1.3 Exercises

For each of the examples in Section 1.2 define or identify the following:

1. The unit.

2. The group(s) of interest.

3. The variable(s) and the possible values of the variable(s).

4. The type of variable(s) (nominal qualitative, ordinal qualitative, discrete quantitative,

or continuous quantitative).
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Chapter 2

Descriptive Statistics I: Tabular and Graphical Summary

2.1 Generalities

Consider the problem of using data to learn something about the characteristics of

the group of units which comprise the sample. Recall that the distribution of a variable is

the way in which the possible values of the variable are distributed among the units in the

group of interest. A variable is chosen to measure some characteristic of the units in the

group of interest; therefore, the distribution of a variable contains all of the available infor-

mation about the characteristic (as measured by that variable) for the group of interest.

Other variables, either alone or in conjunction with the primary variable, may also contain

information about the characteristic of interest. A meaningful summary of the distribution

of a variable provides an indication of the overall pattern of the distribution and serves to

highlight possible unusual or particularly interesting aspects of the distribution. In this

chapter we will discuss tabular and graphical methods for summarizing the distribution of

a variable and in the following chapter we will discuss numerical summary methods.

Generally speaking, it is hard to tell much about the distribution of a variable by

examining the data in raw form. For example, scanning the Stat 214 data in Table 1 of

Chapter 1 it is fairly easy to see that the majority of these students are female; but, it

is hard to get a good feel for the distributions of the variables which have more than two

possible values. Therefore, the first step in summarizing the distribution of a variable is

to tabulate the frequencies with which the possible values of the variable appear in the

sample. A frequency distribution is a table listing the possible values of the variable

and their frequencies (counts of the number of times each value occurs). A frequency

distribution provides a decomposition of the total number of observations (the sample

size) into frequencies for each possible value. In general, especially when comparing two

distributions based on different sample sizes, it is preferable to provide a decomposition

in terms of relative frequencies. A relative frequency distribution is a table listing

the possible values of the variable along with their relative frequencies (proportions). A

relative frequency distribution provides a decomposition of the total relative frequency of

one (100%) into proportions or relative frequencies (percentages) for each possible value.

Many aspects of the distribution of a variable are most easily communicated by a

graphical representation of the distribution. The basic idea of a graphical representation

of a distribution is to use area to represent relative frequency. The total area of the

graphical representation is taken to be one (100%) and sections with area equal to the

relative frequency (percentage) of occurrence of a value are used to represent each possible

value of the variable.
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2.2 Describing qualitative data

In this section we consider tabular and graphical summary of the distribution of a

qualitative variable. Assuming that there are not too many distinct possible values for the

variable, we can summarize the distribution using a table of possible values along with the

frequencies and relative frequencies with which these values occur in the sample. Recall

that a frequency distribution provides a decomposition of the total number of observa-

tions (the sample size) into frequencies for each possible value; and, a relative frequency

distribution provides a decomposition of the total relative frequency of one (100%) into

proportions or relative frequencies (percentages) for each possible value. In most applica-

tions, and especially for comparisons of distributions, it is better to use relative frequencies

rather than raw frequencies. When forming a relative frequency distribution for a nominal

qualitative variable we can list the possible values of the variable in any convenient order.

On the other hand, the possible values of an ordinal qualitative variable should always be

listed in proper order to avoid possible confusion when reading the table.

Table 1 contains the frequency distributions and relative frequency distributions of

the two qualitative variables sex and classification for the Stat 214 example. Notice that

the possible values of the ordinal variable, classification of the student, are listed in proper

order to avoid possible confusion when reading the table.

Table 1. Relative frequency distributions for the sex and
classification distributions in the Stat 214 example.

Sex distribution. Classification distribution.

sex frequency relative classification frequency relative
frequency frequency

female 51 .761 freshman 27 .403
male 16 .239 sophomore 16 .239

junior 16 .239
total 67 1.000 senior 8 .119

total 67 1.000

Bar graphs summarizing the sex and classification distributions for the Stat 214 ex-

ample are given in Figure 1. Again, to avoid confusion, the possible classification values

are presented in proper order. A bar graph consists of a collection of bars (rectangles)

such that the combined area of all the bars is one (100%) and the area of a particular bar

is the relative frequency of the corresponding value of the variable. Two other common

forms for such a graphical representation are segmented bar graphs and pie graphs. A
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segmented bar graph consists of a single bar of area one (100%) that is divided into

segments with a segment of the appropriate area for each observed value of the variable.

A segmented bar graph can be obtained by joining the separate bars of a bar graph. If

the bar of the segmented bar graph is replaced by a circle, the result is a pie graph or pie

chart. In a pie graph or pie chart the interior of a circle (the pie) is used to represent

the total area of one (100%); and the pie is divided into slices of the appropriate area or

relative frequency, with one slice for each observed value of the variable.

Figure 1. Bar graphs for the sex and classification

distributions in the Stat 214 example.

Sex distribution.

female 76.1%

male 23.9%

Classification distribution.

freshman 40.3%

sophomore 23.9%

junior 23.9%

senior 11.9%

For these two sections of Stat 214 it is clear that a large majority (76.1%) of the

students are female. There are two simple explanations for the predominance of females in

this sample: The proportion of females among all undergraduate students at this university

is roughly 65%; and, the majors which require this particular course traditionally attract

more females than than males. Turning to the classification distribution, it is clear that

relatively few (11.9%) of the students in these sections are seniors. This aspect of the clas-

sification distribution is not surprising, since Stat 214 is a 200 level (nominally sophomore)

course. It is somewhat surprising, for a 200 level course, to find that the most common

classification is freshman (40.3%). We might wonder whether these characteristics of the

sex and classification distributions are applicable to both sections of Stat 214. The section

variable can be used as an indicator variable (a qualitative explanatory variable used for

grouping observations) to divide the sample of 67 students into the group of 36 students in

section 1 and the group of 31 students in section 2. The sex and classification distributions

for these two sections are summarized in Tables 2 and 3 and Figures 2 and 3. Notice that,

because of rounding of the relative frequencies, the sum of the relative frequencies is not

exactly one in Table 3.
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Table 2. Relative frequency distributions for sex, by section.

section 1 section 2

sex frequency relative sex frequency relative
frequency frequency

female 28 .778 female 23 .742
male 8 .222 male 8 .258

total 36 1.000 total 31 1.000

Figure 2. Bar graphs for sex, by section.

Section 1

female 77.8%

male 22.2%

Section 2

female 74.2%

male 25.8%

Table 3. Relative frequency distributions for classification, by section.

section 1 section 2

classification frequency relative classification frequency relative
frequency frequency

freshman 19 .528 freshman 8 .258
sophomore 6 .167 sophomore 10 .322

junior 6 .167 junior 10 .322
senior 5 .139 senior 3 .097

total 36 1.001 total 31 .999
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Figure 3. Bar graphs for classification, by section.

Section 1

freshman 52.8%

sophomore 16.7%

junior 16.7%

senior 13.9%

Section 2

freshman 25.8%

sophomore 32.2%

junior 32.2%

senior 9.7%

The sex distributions for the two sections are essentially the same; in both sections ap-

proximately 75% of the students are female. On the other hand, there is a clear difference

between the two classification distributions. The section 1 classification distribution is sim-

ilar to the combined classification distribution with a very large proportion of freshmen. In

fact, more than half (52.8%) of the students in section 1 are freshmen. This predominance

of freshmen does not happen in section 2 where there is not a single dominant classification

value. The most common classifications for section 2 are sophomore and junior, with each

of these classifications accounting for 32.2% of the students. In summary, we find that for

section 1 the majority of students (52.8%) are freshmen but that for section 2 the majority

(64.4%) of the students are sophomores (32.2%) or juniors (32.2%). It is interesting to

notice that in both sections the proportions of sophomores and juniors are equal.

Example. Immigrants to the United States. The data concerning immi-

grants admitted to the United States summarized by decade as raw frequency distribu-

tions in Section 1.2 were taken from the 2002 Yearbook of Immigration Statistics, USCIS,

(www.uscis.gov). Immigrants for whom the country of last residence was unknown are

omitted. For this example a unit is an individual immigrant and these data correspond

to a census of the entire population of immigrants, for whom the country of last residence

was known, for these decades. Because the region of last residence of an immigrant is a

nominal variable and its values do not have an inherent ordering, the values in the bar

graphs (and relative frequency distributions) in Figure 4 have been arranged so that the

percentages for the 1931–1940 decade are in decreasing order.
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Figure 4. Region of last residence for immigrants to USA, by decade.

1931–1940

Europe 65.77%

North America 24.77%

Asia 3.14%

Caribbean 2.93%

South America 1.48%

Central America 1.11%

Oceania .47%

Africa .33%

1961–1970

Europe 33.82%

North America 26.70%

Asia 12.88%

Caribbean 14.16%

South America 7.77%

Central America 3.05%

Oceania .76%

Africa .87%

1991–2000

Europe 15.02%

North America 26.97%

Asia 30.88%

Caribbean 10.81%

South America 5.96%

Central America 5.82%

Oceania .62%

Africa 3.92%

Two aspects of the distributions of region of origin of immigrants which are apparent

in these bar graphs are: The decrease in the proportion of immigrants from Europe; and,

the increase in the proportion of immigrants from Asia. In 1931–1940 a large majority

(65.77%) of the immigrants were from Europe but for the later decades this proportion

steadily decreases. On the other hand, the proportion of Asians (only 3.14% in 1931–1940)
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steadily increases to 30.88% in 1991–2000. Also note that the proportion of immigrants

from North America is reasonably constant for these three decades. The patterns we

observe in these distributions may be attributable to several causes. Political, social, and

economic pressures in the region of origin of these people will clearly have an impact on

their desire to immigrate to the US. Furthermore, political pressures within the US have

effects on immigration quotas and the availability of visas.

Example. Hawaiian blood types. This example is based on the description

in Moore and McCabe, Introduction to the Practice of Statistics, Freeman, (1993) of a

study discussed in A.E. Mourant, et al., The Distribution of Blood Groups and Other

Polymorphisms, Oxford University Press, London, 1976. The Blood Bank of Hawaii cross–

classified 145,057 individuals according to their blood type (A, AB, B, O) and their ethnic

group (Hawaiian, Hawaiian–Chinese, Hawaiian–White, White). The frequencies for each

of the 16 combinations of the 4 levels of these two qualitative variables are given in Table 4.

This sample of individuals is most likely a convenience sample of blood donors. We will use

the classification of an individual by ethnic group as an explanatory (indicator) variable

and consider the (conditional) distributions of the nominal qualitative variable blood type

for the four ethnic groups. The four columns corresponding to the ethnic groups in Table

4 provide the conditional (frequency) distributions for these groups. Because there is no

inherent ordering among the blood types the arrangement of the blood types in Figure 5 is

such that the percentages for the Hawaiian group are in decreasing order. The conditional

(relative frequency) distributions of blood type for the ethnic groups summarized in Figure

5 clarify the differences in the distributions of blood type for these four ethnic groups.

Table 4. Blood type and ethnic group observed frequencies.

ethnic group

blood Hawaiian Hawaiian– Hawaiian– White
type Chinese White total

A 2490 2368 4671 50008 59537
O 1903 2206 4469 53759 62337
B 178 568 606 16252 17604
AB 99 243 236 5001 5579

total 4670 5385 9982 125020 145057
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Figure 5. Conditional distributions of blood type by ethnic group.

Hawaiian

A 53.32%

O 40.75%

B 3.81%

AB 2.12%

Hawaiian–Chinese

A 43.97%

O 40.97%

B 10.55%

AB 4.51%

Hawaiian–White

A 46.79%

O 44.77%

B 6.07%

AB 2.36%

White

A 40.00%

O 43.00%

B 13.00%

AB 4.00%

2.3 Describing discrete quantitative data

The tabular representations used to summarize the distribution of a discrete quantita-

tive variable, i.e., the frequency and relative frequency distributions, are defined the same

as they were for qualitative data. Since the values of a quantitative variable can be viewed

as points on the number line, we need to indicate this structure in a tabular representation.

In the frequency or relative frequency distribution the values of the variable are listed in

order and all possible values within the range of the data are listed even if they do not

appear in the data.

First consider the distribution of the number of siblings for the Stat 214 example. The

relative frequency distribution for the number of siblings is given in Table 5.
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Table 5. Relative frequency distribution
for number of siblings.

number of frequency relative
siblings frequency

0 2 .030
1 21 .313
2 21 .313
3 11 .164
4 7 .104
5 3 .045
6 1 .015
7 1 .015

total 67 .999

We will use a graphical representation called a histogram to summarize the distribution

of a discrete quantitative variable. Like the bar graph we used to represent the distribution

of a qualitative variable, the histogram provides a representation of the distribution of a

quantitative variable using area to represent relative frequency. A histogram is basically

a bar graph modified to indicate the location of the observed values of the variable on

the number line. For ease of discussion we will describe histograms for situations where

the possible values of the discrete quantitative variable are equally spaced (the distance

between any two adjacent possible values is always the same).

Consider the histogram for the number of siblings for the Stat 214 example given in

Figure 6. This histogram is made up of rectangles of equal width, centered at the observed

values of the variable. The heights of these rectangles are chosen so that the area of a

rectangle is the relative frequency of the corresponding value of the variable. There is

not a gap between two adjacent rectangles in the histogram unless there is an unobserved

possible value of the variable between the corresponding adjacent observed values. For this

example there are no gaps; but, there is a gap in the histogram of Figure 8.

In this histogram we are using an interval of values on the number line to indicate a

single value of the variable. For example, the rectangle centered over 1 in the histogram of

Figure 6 represents the relative frequency of a student having 1 sibling; but its base extends

from .5 to 1.5 on the number line. Because it is impossible for the number of siblings to be

strictly between 0 and 1 or strictly between 1 and 2, we are identifying the entire interval

from .5 to 1.5 on the number line with the actual value of 1. This identification of an

interval of values with the possible value at the center of the interval eliminates gaps in

the histogram that would incorrectly suggest the presence of unobserved, possible values.
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Figure 6. Histogram for number of siblings.

0 1 2 3 4 5 6 7

The histogram for the distribution of the number of siblings for the Stat 214 example

in Figure 6 has a mound shaped appearance with a single peak over the values 1 and 2,

indicating that the most common number of siblings for a student in this group is either

1 or 2. In fact, 31.3% of the students in this group have one sibling and 31.3% have two

siblings. It is relatively unusual for a student in this group to be an only child (3%) or to

have 5 or more siblings (7.5%).

The histogram of Figure 6, or the associated distribution, is not symmetric. That

is, the histogram (distribution) is not the same on the left side (smaller values) of the

peak over the values 1 and 2 as it is on the right side (larger values). This histogram or

distribution is said to be skewed to the right. The concept of a distribution being skewed

to the right is often explained by saying that the right “tail” of the distribution is “longer”

than the left “tail”. That is, the area in the histogram is more spread out along the

number line on the right than it is on the left. For this example, the smallest 25% of the

observed values are zeros and ones while the largest 25% of the observed values include

values ranging from three to seven. In the present example we might say that there is

essentially no left tail in the distribution.

The number of siblings histogram and the histograms for the next three examples

discussed below are examples of a very common type of histogram (distribution) which is

mound shaped and has a single peak. This type of distribution arises when there is a single

value (or a few adjacent values) which occurs with highest relative frequency, causing the

histogram to have a single peak at this location, and when the relative frequencies of the

other values taper off (decrease) as we move away from the location of the peak. Three

examples of common mound shaped distributions with a single peak are provided in Figure

7. The symmetric distribution is such that the histogram has two mirror image halves.

The skewed distributions are more spread out along the number line on one side (the

direction of the skewness) than they are on the other side.
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Figure 7. Mound shaped histograms with a single peak.

a. symmetric

b. skewed right c. skewed left

A distribution with a single peak is said to be unimodal, indicating that it has a single

mode. The formal definition of a mode is a value which occurs with highest frequency. In

practice, if two adjacent values are both modes, as are 1 and 2 in the number of siblings

example, then we would still say that the distribution is unimodal. Some distributions are

bimodal (or multimodal) in the sense of having two distinct modes which are separated

by an interval of values with lower relative frequencies. The degree of cloudiness example

below provides an example of an extreme version of a bimodal distribution. A more

common situation when a bimodal distribution might arise is when the sample under study

is a mixture of two subgroups (say males and females) with distinct and well separated

modes.

Example. Weed seeds. C. W. Leggatt counted the number of seeds of the weed

potentilla found in 98 quarter–ounce batches of the grass Phleum praetense. This example

is taken from Snedecor and Cochran, Statistical Methods, Iowa State, (1980), 198; the

original source is C. W. Leggatt, Comptes rendus de l’association international d’essais de

semences, 5 (1935), 27. The 98 observed numbers of weed seeds, which varied from 0 to

7, are summarized in the relative frequency distribution of Table 6 and the histogram of

Figure 8. In this example a unit is a batch of grass and the number of seeds in a batch

is a discrete quantitative variable with possible values of 0, 1, 2, . . .. The distribution of

the number of weed seeds is mound shaped with a single peak at zero and it is skewed to

the right. The majority of these batches of grass have a small number of weed seeds; but,

there are a few batches with relatively high numbers of weed seeds.
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Table 6. Weed seed relative
frequency distribution.

number frequency relative
of seeds frequency

0 37 .3776
1 32 .3265
2 16 .1633
3 9 .0918
4 2 .0204
5 0 .0000
6 1 .0102
7 1 .0102

total 98 1.0000

Figure 8. Histogram for number of weed seeds.

0 1 2 3 4 5 6 7
number of seeds

Example. Vole reproduction. An investigation was conducted to study repro-

duction in laboratory colonies of voles. This example is taken from Devore and Peck,

Statistics, (1997), 33; the original reference is the article “Reproduction in laboratory

colonies of voles”, Oikos, (1983), 184. The data summarized in Table 7 and Figure 9

are the numbers of babies in 170 litters born to voles in a particular laboratory. In this

example a unit is a litter of voles and the number of babies in a vole litter is a discrete

quantitative variable with possible values of 1, 2, 3, . . .. In this example we see that the

distribution of the number of vole babies is mound shaped with a single peak at 6 and it

is reasonably symmetric. For these vole litters the majority of the litters have around 6

babies. There are a few litters with relatively small numbers of babies and there are a few

with relatively large numbers of babies.
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Table 7. Vole baby relative
frequency distribution.

number frequency relative
of babies frequency

1 1 .0059
2 2 .0118
3 13 .0765
4 19 .1118
5 35 .2059
6 38 .2235
7 33 .1941
8 18 .1059
9 8 .0471
10 2 .0118
11 1 .0059

total 170 1.0002

Figure 9. Histogram for number of vole babies.

1 2 3 4 5 6 7 8 9 10 11
number of babies

Example. Radioactive disintegrations. This example is taken from Feller, An

Introduction to Probability Theory and its Applications, vol.1, Wiley, (1957), 149 and

Cramér, Mathematical Methods of Statistics, Princeton, (1945). In a famous experiment

by Rutherford, Chadwick, and Ellis (Radiations from Radioactive Substances, Cambridge,

1920) a radioactive substance was observed during 2608 consecutive time intervals of length

7.5 seconds each. In this example a unit is a 7.5 second time interval and the number of

particles reaching a counter during the time period is a discrete quantitative variable with

possible values of 0, 1, 2, . . .. The distribution of the number of radioactive disintegrations

is summarized in Table 8 and Figure 10. In this example we see that the distribution of

the number of particles per time interval is mound shaped with a single peak around 3

and 4. This distribution is reasonably symmetric but there is some skewness to the right.
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Table 8. Radioactive disintegrations
relative frequency distribution.

number frequency relative
frequency

0 57 .0219
1 203 .0778
2 383 .1469
3 525 .2013
4 532 .2040
5 408 .1564
6 273 .1047
7 139 .0533
8 45 .0173
9 27 .0104
10 10 .0038
11 4 .0015
12 2 .0008

total 2608 1.0001

Figure 10. Histogram for radioactive disintegrations.

0 1 2 3 4 5 6 7 8 9 10 11 12
number

Example. Degree of cloudiness at Breslau. This example is taken from P.R.

Rider (1927), J. Amer. Statist. Assoc. 22, 202–208. The estimated degree of cloudiness

at Breslau for days during the decade 1876–1885 is summarized in Table 9 and Figure 11.

Zero degrees of cloudiness corresponds to an entirely clear day and 10 degrees of cloudiness

corresponds to an entirely overcast day. This measurement of degree of cloudiness is

essentially a ranking on a scale from 0 to 10 and this variable is properly viewed as being

an ordinal qualitative variable. However, as long as we are careful with our interpretation
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of its numerical values it is reasonable to treat the degree of cloudiness as a discrete

quantitative variable. The distribution of the degree of cloudiness is “U”–shaped with a

peak at each of the extremes and relatively low relative frequencies in the middle of the

range. More properly, we might say that there is a primary peak (mode) at 10 and a

smaller secondary peak (mode) at 0. This “U”–shape indicates that for most of these days

it was either entirely clear or nearly clear or it was entirely overcast or nearly overcast.

There were relatively few days when the degree of cloudiness was in the middle of the

range. The most common value was 10, entirely overcast (57.19%), and the second most

common value was 0, entirely clear (20.56%).

Table 9. Degree of cloudiness at Breslau
relative frequency distribution.

degree of cloudiness frequency relative
frequency

0 751 .2056
1 179 .0490
2 107 .0293
3 69 .0189
4 46 .0126
5 9 .0025
6 21 .0057
7 71 .0194
8 194 .0531
9 117 .0320
10 2089 .5719

total 3653 1.0000

Figure 11. Histogram for degree of cloudiness at Breslau.

0 1 2 3 4 5 6 7 8 9 10
degree of cloudiness
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2.4 Describing continuous quantitative data

There is a fundamental difference between summarizing and describing the distribu-

tion of a discrete quantitative variable and summarizing and describing the distribution of

a continuous quantitative variable. Since a continuous quantitative variable has an infinite

number of possible values, it is not possible to list all of these values. Therefore, some

changes to the tabular and graphical summaries used for discrete variables are required.

In practice, the observed values of a continuous quantitative variable are discretized,

i.e., the values are rounded so that they can be written down. Therefore, there is really no

difference between summarizing the distribution of a continuous variable and summarizing

the distribution of a discrete variable with a large number of possible values. In either

case, it may be impossible or undesirable to actually list all of the possible values of the

variable within the range of the observed data. Thus, when summarizing the distribution

of a continuous variable, we will group the possible values into intervals.

Figure 12. Stem and leaf histogram for weight.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (pounds)

stem leaf

9 56
10 355
11 0000000255567
12 000555
13 00003455555
14 000000055
15 00556
16 0255
17 000005
18 0055
19 000
20 5

To make this discussion more concrete, consider the weights of the students in the

Stat 214 example. We can group the possible weights into the intervals: 90–100, 100–110,

. . ., 200–210. We will need to adopt an endpoint convention so that each possible weight

belongs to only one of these intervals. We will adopt the endpoint convention of including

the left (lower) endpoint and excluding the right (upper) endpoint. Under this convention

the interval 90–100 includes 90 but excludes 100. A stem and leaf histogram of the weights

of the Stat 214 students is given in Figure 12. The stem and leaf histogram is an easily

constructed version of a frequency histogram (a histogram based on frequencies instead

of relative frequencies). The stem and leaf histogram uses the numbers themselves to form
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the rectangles of the histogram. The stem indicates the interval of values while the leaves

provide the “rectangle.” For the weight data the actual weight of a student is decomposed

into tens (the stem) and ones (the leaf). For example, the first weight is 95 pounds which

is decomposed as 95 = 9 tens + 5 ones. Therefore, the weight 95 appears as a 5 leaf in the

leaves of the 9 stem.

Notice that the leaves in the stem and leaf histogram of Figure 12 are arranged in

increasing order within each stem. Having ordered leaves in the stem and leaf histogram

makes certain subsequent tasks easier. For example, having ordered leaves makes it easier

to change the stems (change the intervals used to group the values) if this is necessary to

obtain a more informative stem and leaf histogram. Furthermore, we can easily determine

certain summary statistics directly from a stem and leaf histogram with ordered leaves.

(We will discuss summary statistics in Chapter 3.) When constructing a stem and leaf

histogram from unordered data, the best way to get ordered leaves is to first form a

preliminary stem and leaf histogram with unordered leaves and then revise it to get ordered

leaves.

Once the stem and leaf histogram is formed it is easy to construct a frequency distribu-

tion, a relative frequency distribution, and a formal relative frequency histogram, if these

are desired. By counting the numbers of leaves corresponding to each stem in the stem

and leaf histogram we can easily form the corresponding frequency and relative frequency

distributions and the formal (relative frequency) histogram.

The weight distribution histogram of Figure 12 has an asymmetric mound shape

peaking in the 110–120 pound range and showing skewness to the right. There is a lot of

variability in the weights of these students. The majority of the students have weights in

the 110–150 pound range; but, weights in the 150–190 pound range are also fairly common.

The appearance of two peaks, one in the 11 (110 pound) stem and one in the 13 (130

pound) stem is probably due to the way these students rounded their weights; therefore, it

seems reasonable to say that this distribution has a single peak. Notice that, in general, the

appearance of a stem and leaf histogram or a formal histogram for a continuous variable

depends on the choice of the intervals used in its construction and minor features such as

multiple local modes which are not very far apart might disappear if the intervals were

shifted slightly.

Since this weight distribution corresponds to a group consisting of both females and

males, we might expect to see two separate peaks; one located at the center of the female

weight distribution and another located at the center of the male weight distribution.

However, there does not appear to be much evidence of this. Separate stem and leaf

histograms for the weight distributions of the females and the males are given in Figure

13. Some care is required in comparing these two stem and leaf (frequency) histograms

due to the disparate sample sizes. There are 51 female weights but only 16 male weights.
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The peak in the female weight distribution stem and leaf histogram appears to be much

more pronounced than the peak in the male weight distribution stem and leaf histogram.

However, the formal (relative frequency) histograms exhibited in Figure 14 show that this

difference in peakedness is not so large. The female weight distribution is skewed to the

right with one peak in the 110–150 pound range. The male weight distribution is much

more uniform without strong evidence of skewness.

Figure 13. Stem and leaf histograms for weight, by sex.

In these stem and leaf histograms the stem represents tens
and the leaf represents ones. (pounds)

Female Male

9 56 9
10 355 10
11 0000000255567 11
12 000555 12
13 000345555 13 05
14 00000055 14 0
15 005 15 56
16 05 16 25
17 000 17 005
18 05 18 05
19 19 000
20 20 5

Figure 14. Histograms for weight, by sex.

female

90 100 110 120 130 140 150 160 170 180 190 200 210

male

90 100 110 120 130 140 150 160 170 180 190 200 210
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The stem and leaf histograms and formal histograms we formed for the weight distri-

bution were based on intervals of length 10 (10 pounds), e.g., 90–100, 100–110, etc. Notice

that we chose this interval length when we chose to use the last digit of the weight of a

student as the leaf and the remaining digits of the weight as the stem in the stem and leaf

histogram. In some situations using the last digit of the variable value as the leaf may yield

inappropriate intervals. Consider the stem and leaf histogram for the height distribution

for the Stat 214 example given in Figure 15. Clearly the majority of the heights are in the

60’s, but the shape of the distribution is not clear from this stem and leaf histogram. The

intervals used here are too long causing the stem and leaf histogram to be too compressed

along the number line to give a useful indication of the shape of the distribution.

Figure 15. Stem and leaf histogram for height.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (inches)

5 9
6 001111222222333334444444455556666666666677778888888999
7 000112222245

We can refine the stem and leaf histogram by changing the lengths of the intervals

into which the data are grouped. This refinement can be viewed as a splitting of the stems

of the stem and leaf histogram. To avoid distortion we need to subdivide the intervals

(split the stems) so that each of the resulting intervals is of the same length. We can

easily do this by either splitting the stems once, yielding 2 intervals of length 5 for each

stem instead of 1 interval of length 10, or by splitting the stems five times, yielding 5

intervals of length 2. To demonstrate this splitting of stems stem and leaf histograms of

the height distribution with stems split in these fashions are provided in Figures 16 and

17, respectively. In this particular case the stem and leaf histogram of Figure 17 (stems

split into five) seems to provide the most informative display of the shape of the height

distribution. The height distribution is reasonably symmetric with a single peak at the

66–67 interval.
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Figure 16. Stem and leaf histogram for height
with stems split into two.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (inches)

Low stem leaves: 0,1,2,3,4
High stem leaves: 5,6,7,8,9

5
5 9
6 0011112222223333344444444
6 55556666666666677778888888999
7 00011222224
7 5

Figure 17. Stem and leaf histogram for height
with stems split into five.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (inches)

First stem leaves: 0,1
Second stem leaves: 2,3
Third stem leaves: 4,5
Fourth stem leaves: 6,7
Fifth stem leaves: 8,9

5 9
6 001111
6 22222233333
6 444444445555
6 666666666667777
6 8888888999
7 00011
7 22222
7 45

To complete our discussion of stem and leaf histograms consider the hypothetical

example, with values between -3.9 and 3.9, of Figure 18. The first thing you should notice

is that there is a -0 stem and a 0 stem. The negative 0 stem corresponds to the interval

from -1 to 0 (not including -1) and the positive 0 stem corresponds to the interval from

0 to 1 (not including 1). If there were any zero observations we could place half of them

with each of the zero stems. Notice also that the leaves for the negative stems decrease

from left to right so that as we read through the histogram (going from left to right) the

values increase from the minimum -3.9 to the maximum 3.9.
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Figure 18. A stem and leaf histogram for hypothetical
data with negative values and positive values.

-3 98664
-2 8773210
-1 7664432110
-0 9776555442211
0 11222344467
1 1222345578
2 34466789
3 445569

2.5 Summary

In this chapter we discussed tabular and graphical methods for summarizing the dis-

tribution of a variable X, i.e., methods for summarizing the way in which the possible

values of X are distributed among the units in the sample. The basic idea underlying

these summaries is that of using relative frequencies (proportions or percentages) to show

how the total relative frequency of one (100%) is partitioned into relative frequencies for

each of the possible values of X.

A relative frequency distribution is a table listing the possible values of X and the

associated relative frequencies with which these values occurred in the sample. For a

qualitative variable or a discrete quantitative variable it is usually possible to tabulate all

of the possible values and their relative frequencies. For a discrete quantitative variable

with many possible values or a continuous quantitative variable, there are generally too

many possible values to list each individually and it is necessary to group the possible

values into intervals and then tabulate the relative frequencies for each of these intervals

of values.

A graphical representation of the distribution of X is based on the identification of

area with relative frequency. Thus, a graphical representation provides a decomposition of

a region of area one, representing the total relative frequency of one (100%), into subregions

of area equal to the relative frequencies of each of the possible values (or intervals of values)

of X. For qualitative variables we emphasized the bar graph with rectangular regions for

each value of X. For quantitative variables we used a histogram which is basically a

bar graph with the bars suitably arranged along the number line to indicate the relative

locations of the values of X. We also discussed stem and leaf histograms which are easily

constructed raw frequency histograms; and we noted that stem and leaf histograms should

be converted to proper relative frequency histograms before making comparisons of two or

more distributions.
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The representation of the distribution of a quantitative variable via a histogram allows

us to discuss the shape of the distribution. We discussed some basic shapes with most of our

emphasis on the distinction between skewed and symmetric mound shaped distributions.

For skewed distributions we defined the terms skewed left and skewed right.

2.6 Exercises

For each of the examples in Section 1.2 (excluding those already treated in this chapter):

construct suitable tabular and graphical summaries of the distribution(s) and discuss the

distribution of the variable(s).

Notes:

For the examples with two or more groups (DiMaggio and Mantle, Guatemalan cholesterol,

gear tooth strength), compare and contrast the distributions of the variable for the two

(or more) groups.

For the paired data examples (wooly–bear cocoons, homophone confusions) find the dif-

ferences for each pair of data values and describe the distribution of the differences.
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Chapter 3

Descriptive Statistics II: Numerical Summary Values

3.1 Numerical summary values for quantitative data

For many purposes a few well–chosen numerical summary values (statistics) will suffice

as a description of the distribution of a quantitative variable. A statistic is a numerical

characteristic of a sample. More formally, a statistic is a numerical quantity computed

from the values of a variable, or variables, corresponding to the units in a sample. Thus

a statistic serves to quantify some interesting aspect of the distribution of a variable in

a sample. Summary statistics are particularly useful for comparing and contrasting the

distribution of a variable for two different samples.

If we plan to use a small number of summary statistics to characterize a distribution or

to compare two distributions, then we first need to decide which aspects of the distribution

are of primary interest. If the distributions of interest are essentially mound shaped with

a single peak (unimodal), then there are three aspects of the distribution which are often

of primary interest. The first aspect of the distribution is its location on the number line.

Generally, when speaking of the location of a distribution we are referring to the location of

the “center” of the distribution. The location of the center of a symmetric, mound shaped

distribution is clearly the point of symmetry. There is some ambiguity in specifying the

location of the center of an asymmetric, mound shaped distribution and we shall see that

there are at least two standard ways to quantify location in this context. The second aspect

of the distribution is the amount of variability or dispersion in the distribution. Roughly

speaking, we would say that a distribution exhibits low variability if the observed values

tend to be close together on the number line and exhibits high variability if the observed

values tend to be more spread out in some sense. The third aspect is the shape of the

distribution and in particular the degree of skewness in the distribution.

As a starting point consider the minimum (smallest observed value) and maximum

(largest observed value) as statistics. We know that all of the data values lie between

the minimum and the maximum, therefore, the minimum and the maximum provide a

crude quantification of location and variability. In particular, we know that all of the

values of the variable are restricted to the interval from the minimum to the maximum;

however, the minimum and the maximum alone tell us nothing about how the data values

are distributed within this interval. If the distribution is reasonably symmetric and mound

shaped, then the midrange, defined as the average of the minimum and the maximum,

may provide a suitable quantification of the location of the center of the distribution. The

median and mean, which are defined below, are generally better measures of the center of

a distribution.
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The range, defined as the distance from the minimum to the maximum can be used to

quantify the amount of variability in the distribution. Note that the range is the positive

number obtained by subtracting the minimum from the maximum. When comparing two

distributions the distribution with the larger range will generally have more variability than

the distribution with the smaller range; however, the range is very sensitive to extreme

observations so that one or a few unusually large or small values can lead to a very large

range.

We will now consider an approach to the quantification of the shape, location, and

variability of a distribution based on the division of the histogram of the distribution into

sections of equal area. This is equivalent to dividing the data into groups, each containing

the same number of values. We will first use a division of the histogram into halves. We

will then use a division of the histogram into fourths.

The median is used to quantify the location of the center of the distribution. In terms

of area, the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the

median. Here and in the sequel we will use a lower case n to denote the sample size, i.e., n

will denote the number of units in the sample. In terms of the n observations, the median

is the number with the property that at least n/2 of the observed values are less than or

equal to the median and at least n/2 of the observed values are greater than or equal to

the median.

A simple procedure for finding the median, which is easily generalized to fractions

other that 1/2, is outlined below.

1. Arrange the data (observations) in increasing order from the smallest (obs. no. 1) to

the largest (obs. no. n). Be sure to include all n values in this list, including repeats

if there are any.

2. Compute the quantity n/2.

3a. If n/2 is not a whole number, round it up to the next largest integer. The observation

at the location indicated by the rounded–up value in the ordered listing of the data

is the median.

3b. If n/2 is a whole number, then we need to average two values to get the median. The

two observations to be averaged are obs. no. n/2 and the next observation (obs. no.

n/2 + 1) in the ordered listing of the data. Find these two observations and average

them to get the median.

We can use the distance between the minimum and the median and the distance

between the median and the maximum to quantify the amount of skewness in the distri-

bution. The distance between the minimum and the median is the range of the lower (left)

half of the distribution, and the distance between the median and the maximum is the

range of the upper (right) half of the distribution. If the distribution is symmetric, then
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these two distances (median – minimum) and (maximum – median) will be equal. If the

distribution is skewed, then we would expect to observe a larger range (indicating more

variability) for the half of the distribution in the direction of the skewness. Thus if the

distribution is skewed to the left, then we would expect (median – minimum) to be greater

than (maximum – median). On the other hand, if the distribution is skewed to the right,

then we would expect (maximum – median) to be greater than (median – minimum).

Example. Weed seeds (revisited). Recall that this example is concerned with the

number of weed seeds found in n = 98 quarter–ounce batches of grass. Since 98/2 = 49,

the median for this example is the average of observations 49 and 50. Referring to Table 6

of Chapter 2 we find that the minimum number of weed seeds is 0, the maximum is 7, and

the median is 1, since observations 49 and 50 are each 1. The range for this distribution is

7−0 = 7. Notice that the range of the right half of this distribution (maximum – median)

= 7−1 = 6 is much larger than the range of the left half (median – minimum) = 1−0 = 1

confirming our observation that this distribution is strongly skewed to the right.

Example. Vole reproduction (revisited). Recall that this example is concerned

with the number of babies in n = 170 litters of voles. Since 170/2 = 85, the median for this

example is the average of observations 85 and 86. Referring to Table 7 of Chapter 2 we find

that the minimum number of babies is 1, the maximum is 11, and the median is 6, since

observations 85 and 86 are each 6. The range for this distribution is 11− 1 = 10. Notice

that the range of the right half of this distribution (maximum – median) = 11 − 6 = 5

is equal to the range of the left half (median – minimum) = 6 − 1 = 5 confirming our

observation that this distribution is symmetric.

A more detailed quantification of the shape and variability of a distribution can be

obtained from a division of the distribution into fourths. In order to divide a distribution

into fourths, we need to specify three numbers or points on the number line. These statistics

are called quartiles, since they divide the distribution into quarters. In terms of area,

the first quartile, denoted by Q1 (read this as Q sub one), is the number (point on the

number line) with the property that the area in the histogram to the left of Q1 is equal to

one fourth and the area to the right of Q1 is equal to three fourths. The second quartile,

denoted by Q2, is the median. The third quartile, denoted by Q3, is the number (point

on the number line) with the property that the area in the histogram to the left of Q3 is

equal to three fourths and the area to the right of Q3 is equal to one fourth. In terms of

the n observations, Q1 is the number with the property that at least n/4 of the observed

values are less than or equal to Q1 and at least 3n/4 of the observed values are greater

than or equal to Q1. Similarly, Q3 is the number with the property that at least 3n/4 of

the observed values are less than or equal to Q3 and at least n/4 of the observed values

are greater than or equal to Q3.
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The method for finding the median given above is readily modified for finding the

first and third quartiles. For Q1, we simply replace n/2 by n/4 and replace the words

‘the median’ by Q1. To find Q3, use exactly the same method but count down from

the largest value instead of counting up from the smallest value. Some calculators and

computer programs use variations of the methods given above for finding Q1 and Q3.

These variations may give slightly different values for Q1 and Q3.

Example. Weed seeds (revisited). Since 98/4 = 24.5, the quartiles Q1 and Q3 for

this example are the observations located at position 25 counting up for Q1 and counting

down for Q3. Referring to Table 6 of Chapter 2 we find that Q1 = 0 and Q3 = 2. Notice

that the range of the lower three–fourths of this distribution, Q3 – minimum, is 2 while

the range of the upper fourth, maximum – Q3 is 5. This indicates that 75% (a large

proportion) of the batches of grass have relatively few weed seeds, and the skewness in this

distribution is due to the high amount of variability among the numbers of weed seeds in

the 25% of the batches with between 2 and 7 weed seeds.

Previously we introduced the range as a measure of variability. An alternative measure

of variability is provided by the interquartile range. The interquartile range (IQR) is the

distance between the first quartile Q1 and the third quartile Q3, i.e., the interquartile range

is the positive number obtained by subtracting Q1 from Q3. Notice that the interquartile

range is the range of the middle half of the distribution. The interquartile range is less

sensitive to the presence of a few extreme observations in the data than is the range. For

example, if there are one or two unusually large or unusually small values, then these values

may have the effect of making the range much larger than it would be if these unusual

values were not present. In such a situation, we might argue that the range is too large

to be deemed an appropriate overall measure of the variability of the distribution. The

interquartile range is not affected by a few unusual values, since it only depends on the

middle half of the data. We could use the range of a larger part of the middle of the

distribution, say the middle 75% or 90%, as a compromise between the range and the

interquartile range.

The five summary statistics: the minimum (min), the first quartile (Q1), the median

(med), the third quartile (Q3), and the maximum (max), constitute the five number

summary of the distribution. Each of these five statistics provides a quantification of a

particular aspect of the distribution. They quantify where the distribution begins, where

the first quarter of the distribution ends, and so on. Furthermore, the distances between

these five statistics can be used to quantify the shape (skewness) of the distribution.

The four distances: (Q1 – min), (med – Q1), (Q3 – med), and (max – Q3), are the

ranges of the first, second, third, and fourth quarters of the distribution, respectively.

These distances can be used to quantify the amount of variability in the corresponding

parts of the distribution. Comparisons of appropriate pairs of these distances provide
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indications of certain aspects of the shape of the distribution. The relationship between

(med – Q1) and (Q3 – med) can be used to quantify the shape (skewness) of the middle

half of the distribution. Since (Q1 – min) and (max – Q3) are the lengths of the tails

(lower and upper fourths) of the distribution, the relationship between these numbers can

be used to quantify skewness in the tails of the distribution.

Example. Cholesterol levels in Guatemalans. This example is taken from

Devore and Peck, Statistics, 3 ed., (1997), Duxbury, p. 23. The original source is “The

Blood Viscosity of Various Socioeconomic Groups in Guatemala” in The American Journal

of Clinical Nutrition, Nov., 1964, 303–307. The Institute of Nutrition of Central America

and Panama measured the serum total cholesterol levels for a group of 49 adult, low–

income rural Guatemalans and for a group of 45 adult, high–income urban Guatemalans.

The serum total cholesterol levels (in mg/dL) are provided in Table 1 and stem and leaf

histograms are given in Figure 1.

Table 1. Guatemalan cholesterol data.

Rural group cholesterol levels (in mg/dL).

95 108 108 114 115 124 129 129 131 131
135 136 136 139 140 142 142 143 143 144
144 145 146 148 152 152 155 157 158 158
162 165 166 171 172 173 174 175 180 181
189 192 194 197 204 220 223 226 231

Urban group cholesterol levels (in mg/dL).

133 134 155 170 175 179 181 184 188 189
190 196 197 199 200 200 201 201 204 205
205 205 206 214 217 222 222 227 227 228
234 234 236 239 241 242 244 249 252 273
279 284 284 284 330

Before we compute any summary statistics consider the stem and leaf histograms

in Figure 1. Based on these histograms we can see that both of these cholesterol level

distributions are basically mound shaped with some skewness to the right. In the rural

group there are four individuals with somewhat high cholesterol levels (220 or more); there

is a gap of 16 separating the cholesterol levels of these individuals from the rest of the rural

group. It is this group of four observations which causes the rural distribution to appear

skewed to the right. The urban group has similar slightly unusual groups of cholesterol

levels; one group having somewhat low levels and one having somewhat high levels. There

is one unusually large value (330) in the urban group that we might consider an outlier,

since there is a gap of 46 between 330 and the next largest value. (An outlier is an

observation that is widely separated from the majority of a distribution.) We will need to



40 3.1 Numerical summary values for quantitative data

consider the implications of this outlier in our analysis of this example. It is also apparent

that the people in the urban group tend to have higher cholesterol levels than the people

in the rural group. There appears to be more variability among the cholesterol levels for

the urban group. With the urban outlier there appears to be much more variability in

the cholesterol levels of the urban group, and without it there appears to be slightly more

variability in the urban group cholesterol levels. If we ignore the outlier, the urban group

distribution appears to be essentially symmetric.

Figure 1. Guatemalan cholesterol stem and leaf histograms.

The stem represents tens and the leaf represents ones. (mg/dL)

Rural Urban

9 5 9
10 88 10
11 45 11
12 499 12
13 115669 13 34
14 0223344568 14
15 225788 15 5
16 256 16
17 12345 17 059
18 019 18 1489
19 247 19 0679
20 4 20 001145556
21 21 47
22 036 22 22778
23 1 23 4469
24 24 1249
25 25 2
26 26
27 27 39
28 28 444
29 29
30 30
31 31
32 32
33 33 0

The five number summaries and the associated distances based on them are provided,

for the rural group, for the entire urban group, and for the urban group omitting 330, in

Table 2. The steps involving in computing the medians and quartiles, for the rural group
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and the entire urban group, are outlined below. For the rural group there are n = 49

observations so that

(1) 49/2 = 24.5, thus the median 152 is obs. no. 25, corresponding to the first 2 leaf in

the 15 stem.

(2) 49/4 = 12.25, thus the first and third quartiles are Q1 = 136, the 13th observation

counting up, corresponding to the second 6 leaf in the 13 stem, and Q3 = 174, the

13th observation counting down, corresponding to the second 4 leaf in the 17 stem.

For the urban group there are n = 45 observations so that

(1) 45/2 = 22.5, thus the median 206 is obs. no. 23, corresponding to the 6 leaf in the 20

stem.

(2) 45/4 = 11.25, thus the first and third quartiles are Q1 = 196, the 12th observation

counting up, corresponding to the 6 leaf in the 19 stem, and Q3 = 239, the 12th

observation counting down, corresponding to the 9 leaf in the 23 stem.

Table 2. Five number summaries with distances.

Rural group. (mg/dL) n=49

min: 95
Q1− min: 41

Q1: 136 med - min: 57
med - Q1: 16

med: 152
Q3− med: 22

Q3: 174 max - med: 79
max - Q3: 57

max: 231

Urban group (all). (mg/dL) n=45

min: 133
Q1− min: 63

Q1: 196 med - min: 73
med - Q1: 10

med: 206
Q3− med: 33

Q3: 239 max - med: 124
max - Q3: 91

max: 330

Urban group (omit 330). (mg/dL) n=44

min: 133
Q1− min: 60

Q1: 193 med - min: 72.5
med - Q1: 12.5

med: 205.5
Q3− med: 32

Q3: 237.5 max - med: 78.5
max - Q3: 46.5

max: 284

Before we continue with our discussion of this example we will introduce a simple

graphical display corresponding to the information in Table 2. We can use the five number

summary values to form a simple graphical representation of a distribution known as a
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box plot or a box and whiskers plot. A box plot does not convey as much information as

a stem and leaf histogram but it does give a useful graphical impression of the shape of the

distribution as well as its location and variability. Simple box plots for the Guatemalan

cholesterol example are provided in Figure 2.

Figure 2. Box plots for cholesterol level.

Rural

95 136 152 174 231

Urban (all)

133 196 206 239 330

Urban (omit 330)

133 193 205.5 237.5 284

Notice that each box plot has five vertical marks indicating the locations of the five

number summary values. The box which extends from the first quartile to the third quar-

tile and is divided into two parts by the median gives an impression of the distribution

of the values in the middle half of the distribution. In particular, a glance at this box

indicates whether the middle half of the distribution is skewed or symmetric and indi-

cates the magnitude of the interquartile range (the length of the box). The line segments

(whiskers) which extend from the ends of the box to the extreme values (the minimum

and the maximum) give an impression of the distribution of the values in the tails of the

distribution. The relative lengths of the whiskers indicate the contribution of the tails of

the distribution to the symmetry or skewness of the distribution.

Returning to the cholesterol example first consider the shapes of the cholesterol dis-

tributions. We can use the distances, based on the five number summary, given in Table

2 to quantify the degree of skewness in these distributions. Comparing the distances for

the rural group we find that max – med = 79 > 57 = med – min, Q3 – med = 22 > 16 =

med – Q1, and Max – Q3 = 57 > 41 = Q1 – min. All of these comparisons support our

contention that the cholesterol distribution for the rural group is skewed right. For the

urban group, including the outlier, we have max – med = 124 > 73 = med – min, Q3

– med = 33 > 10 = med – Q1, and Max – Q3 = 91 > 63 = Q1 – min. All of these

comparisons support our contention that the cholesterol distribution for the urban group

is skewed right. If we omit the outlier (330) from the urban group we find that max –
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med = 78.5 is only slightly larger than med – min = 72.5 suggesting that without the

outlier the cholesterol distribution for the urban group is reasonably symmetric. Without

the outlier the middle half of the distribution is still somewhat skewed right, since Q3 –

med = 32 > 12.5 = med – Q1; but, the range of the left tail (lower fourth) Q1 – min = 60

is now larger than the range of the right tail (upper fourth) Max – Q3 = 46.5.

The fact that the median 152 for the rural group is much smaller than the median 206

(with the outlier) or 205.5 (without the outlier) of the urban group supports our contention

that the people in the urban group tend to have higher cholesterol levels than the people

in the rural group.

With the outlier the range 197 for the urban group is much larger than the range

137 for the rural group. If we omit the outlier, then the range for the urban group is

151 which is still larger than 137 but not by so much. On the other hand, if we consider

the interquartile ranges, 38 for the rural group and 43 (44.5 without the outlier) for the

urban group, we find that there is a similar amount of variability in the middle halves of

these distributions. Hence, our contention that there is much more variability among the

cholesterol levels of the urban Guatemalans depends very heavily on the cholesterol level

of one individual. Whether we include this individual or not, we are justified in claiming

that there is more variability among the cholesterol levels of the urban Guatemalans.

Based on our analysis of these cholesterol level distributions we might propose several

hypotheses or conjectures about why these distributions differ as they do. First we might

conjecture that the rural Guatemalans are probably more physically active and eat food

which is lower in fat than the urban Guatemalans. This would cause the rural Guatemalans

to tend to have lower cholesterol levels. Second, we might argue that there is less variability

in the cholesterol levels of the rural Guatemalans because their lifestyles and eating habits

are probably quite similar.

The approach that we have been using to form summary statistics is to select a

single representative value from the observed values of the variable (or the average of two

adjacent observed values) to quantify a particular aspect of the distribution. We have also

considered statistics that are distances between two such representative values.

An alternative approach to forming a summary statistic is to combine all of the ob-

served values to get a suitable statistic. The first statistic of this type that we consider is

the mean. The mean, which is the simple arithmetic average of the n data values, is used

to quantify the location of the center of the distribution. You could compute the mean by

adding all n data values together and dividing this sum by n; however, it is better to use

a calculator or a computer.

The sample mean is often denoted by the symbol X (read this as X bar). This is

a convenient place for us to introduce some standard notation. It is standard practice

to use a letter, such as X , to denote a variable and the values of the variable. You are
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free to choose a letter with mnemonic value instead of the generic letter X ; however, you

should not use S or Z as these letters are reserved for special uses. If X denotes the

variable of interest, then we will use X to denote the mean of the distribution of X . If

we used a different letter, say Y , to denote the variable, then we would use Y to denote

the corresponding mean. We will use function notation to denote the other statistics we

defined above. That is, if X denotes the variable, then min(X), Q1(X), med(X), Q3(X),

max(X), range(X), and IQR(X) denote the minimum, the first quartile, the median, the

third quartile, the maximum, the range, and the interquartile range, respectively. You

should read these symbols as follows: read min(X) as the minimum of X , Q1(X) as the

first quartile of X , and so on.

Recall that the median is the number (point on the number line) with the property

that the area in the histogram to the left of the median is equal to the area to the right

of the median. The mean is the number (point on the number line) where the histogram

would balance. To understand what we mean by the balance point, imagine the histogram

as being cut out of a piece of cardboard. The mean is located at the point along the

number line side of this cutout where the histogram cutout would balance. These geo-

metric characterizations of the mean and the median imply that when the distribution

is symmetric the mean will be equal to the median. Furthermore, if the distribution is

skewed to the right, then the mean (the balance point) will be larger than the median (to

the right of the median). Similarly, if the distribution is skewed to the left, then the mean

(the balance point) will be smaller than the median (to the left of the median).

The primary use of the mean, like the median, is to quantify the location of the center

of a distribution and to compare the locations (centers) of two distributions. Since both the

mean and the median can be used to quantify the location of the center of a distribution,

it seems reasonable to ask which is more appropriate. If the distribution is approximately

symmetric, then the mean and the median will be approximately equal. On the other

hand, if the distribution is not symmetric, then the median is likely to provide a better

indication of the center of the distribution. For example, if the distribution is strongly

skewed to the right, then the mean may be much larger than the median and the mean

may not be a good indication of the center of the distribution. For a specific problem it

is a good idea to mark the locations of the mean and the median on a histogram of the

distribution and consider which seems more reasonable as an indicator of the center of the

distribution.

If the mean X is deemed suitable as a measure of the center of the distribution of

X , then the deviations (X −X) of the observed values of X from their mean X contain

information about the amount of variability in the distribution. If there is little variability

(the observed values of X are close together and they are close to the mean X), then the

deviations (X − X) will tend to be small in magnitude (absolute value). On the other
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hand, if there is a lot of variability (at least some of the observed values of X are far apart

and they are not all close to the mean X), then the deviations (X−X) will tend to be large

in magnitude. It is this observation which suggests that a summary statistic based on the

distances between each of the observed values of the variable and their mean can be used

to measure the variability in the distribution. The standard deviation is one such statistic.

The standard deviation is the square root of the “average” of the squared deviations of

the observed values of the variable from their mean. A formula for the standard deviation is

given below; however, you should not use this formula to compute the standard deviation.

Instead you should use a calculator or a computer to compute the standard deviation. In

symbols, the standard deviation of the distribution of the variable X , denoted by SX

(read this as S sub X), is

SX =

√

Σ(X −X)2

n− 1

In this formula the capital Greek letter sigma, Σ, represents the statement “the sum of ”,

and (X−X)2 denotes the square of the distance from the observed value X to the mean X.

Therefore, the expression under the square root sign in the formula is the “average” of the

squared deviations of the observed values of the variable from their mean as mentioned

above. The reason for the square root is so that the standard deviation of X and the

variable X are in the same units of measurement.

The standard deviation is positive, unless there is no variability at all in the data.

That is, unless all of the observations are exactly the same, the standard deviation is a

positive number. The standard deviation is a very widely used measure of variability.

Unfortunately, the standard deviation does not have a simple, direct interpretation. The

important thing to remember is that larger values of the standard deviation indicate that

there is more variability in the data. A closely related measure of variability is the variance

which is simply the square of the standard deviation, i.e., the variance of the distribution

of X is S2

X
=

∑

(X −X)2/(n− 1).

There are quotation marks around the word average in the definition of the standard

deviation because we divided by n − 1 even though there are n squared deviations in the

average. The reason for this is that, in a sense, there are only n − 1 individual pieces of

information contained in the collection of n deviations from the mean. It is readily verified

that the sum of the deviations from the mean (not the sum of their squares) is equal to

zero, i.e., Σ(X − X) = 0. This is the algebraic version of the fact that the mean is the

balance point of the distribution. Because of this fact, if we know the values of any n− 1

of the deviations, then we can determine the value of the remaining deviation. This is

the sense in which there are only n − 1 individual pieces of information contained in the

collection of n deviations from the mean; and is the reason that we divide by n− 1.
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The means, medians, standard deviations, ranges, and interquartile ranges for the

Guatemalan cholesterol level distributions are given in Table 3. Because all three of these

distributions are somewhat skewed to the right, we find that in all three cases the mean

is larger than the median. Notice the effects of excluding the outlier from the urban

group on these statistics. First consider the mean and the median; excluding this outlier

has essentially no effect on the median but has an appreciable effect on the mean. This

illustrates the sensitivity of the mean to extreme observations. Next consider the three

measures of variability. As we noted above, excluding the outlier has a large effect on the

range but little effect on the interquartile range. As with the mean, excluding the outlier

has an appreciable effect on the standard deviation. This illustrates that, like the mean,

the standard deviation is also sensitive to extreme observations.

In this example, if we base our comparisons of the location and the amount of vari-

ability in these distributions on the mean and standard deviation we reach essentially the

same conclusions as we did when using the five number summary.

Table 3. Summary statistics for the cholesterol example.

group mean median std. dev. range IQR

rural 157.02 152 31.75 137 38
urban (all) 216.87 206 39.92 197 43

urban (omit 330) 214.30 205.5 36.42 151 42

Example. EPA mileage values for subcompact cars. Table 4 contains the

EPA mileage values and some related information for 56 subcompact car model/engine

combinations. This information was obtained from the June 2000 edition of the model

year 2000 fuel economy guide provided on the DOT/EPA web site www.fueleconomy.gov.

If there were two or more listings for the same car model/engine combination, then only

one value was included. In particular, if mileage values were provided for a particular car

model/engine combination with both automatic and manual transmissions, then only the

mileage value for the manual transmission was included. The car models listed in the EPA

fuel economy guide are grouped into size classes based on the combined passenger and

cargo volume of the car. For example, subcompact cars have combined volumes between

85 and 99 cubic feet and compact cars have combined volumes between 100 and 109 cubic

feet. For this example we will consider the two mileage values (city and highway) as

response variables. The other variables in Table 4 might serve as potentially interesting

explanatory variables. In this example a car model/engine combination is a unit and we

have a pair of responses, city mileage and highway mileage, for each car model. We will

first consider the distributions of city and highway mileage values separately, ignoring the

fact that we have pairs of mileage values for each model.
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Table 4. Model year 2000 subcompact car EPA mileage values.

city denotes city mileage in miles per gallon
hiwy denotes highway mileage in miles per gallon
trans denotes transmission type (automatic or manual) and number of gears
displ denotes engine displacement in liters
cyl denotes number of cylinders
drv denotes front, rear, or all wheel drive

manufacturer model city hiwy trans displ cyl drv

Acura Integra 25 31 (M5) 1.8 4 F
Acura Integra(DOHC/VTEC) 25 30 (M5) 1.8 4 F
Bentley Azure 11 16 (A4) 6.8 8 R
Bentley Continental SC 11 16 (A4) 6.8 8 R
Bentley Continental T 11 16 (A4) 6.8 8 R
BMW 323CI 20 29 (M5) 2.5 6 R
BMW 328CI 21 29 (M5) 2.8 6 R
Chevrolet Camaro 19 30 (M5) 3.8 6 R
Chevrolet Camaro 18 27 (M6) 5.7 8 R
Chevrolet Cavalier 24 34 (M5) 2.2 4 F
Chevrolet Cavalier 23 33 (M5) 2.4 4 F
Chevrolet Metro 39 46 (M5) 1 3 F
Chevrolet Metro 36 42 (M5) 1.3 4 F
Ferrari Ferrari 456 MGT/MGTA 10 16 (M6) 5.5 12 R
Ford Escort ZX2 25 33 (M5) 2 4 F
Ford Mustang 20 29 (M5) 3.8 6 R
Ford Mustang 17 25 (M5) 4.6 8 R
Ford Mustang(4 Valve) 17 24 (M5) 4.6 8 R
Honda Civic 32 37 (M5) 1.6 4 F
Honda Civic(VTEC) 30 35 (M5) 1.6 4 F
Honda Civic(DOHC/VTEC) 26 31 (M5) 1.6 4 F
Honda Prelude 22 27 (M5) 2.2 4 F
Hyundai Tiburon 23 32 (M5) 2 4 F
Jaguar XK8 18 25 (A5) 4 8 R
Jaguar XKR 16 23 (A5) 4 8 R
Lexus SC 300/SC 400 19 23 (A4) 3 6 R
Lexus SC 300/SC 400 18 25 (A5) 4 8 R
Mercedes–Benz CLK320 21 29 (A5) 3.2 6 R
Mercedes–Benz CLK430 18 25 (A5) 4.3 8 R
Mitsubishi Eclipse 23 31 (M5) 2.4 4 F
Mitsubishi Eclipse 20 28 (M5) 3 6 F
Mitsubishi Mirage 33 40 (M5) 1.5 4 F
Mitsubishi Mirage 28 36 (M5) 1.8 4 F

This table is continued on the next page.



48 3.1 Numerical summary values for quantitative data

Table 4. Model year 2000 subcompact car EPA mileage values
(continued from the preceding page).

manufacturer model city hiwy trans displ cyl drv

Pontiac Firebird/TransAm 19 30 (M5) 3.8 6 R
Pontiac Firebird/TransAm 18 27 (M6) 5.7 8 R
Pontiac Sunfire 24 34 (M5) 2.2 4 F
Pontiac Sunfire 23 33 (M5) 2.4 4 F
Rolls–Royce Corniche 11 16 (A4) 6.8 8 R
Saab Saab 9-3 Conv. 22 29 (M5) 2 4 F
Saab Saab 9-3 Viggen Conv. 20 29 (M5) 2.3 4 F
Saturn SC 28 40 (M5) 1.9 4 F
Saturn SC(DOHC) 27 38 (M5) 1.9 4 F
Subaru Impreza AWD 23 29 (M5) 2.2 4 A
Subaru Impreza AWD 21 28 (M5) 2.5 4 A
Suzuki Esteem 30 37 (M5) 1.6 4 F
Suzuki Esteem 28 35 (M5) 1.8 4 F
Suzuki Swift 36 42 (M5) 1.3 4 F
Toyota Solara Conv. 23 30 (A4) 2.2 4 F
Toyota Solara Conv. 19 26 (A4) 3 6 F
Toyota Celica 28 34 (M5) 1.8 4 F
Toyota Celica 23 32 (M6) 1.8 4 F
Volkswagen Cabrio 24 31 (M5) 2 4 F
Volkswagen New Beetle 25 31 (M5) 1.8 4 F
Volkswagen New Beetle 24 31 (M5) 2 4 F
Volvo C70 Conv. 20 26 (M5) 2.3 5 F
Volvo C70 Conv. 19 26 (A4) 2.4 5 F

The stem and leaf histograms of Figure 3 summarize the distributions of the EPA city

and highway gas mileage values for the n = 56 model year 2000 subcompact car models.

Notice that each of these distributions includes five unusually low mileage values. Five car

models have city mileage values of 10 or 11 mpg and five car models have highway mileage

values of 16 mpg. It turns out that the five car models with the lowest city mileage values

are also the five car models with the lowest highway mileage values. In both distributions

there is a large separation between the five low mileage values and the mileage values of

the 51 other subcompact car models. Before we proceed with our examination of this

example we need to look at the original data, including all relevant information about the

car models, to see why these five car models have such low mileage values.
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Figure 3. Stem and leaf histograms for model year
2000 subcompact car EPA mileage values.

The stem represents tens and the leaf represents ones. (mpg)
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From Table 4 we find that the five subcompact car models with the lowest city and

highway mileage values are: three Bentley models, one Ferrari model, and one Rolls–

Royce model. This group of car models contains four ultra–luxury models and one high

performance sports car. Since these five car models do not fit in with the usual conception

of a subcompact car, we will remove them from the data. Thus the remainder of this

discussion is restricted to the collection of n = 51 subcompact car models remaining after

removing the five car models discussed above.

We will first make some observations based on these stem and leaf histograms. The city

and highway mileage distributions both appear to be skewed to the right. This indicates

that, for both the city and highway mileage values, there tends to be more variability

among the larger mileage values than among the lower mileage values. Each of these

mileage histograms has a single peak. The peak in the city mileage histogram is located

near the lower end of the distribution while the peak in the highway mileage distribution

is more centrally located. The locations of these peaks and the mound shapes of these

distributions indicate that, for subcompact cars, the car mileage values tend to be clustered

around the low 20’s and the highway mileage values tend to be clustered around the upper
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20’s and lower 30’s. As we would expect, the highway mileage distribution is located higher

on the number line than is the city mileage distribution indicating that these subcompact

cars tend to get higher mileage on the highway than they do in the city.

Table 5. Subcompact car EPA mileage summary statistics,
excluding the five unusual car models.

statistic city highway
n 51 51

min 16 23
Q1 19 27

med 23 30
Q3 26 34

max 39 46

range 23 23
IQR 7 7

Q1− min 3 4
med −Q1 4 3
Q3− med 3 4
max −Q3 13 12

mean 23.53 31.12
std dev 5.27 5.18

We will now quantify and expand on our observations about the subcompact car

mileage distributions. Relevant summary statistics are given in Table 5. In the discussion

below, we will use C to denote the city mileage of a subcompact car model and H to

denote the highway mileage of a subcompact car model.

First consider the shapes of the subcompact car mileage distributions. For the city

mileage distribution we see that: max(C) − med(C) = 16 > 7 = med(C) − min(C),

max(C) − Q3(C) = 13 > 3 = Q1(C) − min(C), and C = 23.53 > 23 = med(C). All of

these comparisons support our contention that the city mileage distribution is skewed to the

right. Notice that Q3(C)−med(C) = 3 which is approximately equal to med(C)−Q1(C) =

4; this suggests that the middle half of this distribution is reasonably symmetric. For the

highway mileage distribution we see that: max(H) − med(H) = 16 > 7 = med(H) −

min(H), max(H)−Q3(H) = 12 > 4 = Q1(H)−min(H), and H = 31.12 > 30 = med(H).

All of these comparisons support our contention that the highway mileage distribution

is skewed to the right. Notice that Q3(H) − med(H) = 4 which is approximately equal

to med(H) − Q1(H) = 3; this suggests that the middle half of this distribution is also

reasonably symmetric.
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Next consider the locations of the subcompact car mileage distributions. The median

city mileage med(C) = 23 is less than the median highway mileage med(H) = 30 and the

mean city mileage C = 23.53 is less than the mean highway mileage H = 31.12. Both

of these comparisons support our contention that the city mileages of subcompact cars

tend to be lower than the highway mileages of subcompact cars. Notice that there is some

overlap of the city mileages and the highway mileages indicating that some subcompact

cars have city mileage values that are higher than the highway mileage values of some

subcompact cars and vice versa.

Finally consider the variability in these subcompact car mileage distributions. The

facts that: range(C) = 23 = range(H), IQrange(C) = 7 = IQrange(H), and SC = 5.27

is approximately equal to SH = 5.18, all support the contention that the variability in

subcompact car city mileage values is about the same as the variability in subcompact car

highway mileage values.

In our comparison of the city and highway mileages for subcompact cars, we ignored

the fact that we actually have pairs of city and highway mileage values for each of the

51 car models. If we want to know how the highway mileage of a subcompact car model

relates to its city mileage, then we need to base our comparison on the paired city and

highway mileages. One way to do this is to consider the difference between the highway

mileage and the city mileage for a car model. For each car model we will determine this

difference value by subtracting its city mileage value from its highway mileage value. The

highway minus city mileage differences for the n = 51 subcompact car models are given

in Table 6. The 51 difference values in Table 6 are listed (reading across a row and then

going to the next row) in the same order as the 51 city and highway mileage values are

listed in Table 4, skipping the five unusual car models. A stem and leaf histogram for these

differences is given in Figure 4 and the difference summary statistics are given in Table 7.

In the discussion below, we will use D to denote the difference D = H − C between

the highway mileage of a subcompact car model and its city mileage. From the stem and

leaf histogram the shape of the subcompact car mileage difference distribution appears to

be mound shaped and slightly skewed to the right. The facts: max(D) −med(D) = 5 >

3 = med(D)−min(D), max(D)−Q3(D) = 3 > 2 = Q1(D)−min(D), Q3(D)−med(D) =

2 > 1 = med(D) − Q1(D), and D = 7.59 > 7 = med(D), all support our contention

that the mileage difference distribution is slightly skewed to the right. This distribution

has a single peak (mode) at 7 indicating that for these subcompact car models it is most

common for the highway mileage value to exceed the city mileage value by 7 mpg. For the

majority of these subcompact car models the mileage difference is fairly close to 7 mpg.

However, there are a few car models for which this mileage difference is a good bit larger.

For example, the car model with the largest highway minus city mileage difference is the

Saturn SC model without DOHC for which the mileage difference is 12 mpg.
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Table 6. Model year 2000 subcompact car EPA mileage differences
(highway - city,) excluding the five unusual car models.

6 5 9 8 11 9 10 10 7 6
8 9 7 8 5 5 5 5 9 7
7 4 7 8 7 8 8 7 8 11
9 10 10 7 9 12 11 6 7 7
7 6 7 7 6 9 7 6 7 6
7

Figure 4. Stem and leaf histogram for subcompact car
EPA mileage differences (highway - city), excluding
the five unusual car models.

The stem represents ones and the leaf represents tenths (mpg).
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Table 7. Subcompact car EPA mileage difference (highway - city)
summary statistics, excluding the five unusual car models.

min = 4 Q1−min = 2
Q1 = 6 med−Q1 = 1

med = 7 Q3−med = 2
Q3 = 9 max −Q3 = 3

max = 12

range = 8 mean = 7.59
IQR = 3 std dev = 1.80

Using the mean mileage difference D = 7.59, we conclude that, on the average, the

highway mileage of a subcompact car model is 7.59 mpg larger than its city mileage. Based

on the median mileage difference med(D) = 7, we would conclude that the highway mileage

of a subcompact car model is 7 mpg larger than its city mileage; with half of the models

having a difference less than 7 and half having a difference larger than 7.
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In this example, the difference between the highway and city mileage means, H−C =

31.12− 23.53 = 7.59, is equal to the mean mileage difference, D = 7.59; and the difference

between the highway and city mileage medians, med(H)−med(C) = 30− 23 = 7, is equal

to the median mileage difference, med(D) = 7. In paired data situations like this the

difference of the two means is always equal to the mean of the differences. On the other

hand, the difference between the two medians does not always equal the median of the

differences.

It is interesting to note that the five car models which we excluded as outliers due

to their unusually low city and highway mileage values would not be unusual in terms of

their mileage differences (one 6 and four 5’s).

3.2 Modified box plots.

In this section we will consider a modified box plot designed to provide more informa-

tion about the tails of the distribution. In the modified box plot a more complex method,

which provides an indication of extreme observations, is used to construct the whiskers.

The simple box plot defined in Section 3.1 has a box, which extends from the first

quartile Q1 to the third quartile Q3 divided into two parts by a line at the median,

representing the middle of the distribution, and two whiskers, extending from the ends of

the box to the most extreme values (the minimum and the maximum), representing the

tails of the distribution.

Observations located near the ends of a distribution are said to be extreme. The

whiskers in a simple box plot indicate the range of the lower and upper tails and the

locations of the most extreme values but do not provide details about the behavior of

observations near the extremes of the distribution. An extreme observation which is widely

separated from the majority of the observations is said to be an outlier. Outliers deserve

special consideration, since they may represent interesting exceptional cases or they may

represent errors made in recording the data. Note that, depending on the spacing of the

observations, extreme observations may or may not be considered outliers. Outliers are

easy to spot in a stem and leaf histogram but not in a simple box plot.

Before we can construct a modified box plot we need to quantify what we mean by an

extreme observation. We will use multiples of the interquartile range (IQR) to distinguish

between two types of extreme observations. First notice that the IQR is the range of the

middle half of the data and the length of the box in the box plot. An observation which

is much more than the IQR below the first quartile Q1 or much more than the IQR above

the third quartile Q3 might reasonably be classified as an extreme observation. We will

classify observations which are more than 1.5× IQR but less than 3× IQR below the first

quartile or above the third quartile as somewhat extreme. That is, an observation between

Q1−3× IQR and Q1−1.5× IQR or between Q3+1.5× IQR and Q3+3× IQR is said to be
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somewhat extreme. We will classify observations which are more than 3× IQR below the

first quartile or above the third quartile as very extreme. That is, an observation below

Q1 − 3× IQR or above Q3 + 3× IQR is said to be very extreme.

The quantities Q1 − 1.5× IQR and Q3 +1.5× IQR are known as the lower and upper

inner fences, and the quantities Q1 − 3× IQR and Q3 + 3 × IQR are known as the lower

and upper outer fences. To construct a modified box plot we first find the five number

summary values and the lower and upper fences. To construct the upper whisker we first

draw a line from the upper end of the box, Q3, extending to the largest observation which

is less than the upper inner fence Q3 + 1.5× IQR. We then indicate observations beyond

the upper inner fence using two symbols; one symbol, such as a 0, is used for observations

between the upper inner fence and the upper outer fence and another symbol, such as a *,

is used for observations beyond the upper outer fence. The lower whisker is constructed

in an analogous fashion.

Consider the urban cholesterol level distribution for the Guatemalan cholesterol ex-

ample. In this example we have Q1 = 196, Q3 = 239, IQR = 43, 1.5 × IQR = 64.5, and

3 × IQR = 129. The inner fences are 196 − 64.5 = 131.5 and 239 + 64.5 = 303.5. There

are no observed cholesterol levels below the lower inner fence but there is one observed

cholesterol level, 330 mg/dL, above the upper inner fence. The largest cholesterol level

between Q3 and the upper inner fence is 284 mg/dL. The outer fences are 67 and 368.

There are no observed cholesterol levels outside the outer fences. The modified box plot

for this cholesterol level distribution is given in Figure 5. In this example we would say

that the one cholesterol level (330) marked as somewhat extreme is an outlier, since it is

fairly widely separated from the other values.

Figure 5. Modified box plot for (all) urban cholesterol levels.
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3.3 Numerical measures of relative position

There are many situations when we might wish to quantify the position of a particular

value of a variable relative to a sample of values. For example, when presented with the

results of a standardized test, we would like to know where our score stands relative to the

scores of everyone else who took the test. We will discuss two different ways to quantify

the relative position of a particular value of a variable.

The first measure of the relative position of a particular value X is the percentile rank

of X which quantifies the location of X in an ordered listing of all of the values in the

sample. The percentile rank of a particular value X is the percentage of the values in
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the sample that are less than or equal to the particular value X . More specifically, if m of

the n observed values in the sample are less than or equal to the particular value, then the

percentile rank of the particular value is (m/n)100%. Reports of scores on standardized

tests often include the actual score and its percentile rank. The percentile rank of an

individual’s test score indicates how the individual performed on the test relative to the

group by providing the percentage of the group that scored no higher than the individual.

Notice that the five number summary values, the minimum, Q1, the median, Q3,

and the maximum, are the 0th, 25th, 50th, 75th, and 100th percentiles of the distribution.

Therefore, the use of the five number summary values to describe a distribution is an

example of the use of selected percentiles to describe a distribution.

Consider the relative standing, in the Guatemalan cholesterol example, of a hypothet-

ical individual with a cholesterol level of 210 mg/dL. Using Table 1 or Figure 1 we find

that: The percentile rank of 210 in the rural group is 91.84% (45/49 = .9184), since 45 of

the 49 rural Guatemalans have cholesterol levels of 210 or less; and, the percentile rank of

210 in the urban group is 51.11% (23/45 = .5111), since 23 of the 45 urban Guatemalans

have cholesterol levels of 210 or less. Almost all of the rural Guatemalans have cholesterol

levels of 210 or less; thus it is clearly unusual for a rural Guatemalan to have a Cholesterol

level which is higher than 210. On the other hand, roughly half of the urban Guatemalans

have cholesterol levels of 210 or less.

We can also use this percentile rank idea to quantify the difference in location between

these cholesterol level distributions. For example, 81.63% of the rural Guatemalans have

cholesterol levels of 188 or less, while 80% of the urban Guatemalans have cholesterol levels

above 188.

The second measure of the relative position of a particular value X is the Z–score of

X which quantifies the location of X relative to the mean X of the sample in terms of

the standard deviation SX of the sample. Since the Z–score is based on X and SX , the

Z–score is only appropriate when X and SX are appropriate measures of the center and

variability in the sample, respectively. We will develop the Z–score in two stages.

First, we need a measure of the location of X relative to the center of the distribution

as determined by the mean X. The deviation, X −X, of X from the mean X is such a

measure. The deviation X −X is the signed distance from the particular value X to the

meanX . IfX−X is negative, thenX is below (smaller than) the mean. IfX−X is positive,

then X is above (larger than) the mean. In summary, the sign of the deviation X − X

indicates the location of X relative to the mean X; and the magnitude of the deviation

|X − X| is the distance from X to the mean X , measured in the units of measurement

used for the observation X .

Second, we want a measure of the location of X relative to the mean X which takes

the amount of variability in the data into account. We will obtain such a measure by
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using the standard deviation SX of the sample to standardize the deviation X−X . Given

a particular value X , the sample mean X, and the sample standard deviation SX , the

Z–score corresponding to X is

Z =
X −X

SX

.

The sign of the Z–score indicates the location of X relative to the mean X and the

magnitude of the Z–score is the distance from X to the mean X in terms of standard

deviation units. For example, if Z = 2, then X is two standard deviation units above the

mean (X = X + 2SX), and, if Z = −2, then X is two standard deviation units below the

mean (X = X − 2SX).

Returning to the Guatemalan cholesterol example and the relative position of an

individual with a cholesterol level of 210, let R denote the cholesterol level of a rural

Guatemalan and let U denote the cholesterol level of an urban Guatemalan. The rural

cholesterol mean is R = 157.02 mg/dL and the rural cholesterol standard deviation is

SR = 31.75 mg/dL. The urban cholesterol mean is U = 216.87 mg/dL and the urban

cholesterol standard deviation is SU = 39.92 mg/dL. The raw deviation of a cholesterol

level of 210 from the rural mean is 210−R = 52.98 mg/dL. Since this quantity is positive,

we see that a cholesterol level of 210 mg/dL exceeds the rural mean by 52.98 mg/dL. The

raw deviation of a cholesterol level of 210 from the urban mean is 210−U = −6.87 mg/dL.

Since this quantity is negative, we see that a cholesterol level of 210 mg/dL is 6.87 mg/dL

below the urban mean.

Standardizing these raw deviations yields a Z–score of 52.98/31.75 = 1.67 for a ru-

ral cholesterol level of 210 mg/dL and a Z–score of −6.87/39.92 = −.17 for an urban

cholesterol level of 210 mg/dL. Notice that these Z–scores are unitless numbers (number

of standard deviation units from the mean) which are directly comparable. Therefore, a

rural cholesterol level of 210 mg/dL is 1.67 standard deviation units above the rural mean

cholesterol level and an urban cholesterol level of 210 mg/dL is .17 standard deviation

units below the urban mean cholesterol level. In terms of standard deviation units, we see

that 210 mg/dL is about 10 times as far away from the mean cholesterol level for the rural

group as it is for the urban group. In other words, when taking variability into account

we find that it is much more unusual for a rural Guatemalan to have a cholesterol level of

210 than it is for an urban Guatemalan to have a cholesterol level of 210.

The remainder of this section is devoted to two interesting results which establish a

connection between Z–scores and percentages. The first result, the 68% − 95% − 99.7%

rule, is an approximate rule not a mathematical fact. Strictly speaking, this rule only

applies to distributions that are unimodal (single peaked), mound shaped, and symmetric.

A formal statement of this rule is provided below.
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The 68%-95%-99.7% rule. For a distribution that is unimodal (has a single peak),

mound shaped, and reasonably symmetric:

i) Approximately 68% of the observed values will be within one standard deviation unit of

the mean. That is, approximately 68% of the observed values will have a Z–score that is

between -1 and 1.

ii) Approximately 95% of the observed values will be within two standard deviation units

of the mean. That is, approximately 95% of the observed values will have a Z–score that

is between -2 and 2.

iii) Approximately 99.7% of the observed values will be within three standard deviation

units of the mean. That is, approximately 99.7% of the observed values will have a Z–score

that is between -3 and 3. Notice that this indicates that almost all of the observed values

will be within three standard deviations of the mean.

When it is applicable, the 68% − 95% − 99.7% rule, can be used to determine the

relative position of a particular value of a variable based on the corresponding Z–score.

Notice that this rule indicates that a fairly large proportion (68%) of the sample will lie

within one standard deviation of the mean; a very large proportion (95%) of the sample

will lie within two standard deviations of the mean; and, almost all (99.7%) of the sample

will lie within three standard deviations of the mean.

The rural and urban cholesterol distributions are both unimodal, mound shaped, and

reasonably symmetric. For the rural group we find that 34 of the 49 cholesterol levels

(69.39%) are within one standard deviation of the mean; 46 of the 49 cholesterol levels

(93.88%) are within two standard deviation of the mean; and, all 49 cholesterol levels

(100%) are within three standard deviation of the mean. For the urban group we find that

34 of the 45 cholesterol levels (75.56%) are within one standard deviation of the mean; 42

of the 45 cholesterol levels (93.33%) are within two standard deviation of the mean; and,

all 45 cholesterol levels (100%) are within three standard deviation of the mean. Notice

that the 68%− 95%− 99.7% rule works better for the rural group cholesterol distribution,

since it is more symmetric than the urban group cholesterol distribution. We would get

better agreement of the urban group cholesterol levels with the 68%− 95%− 99.7% rule if

we excluded the outlier.

Example. Heights of adult males in the United Kingdom. The heights (in

inches) of 8585 adult males born in the United Kingdom (including the whole of Ireland)

are summarized in Table 8. This example is taken from Kendall and Stuart, The Advanced

Theory of Statistics, vol.1, Griffin, (1977), 8. The data are from the Final Report of the

Anthropometric Committee to the British Association, (1883), 256.

The histogram for the distribution of the 8585 heights of adult males for the United

Kingdom height example in Figure 6 is unimodal, mound shaped, and symmetric. The

sample mean height for this sample is 67.02 inches and the height standard deviation is
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2.57 inches. For this example we find that 5835 of the 8585 heights (67.97%) are within one

standard deviation of the mean height; 8307 of the 8585 heights (96.76%) are within two

standard deviation of the mean height; and, 8542 of the 8585 heights (99.5%) are within

three standard deviation of the mean height. Hence, the 68%− 95%− 99.7% rule is quite

accurate in its predictions for this UK height example.

Table 8. UK male heights.

height frequency

57 2
58 4
59 14
60 41
61 83
62 169
63 394
64 669
65 990
66 1223
67 1329
68 1230
69 1063
70 646
71 392
72 202
73 79
74 32
75 16
76 5
77 2

total 8585
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Figure 6. Histogram for UK heights.
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The second result, Chebyshev’s rule, is a mathematical fact that is true for any distri-

bution. Unfortunately, the universal applicability of Chebyshev’s rule forces its conclusions

to be of more theoretical than practical interest. That is, the conclusions of Chebyshev’s

rule are valid for any distribution; but, they are often so imprecise that they are of limited

practical use.

Chebyshev’s rule. For any distribution:

i) At least 75% of the observed values will be within two standard deviation units of the

mean. That is, at least 75% of the observed values will have a Z–score that is between -2

and 2.

ii) At least 89% of the observed values will be within three standard deviation units of the

mean. That is, at least 89% of the observed values will have a Z–score that is between -3

and 3.

iii) In general, given a number k > 1, at least [1 − (1/k2)]100% of the observed values

will be within k standard deviation units of the mean, i.e., at least this percentage of the

observed values will have a Z–score that is between -k and k.

3.4 Summary

In this chapter we introduced numerical summary values (statistics) and discussed

the use of such statistics to quantify certain aspects of a distribution and to compare two

distributions. Most of our attention focused on the shape of a distribution, the location

of the distribution on the number line, and the amount of variability in the distribution.

We began by defining the five number summary (minimum, Q1, median, Q3, maximum)

which partitions the distribution into fourths. We then demonstrated how the five number

summary and related statistics, such as the range and interquartile range, can be used
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to summarize a distribution and to compare and contrast two distributions. A simple

graphical representation of a distribution, the box plot, based on the five number summary

was also introduced. We also defined the mean (a measure of location) and the standard

deviation (a measure of variability).

Shape (skewness) Comparisons of the distances among the five number summary values

can be used to assess and quantify skewness in a distribution as indicated below.

1. To quantify overall skewness in the distribution: compare (median – minimum) to

(maximum – median).

2. To quantify skewness in the middle of the distribution: compare (median – Q1) to

(Q3 – median).

3. To quantify skewness in the tails of the distribution: compare (Q1 – minimum) to

(maximum – Q3).

Location The median and the mean are used to quantify the location of the center of a

distribution on the number line. Recall that the median indicates the point which divides

the distribution into halves (the histogram has equal area on each side of the median)

while the mean indicates the point at which the distribution balances (the histogram has

its center of gravity at the mean). If the distribution is symmetric, then the mean and the

median are equal and either will suffice as a measure of the center of the distribution. If

the distribution is heavily skewed, then the median is generally preferred over the mean as

a measure of the center of the distribution. When comparing two distributions which have

more or less the same shape either the median or the mean will suffice for comparing the

locations of the distributions. But, when comparing distributions with different shapes the

median is generally preferred over the mean for comparing the locations of the distributions.

Variability The range (maximum – minimum), interquartile range (Q3 −Q1), and stan-

dard deviation are used to quantify the variability in a distribution. For each of these

statistics a larger value indicates more variability.

In Section 3.3 we discussed the use of percentile ranks and Z–scores to quantify the

relative position of a particular value relative to the distribution of a sample. These ideas

and in particular the Z–score, which indicates the location of a value relative to the mean

in terms of standard deviation units, will reappear when we discuss inference in later

chapters.
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3.5 Exercises

For each of the examples in Section 1.2 which involve quantitative variables:

1. Determine the following summary statistics: the five number summary (minimum, Q1,

median, Q3, maximum), the range, the interquartile range, the mean, and the standard

deviation. (See the notes below for the examples with two or more groups.)

2. Discuss the distribution of the variable(s) using the summary statistics of question 1 to

lend quantitative support to your discussion.

Notes:

For the examples with two or more groups (DiMaggio and Mantle, gear tooth strength),

find the indicated summary statistics and compare and contrast the distributions of the

variable for the two (or more) groups.

For the paired data examples (wooly–bear cocoons, homophone confusions) find the differ-

ences for each pair of data values and find the indicated summary statistics and describe

the distribution of the differences.
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Chapter 4

Sampling and Experimentation

4.1 Introduction

This chapter serves as a bridge between descriptive statistics and inferential statistics.

In the preceding chapters we focused on descriptive methods (descriptive statistics) which

are used to explore the distribution of the values of a variable among the units in the

sample. In most applications the sample is selected from a well–defined population and

the ultimate goal is to use the data to make inferences about the distribution of the values

of the variable (or variables) among all of the units in the population. Recall that the

population is the collection of all of the units that are of interest and the sample is

a subset of the population for which we have or will obtain data. Thus the purpose of

inferential statistics is to use the data, which characterize the sample, to make inferences

about the population.

We will concentrate on making inferences about particular aspects or characteristics of

the population which can be quantified in terms of population parameters. A parameter

is a numerical characteristic of the population. Recall that a statistic is a numerical

characteristic of the sample. Thus, parameters and statistics are analogous quantities

which quantify certain aspects of the population (parameter) or the sample (statistic).

Since the goal of inference is to characterize certain aspects of the population, the first

thing we need to do is to choose a variable that is suitable for inference in the sense that the

values of the variable contain information about relevant characteristics of the population.

Recall that a variable is a characteristic of a unit. Given a suitable variable, we can

measure or observe the values of the variable for the units in the sample. These values can

then be used to determine the value of a statistic and this statistic can be used to make

inferences about the corresponding population parameter. For example, we might use the

statistic as an estimate of the corresponding parameter or we might use the statistic to

assess the evidence for a particular conjecture about the value of the parameter. Notice

that once the sample is obtained and the data are collected we can determine the value of

the statistic. On the other hand, we will never know the value of the parameter unless we

take a census, i.e., unless the sample is the whole population.

4.2 Sampling

Sampling is the process of obtaining a sample from a population. Our ultimate goal is

to use the sample (which we will examine) to make inferences about the population (which

we will not examine in its entirety). If the sample is selected from the population in an
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appropriate fashion, then we can use the information in the sample to make reliable and

quantifiable inferences about the population. When the sample is obtained we will use

the distribution of the variable among the units in the sample to make inferences about

the distribution of the variable among the units in the population. If the distribution of

the variable in the sample was exactly the same as the distribution of the variable in the

population, then it would be easy to make inferences about the population; but, this is

clearly too much to ask. Therefore we need to determine how to select a sample so that

the sample is representative of the population.

The first step in deciding whether a method of choosing a sample will yield a represen-

tative sample requires a distinction between two populations. Before we obtain a sample

we need to decide exactly which population we are interested in. The target population

is the collection of all of the units that we want to make inferences about. We then need to

determine which population our sample actually comes from. The sampled population

is the collection of all of the units that could be in the sample. Notice that the sampled

population is determined by the method used to select the sample.

Ideally the sampling method is chosen so that the sampled population is exactly the

same as the target population and we can refer to this collection as the population. In

practice, there may be some differences between the target population and the sampled

population. When the sampled population is not identical to the target population we

cannot be confident that the sample (which comes from the sampled population) will be

representative of the target population. Furthermore, we cannot be confident that the

statistic (which is based on a sample from the sampled population) will be suitable for

inference about the parameter (which corresponds to the target population).

If there is a difference between the sampled population and the target population,

in the sense that the distribution of the variable in the sampled population is different

from the distribution of the variable in the target population, then a sample (obtained

from the sampled population) is said to be biased for making inferences about the target

population. If we use a biased sample to make inferences about the target population, the

resulting inferences will not be appropriate. For example, a statistic based on a biased

sample, may provide a suitable estimate of the corresponding parameter in the sampled

population; but, it may not provide a suitable estimate of the corresponding parameter

in the target population. Therefore, if the sampled population is different from the target

population, then we must modify our goals by redefining the target population or we

must change the sampled population by modifying our sampling method, since we want

these two populations to be the same so that our inferences will be valid for our target

population. It may be possible to change the method of obtaining our sample so that all

of the units in the target population could be in our sample and these two populations are

the same. If it is not possible to change the sampling method, then we must change our
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goals by restricting our inferences to the sampled population. In any case, once a sampling

method has been chosen, the sampled population is determined and we should restrict

our inferences to this sampled population. In conclusion, when making inferences from a

sample we must carefully consider the restrictions imposed by the sampling method, since

statistical theory can only justify inferences about the sampled population.

Example. Medical malpractice insurance. An insurance company that provides

medical malpractice insurance is interested in determining how common it is for a medical

doctor to be involved in a malpractice suit. The company plans to obtain a random sample

of 500 doctors from the listing in a professional association directory. We will not assume

that doctors are required to belong to this association.

In this example a medical doctor is a unit. The implied target population is all medical

doctors in the region that is of interest to this insurance company, e.g., if the company is

considering offering insurance to all medical doctors with a medical practice in the US, then

the target population is all medical doctors with a medical practice in the US. The sampled

population is all medical doctors who are listed in the professional association directory.

We know that doctors are not required to belong to this association. Furthermore, it may

be possible for doctors who do belong to this medical association to not be listed in the

current directory. There may also be doctors listed in the directory who are no longer in

medical practice or who do not practice in the region of interest. Therefore information

based on a random sample from doctors listed in the directory may not be appropriate

if the goal is to describe the population of all medical doctors practicing in the region of

interest. For example, if medical doctors who have never been sued for malpractice are

more likely to be listed than those who have been sued for malpractice, then information

based on a random sample from doctors listed in the directory may not be appropriate

if the goal is to describe the population of all medical doctors in the region of interest.

Therefore, inferences based on a random sample of doctors selected from those listed in

this directory should be restricted to only those doctors who are listed in the directory

(the sampled population).

Assuming that we have defined a method of selecting a sample so that the sampled

population is the same as the target population, we next need to consider exactly how

we should select the units that constitute the sample. Since we are assuming that the

sampled and target populations are the same, we do not need to worry about the type

of bias described above. However, we might introduce bias if we do not select the units

for the sample in an appropriate fashion. The approach to sampling that we will adopt

is called random sampling. The idea behind random sampling is to eliminate potential

bias (intentional or unintentional) from the selection process by using impersonal random

chance to select the sample. In addition to eliminating bias random sampling also provides

the basis for theoretical justification and quantification of inferences based on the sample.
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All of the sampling situations we consider can be viewed as being abstractly the same

as the simple situation of selecting a sample of balls from a box of balls.

Example. Balls in a box. A box contains a collection of balls. In this situation

a unit is a ball and the collection of balls in the box is the population. Our sample will

consist of n balls selected from the box.

When a ball is selected we need to “measure” it, i.e., we need to determine the value

of the variable for this ball. Before we can do so we need to define a suitable variable.

The definition of a variable consists of a description of the variable and an indication of

its possible values. For example, suppose that the balls in the box are of various colors;

say red, blue, and green. If we are interested in the characteristic color, then we might

define the qualitative variable “color of the ball” with possible values of red, blue, and

green. On the other hand, suppose that the balls in the box are of various weights. If we

are interested in the characteristic weight, then we might define the quantitative variable

“weight of the ball” with possible values equal to potential weights in grams.

Given a variable, suitable parameters and statistics are defined to correspond to the

variable. With respect to the color of a ball, the proportion of red balls in the box (in

the population) is a parameter and the proportion of red balls among the n balls selected

from the box (in the sample) is a statistic. With respect to the weight of a ball, the mean

weight of the balls in the box (in the population) is a parameter and the mean weight of

the n balls selected from the box (in the sample) is a statistic.

The simplest type of random sample is called a simple random sample. A simple

random sample of size n is a sample of n units selected from the population in such

a way that every possible sample of n units has the same chance of being selected. This

definition of a simple random sample can be refined to distinguish between two versions of

simple random samples. If we require that the possible samples of n units are such that a

particular unit can occur at most once in a sample, then we refer to the sample as being

a simple random sample of size n, selected without replacement. On the other

hand, if we allow a particular unit to occur more than once in the sample, then we refer

to the sample as a simple random sample of size n, selected with replacement.

Example. Balls in a box (revisited). To obtain a simple random sample of

size n, selected without replacement from the balls in our box, we first mix the balls

in the box and select one ball at random (so that each ball in the box has the same chance

of being selected). We then remove the selected ball from the box giving us one ball in our

random sample. Then we mix the remaining balls in the box and select one ball at random

(again so that each ball remaining in the box has the same chance of being selected) and

remove the selected ball from the box giving us two balls in our random sample. This

process of choosing a ball at random and removing it from the box is continued until n
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balls have been selected. These n balls form the simple random sample of size n, selected

without replacement.

To obtain a simple random sample of size n, selected with replacement from

the balls in our box, we first mix the balls in the box and select one ball at random (so

that each ball in the box has the same chance of being selected). We then measure or

observe the value of the variable for the selected ball giving us the value of the variable

for one of the balls in our random sample. Then we return the selected ball to the box,

mix the balls in the box, and select one ball at random (again so that each ball in the box

has the same chance of being selected) and measure or observe the value of the variable

for the selected ball giving us two values of the variable corresponding to the two balls

selected for our random sample. This process of choosing a ball, measuring the value of

the variable for the ball, and returning the ball to the box is continued until n balls have

been selected and measured. These n measurements (values of the variable) correspond to

the balls that form the simple random sample of size n, selected with replacement.

If the population from which we wish to select a random sample is not too large,

then it is possible to envision actually labeling each unit in the population, placing these

labels on a collection of balls, placing these labeled balls in a box, and selecting a simple

random sample of these balls as described above. In fact, state lotteries, where a simple

random sample of numbers is selected from a collection of allowable numbers (the units),

are conducted in this way. If you have ever observed the complicated mechanisms used

to select winning lottery numbers, you know that it is difficult to convince people that a

method of “drawing balls from a box” yields a proper simple random sample.

We will now discuss a simple alternative to sampling from an actual population of

balls based on a sequence of random digits. A sequence of random digits is a list of

the ten digits 0, 1, 2, . . . , 9 with the following two properties.

1. For any given position in the list, each of the ten digits, 0, 1, 2, . . . , 9, has the same

chance of being in that position.

2. The entries in the list are independent of each other. That is, knowing the values

in any part of the list would provide us with no information about any other values

in the list beyond the information implied by property 1.

These two properties also hold if we think of the sequence of random digits as a list of two

digit numbers (00, 01, 02, . . . , 99) or as a list of three digit numbers (000, 001, . . . , 999) or

as a list of such numbers with any fixed number of digits.

To use a sequence of random digits to select a simple random sample we first need to

assign suitable numerical labels to all of the units in the population. A list of all of the

units in the population along with their labels is called a sampling frame. To insure that

we get a random sample we need to use labels that have the same number of digits. That

is, if N is the number of units in the population, then
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1. If N ≤ 10, we should use N of the one digit labels 0, 1, 2, . . . , 9.

2. If 11 ≤ N ≤ 100, we should use N of the two digit labels 00, 01, 02, . . . , 99.

3. If 101 ≤ N ≤ 1000, we should use N of the three digit labels 000, 001, . . . , 999, and

so on.

One place to find a sequence of random digits is in a random number table. A random

number table is simply a table containing a sequence (list) of random digits. These tables

are usually formatted into rows and columns with periodic spaces. This arrangement has

no significance, it only serves to make the table easier to use. An alternative to finding

and using a random number table is to use a computer program or a calculator to generate

random digits or random numbers. We will first discuss the use of a random number table

to select a simple random sample.

After suitable labels have been assigned to the units in the population, as discussed

above, we then proceed to the random number table to determine the labels that correspond

to the units to be included in the sample. We choose a starting point in the table and

go through the table (the list) in a systematic fashion reading the appropriate number of

digits as we go. For example, we can select some row as our starting point. Then, reading

across the row we make a note of the first digit, or digits if the labels have more than one

digit, then the second digit or digits, and so on. If we reach the end of the row before

obtaining n labels, we simply go on to the next row. If we come upon a digit or digits that

was not used as a label, we simply skip it. If we want to sample without replacement, we

also skip any label that we have already selected. This process is continued until n labels

have been selected from the random number table. The units in the sampling frame that

correspond to the n labels we selected from the random number table form the simple

random sample.

Table 1. Random digits.

05797 43984 21575 09908 70221 19791 51578 36432 33494 79888
10395 14289 52185 09721 25789 38562 54794 04897 59012 89251
35177 56986 25549 59730 64718 52630 31100 62384 49483 11409
25633 89619 75882 98256 02126 72099 57183 55887 09320 73463
16464 48280 94254 45777 45150 68865 11382 11782 22695 41988

Table 1 contains a small portion of the random number table in the book A Million

Random Digits with 100,000 Normal Deviates, Rand Corporation, (1955). To illustrate

the use of a random number table to select a simple random sample we will select a sample

of n = 10 students from the students in the Stat 214 example who were registered in

section 1. The N = 36 students listed on the first page of Table 1 of Chapter 1 form the

population. If we use the line numbers in this table as labels, then this page of Table 1
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is our sampling frame. Since there are 36 units in this population, we will use two digit

labels. Starting at the beginning of the first row of random digits in Table 1 and reading

two digits at a time across the first row and the beginning of the second row yields the

labels: 05, 79, 74, 39, 84, 21, 57, 50, 99, 08, 70, 22, 11, 97, 91, 51, 57, 83, 64, 32, 33, 49,

47, 98, 88 10, 39, 51, 42, 89, 52, 18, 50, 97, 21, 25. Therefore, if we want a simple random

sample of size 10, selected with replacement, then the students listed in lines 5, 21, 8, 22,

11, 32, 33, 10, 18, and 21 form our sample. If we want a simple random sample of size 10,

selected without replacement, then we skip the second 21 and the students listed in lines

5, 21, 8, 22, 11, 32, 33, 10, 18, and 25 form our sample.

In this particular example when we read numbers from the random number table we

had to skip a lot of pairs of digits since these numbers were not used as labels. In this

example N = 36 and since 2× 36 = 72 < 100 we can assign two labels to each unit. That

is, assign 01 and 37 (37 = 36 + 1) as labels for unit 1 (the student listed in line 1), assign

02 and 38 (38 = 36 + 2) as labels for unit 2, and so on, assigning 36 and 72 as labels for

unit 36. If we use these labels we only have to read through part of the first row to get the

valid labels 05, 39, 21, 57, 50, 08, 70, 22, 11, 51, 57, and 64. Translating these labels to

line numbers (by subtracting 36 if the number is greater than 36) shows that, using this

method, the students listed in lines 5, 3, 21, 21, 14, 8, 34, 22, 11, and 15 form our sample

of size 10, selected with replacement and the students listed in lines 5, 3, 21, 14, 8, 34, 22,

11, 15, and 28 form our sample of size 10, selected without replacement.

An alternative to finding and using a random number table is to use a computer

program or a calculator to generate suitable random numbers. Computer programs will

usually provide a list of random numbers with the desired number of digits automatically.

Many calculators provide random numbers that are between zero and one. To obtain a

random number with the appropriate number of digits from a random number between zero

and one, simply read off the appropriate number of digits from the beginning of the number.

For example, if a calculator provided the number .12345678 and we needed a three digit

number, the number would be 123. You should be aware that the algorithms or methods

that computer programs and calculators use to generate a sequence of random numbers

vary in their quality. Some of these algorithms are not very successful at generating a valid

sequence of random numbers.

When we take a simple random sample, all of the possible samples have the same

chance of being selected. There are situations where it is not appropriate for all of the

possible samples to have the same chance of being selected. Suppose that there are two

or more identifiable subsets of the population (subpopulations). If we obtain a simple

random sample from the whole population, then it is possible for the resulting sample to

come entirely from one of the subpopulations, or for the sample not to contain any units

from one or more of the subpopulations. If we know or suspect that the distribution of
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the variable of interest varies among the subpopulations, then a sample which does not

contain any units from some of the subpopulations will not be representative of the whole

population. Therefore, in a situation like this we should not use a simple random sample

to make inferences about the whole population. Instead we should use a more complex

kind of random sample. One possibility is to use a sampling method known as stratified

random sampling which is described below in the context of a simple example.

Suppose we wish to estimate the proportion of all registered voters in the United

States who favor a particular candidate in an upcoming presidential election. We might

expect there to be differences in the proportion of registered voters who favor this candidate

among the various states. For example, we might expect support for this candidate to be

particularly strong in his or her home state. Because we are interested in the proportion

of all registered voters in the United States who favor this candidate, we want to be sure

that all of the states are represented fairly in our sample.

We can use the states to define strata (subpopulations), take a random sample from

each state (stratum), and then combine these samples to get a sample that is representative

of the entire country. This is an example of a stratified random sample. The simplest type

of stratified random sample is obtained as described in the following three steps.

1. Divide the population into appropriate strata (subpopulations).

2. Obtain a simple random sample within each stratum.

3. Combine these simple random samples to get the stratified random sample from

the whole population.

To obtain a representative sample in the opinion poll example, we would need to

determine the number of registered voters in each state and select simple random samples

of sizes that are proportional to the numbers of registered voters in the states.

4.3 Experimentation

The sampling approach to data collection discussed in the preceding section is often

used to perform an observational study. The steps involved in conducting an observational

study based on a random sample are summarized below.

1. Obtain a random sample of units from the population of interest.

2. Obtain the data. That is, determine the values of the variable for the units in the

sample.

3. Use the data to make inferences about the population. More specifically, use the

distribution of the variable in the sample to make inferences about the distribution of

the variable in the population from which the sample was taken.

In an observational study we obtain a sample of units, observe the values of a

variable, and make inferences about the population. The purpose of such an observational
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study is to observe the units in the sample and, based on these observations, to make in-

ferences about what we would observe if we examined the entire population. On the other

hand, in an experimental study we manipulate the units and observe their response to

this manipulation. In the experimental context, a particular combination of experimental

conditions is known as a treatment. The purpose of an experiment is to obtain informa-

tion about how the units in the population would respond to a treatment; or, to compare

the responses of the units to two or more treatments. The response of a unit to a particular

treatment is determined by measuring the value of a suitable response variable.

The steps involved in conducting a simple experimental study based on a random

sample are summarized below.

1. Obtain a random sample of units from the population of interest.

2. Subject the units in the sample to the experimental treatment of interest.

3. Obtain the data. That is, determine the values of the response variable for the

units in the sample.

4. Use the data to make inferences about the how the units in the population would

respond to the treatment. More specifically, use the distribution of the response vari-

able in the sample to make inferences about the distribution of the response variable

in the population from which the sample was taken. In this context it may be easiest

to think of the population as the hypothetical population of values of the response

variable which would result if all of the units in the population were subjected to the

treatment.

We will now discuss the basic ideas of experimentation in more detail in the context of

a simple hypothetical experiment. Suppose that a new drug has been developed to reduce

the blood pressure of hypertensive patients. The treatment of interest is the administration

of the new drug to a hypertensive patient. The change in a patient’s blood pressure will

be used as the response variable. For this example the plan of the simple experiment

described above is summarized in the steps below.

1. Obtain a random sample of n hypertensive patients.

2. Measure the blood pressure of each patient before the new drug is administered.

3. Administer the new drug to each of these patients.

4. After a suitable period of time, measure the blood pressure of each patient.

5. For each patient determine the change in his or her blood pressure by computing

the difference between the patient’s blood pressure before the drug was administered

and the patient’s blood pressure after the new drug was administered. This change or

difference will serve as the response variable for assessing the effects of the new drug. In

this example the relevant population is the hypothetical population of changes in blood

pressure that we would observe if all of the hypertensive patients in the population

from which the sample was selected had been subjected to this experiment.
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Suppose that we actually conducted this experiment. Furthermore, suppose that the

data indicate that the hypertensive patients’ blood pressures tend to decrease after they

are given the new drug, i.e., suppose that the data indicate that most of the patients

experienced a meaningful reduction in blood pressure. We can conclude that there is an

association between the new drug and a reduction in blood pressure. This association is

clear, since the patients (as a group) tended to experience a decrease in blood pressure

after they received the new drug. Can we conclude that the new drug caused this decrease

in blood pressure? The support for the contention that the new drug caused the decrease

in blood pressure is not so clear. In addition to the new drug there may be other factors

associated with the observed decrease in blood pressure. For example, the decrease in

blood pressure might be explained, in whole or in part, as the physical manifestation

of the psychological effect of receiving medication. In other words, we might observe a

similar decrease in blood pressure if we administered a placebo to the patients instead of

the new drug. It is also possible that some other aspects of the experimental protocol are

affecting the patients’ blood pressures. The way that this experiment is being conducted

does not allow us to separate out the effects of the many possible causes of the decrease in

blood pressure. If we hope to establish a cause and effect relationship between taking the

new drug and observing a decrease in blood pressure, then we need to use a comparative

experiment.

In a randomized comparative experiment baseline data is obtained at the same

time as the data concerning the treatment of interest. This is done by randomly dividing

the available units (patients) into two or more groups and comparing the responses for

these groups. In the drug example there is one treatment of interest, administer the

new drug. Therefore, in this situation we only need two groups, a control group and a

treatment group. The units (patients) in the control group do not receive the treatment

(do not receive the new drug). The units (patients) in the treatment group do receive

the treatment (do receive the drug). During the course of the experiment we need to keep

all aspects of the experiment, other than the treatment itself, as similar as possible for

all of the units in the study. The idea is that, if the only difference between the units in

the control group and the units in the treatment group is that the units in the treatment

group received the treatment, then any observed differences between the responses of the

two groups must be caused by the treatment. In the drug example it would be a good

idea to administer a placebo to the patients in the control group, so that they do not

know that they did not receive the new drug. It would also be a good idea to “blind”

the patients and the people administering the drug or placebo by not telling them which

patients are receiving the placebo and which patients are receiving the new drug. The

purpose of such blinding is to eliminate intentional or unintentional effects due to patient
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or administrative actions which might affect a patient’s response. The steps for conducting

such a randomized comparative experiment are given below.

1. Randomly divide the group of available patients into two groups: a group of n1

patients to serve as the control group and a group of n2 patients to serve as the

treatment group. These two groups are random samples of sizes n1 and n2 from the

group of available patients. The samples sizes n1 and n2 may be different.

2. Administer the placebo to the patients in the control group and administer the

new drug to the patients in the treatment group.

3. Obtain the data. That is, measure the response variable for each of the n1 + n2

patients in the experiment. For example, we could determine the change (difference)

in each patient’s blood pressure as measured before and after administration of the

placebo or new drug.

4. Compare the responses of the patients in the treatment group to the responses of

the patients in the control group and make inferences about the effects of the new

drug versus the placebo.

In this example there are two hypothetical populations of changes in blood pressure.

The hypothetical population of changes in blood pressure that we would observe if all of the

available hypertensive patients were subjected to this experiment and given the placebo

and the hypothetical population of changes in blood pressure that we would observe if

all of the available hypertensive patients were subjected to this experiment and given the

new drug. Notice that, strictly speaking, our inferences in this example only apply to

the hypertensive patients who were available for assignment to the groups used in the

experiment. If we want to make inferences about a larger population of hypertensive

patients, then the group of available patients used in the study should form a random

sample from this larger population.

The experiment described above is designed to compare the effects of the new drug to

the effects of a placebo. Suppose that we wanted to compare the effects of the new drug to

the effects of a standard drug. To make this comparison we could design the experiment

with three groups: a control group, a treatment group for the new drug, and a treatment

group for the standard drug. If our only goal is to compare the two drugs (treatments),

then we could eliminate the placebo control group and run the experiment with the two

treatment groups alone.

Example. Cloud seeding. The data referred to in this example are given in

Simpson, Olsen, and Eden (1975), Technometrics, 17, 161–166. These data were collected

in southern Florida between 1968 and 1972 to determine whether injection of silver iodide

into cumulus clouds tends to increase rainfall. Fifty–two days that were deemed suitable for



74 4.4 Summary

cloud seeding were randomly divided into two groups of 26 days. An airplane, equipped

to inject silver iodide into a target cloud, was flown through the target cloud. For one

group of 26 days the device used to inject the silver iodide was loaded and the target cloud

was seeded. For the other group of 26 days the device used to inject the silver iodide was

not loaded and the target cloud was not seeded. On all 52 days the airplane flew through

the target cloud. Furthermore, the pilots and technicians on the plane were not aware of

whether the device used to inject the silver iodide was loaded or not. For each day the

amount of rainfall (total volume of rain falling from the cloud base), measured in acre–feet,

was determined.

In this example there are 52 days that were deemed suitable for cloud seeding. Each of

these days is a unit and this group of 52 days is the group of “available units” which were

used in the experiment. The response variable is the amount of rainfall measured after

the airplane was flown through the cloud. The two relevant hypothetical populations for

which inferences could be made in this example are: the collection of 52 rainfall amounts

which would have been obtained if the plane had been flown through the cloud but the

cloud had not been seeded with silver iodide, and the collection of 52 rainfall amounts

which would have been obtained if the plane had been flown through the cloud and the

cloud had been seeded with silver iodide.

We can define two population mean rainfall amounts (parameters) corresponding to

these populations, i.e., the mean of the 52 rainfall amounts which would have been obtained

if the cloud was not seeded on each of the 52 days and the mean of the 52 rainfall amounts

which would have been obtained if the cloud was seeded on each of the 52 days. The two

sample mean rainfall amounts (statistics) based on the rainfall amounts recorded for each

of the two groups of 26 days, i.e., the mean of the 26 rainfall amounts recorded on the

26 days when the cloud was not seeded and the mean of the 26 rainfall amounts recorded

on the 26 days when the cloud was seeded, could be used to make inferences about the

corresponding population mean rainfall amounts.

Since the 52 days on which this experiment was conducted did not form a random

sample from some larger population of days suitable for cloud seeding, we cannot justify

extending our inferences beyond these 52 days. We might reasonably argue that our

inferences apply to similar days in the area where the study was conducted; but, we

cannot use statistical theory to justify extrapolations to days other than these 52.

4.4 Summary

Reliable and quantifiable inferences about a population (about the population distri-

bution of a variable) require careful consideration of the definition of the relevant popula-

tion and of the method used to obtain the data on which the inferences are based.
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A sampling study is conducted by selecting a random sample of units from a pop-

ulation, observing the values of a variable for the units in the sample, and then making

inferences or generalizations about the population. More specifically, the distribution of

the values of the variable among the units in a random sample is used to make inferences

about the distribution of the variable among the units in the population. The first consid-

eration in planning or interpreting the results of a sampling study is the determination of

exactly which units could be in the sample. The collection of all units which could be in

the random sample is known as the sampled population and this sampled population is the

relevant population for inferences based on the sample. The second consideration concerns

the proper selection of the units which constitute the sample. We cannot properly quantify

inferences unless the sample is a properly selected random sample from the population.

An experimental study differs from a sampling study in that the units used in the

experimental study are manipulated and the responses of the units to this experimental

manipulation are recorded. For an experimental study the relevant population or popu-

lations are hypothetical populations of values of the variable defined by the experimental

treatment(s) and corresponding to all of the units available for use in the experiment.

That is, the relevant population(s) is the population of values of the variable which would

be observed if all of the available units were subjected to the experimental treatment(s).

In the context of a comparative experiment we cannot properly quantify inferences unless

the units are assigned to the treatments being compared using an appropriate method of

random assignment. This random assignment of units to treatments is analogous to the

random sampling of a sampling study.
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Chapter 5

Inference for a Proportion

5.1 Introduction

A dichotomous population is a collection of units which can be divided into two

nonoverlapping subcollections corresponding to the two possible values of a dichotomous

variable, e.g. male or female, dead or alive, pass or fail. It is conventional to refer to one

of the two possible values which dichotomize the population as “success” and the other as

“failure.” These generic labels are not meant to imply that success is good. Rather, we can

think of choosing one of the two possible classifications and asking “does the unit belong

to the subcollection of units with this classification?” with the two possibilities being yes

(a success) and no (a failure). Thus, generically, we can refer to the two subcollections of

units which comprise the dichotomous population as the success group and the failure

group. When a unit is selected from the population and the unit is found to be a member

of the success group we say that a success has occurred. Similarly, when a member of the

failure group is selected we say that a failure has occurred.

The proportion of units in the population that belong to the success group is the

population success proportion. This population success proportion is denoted by the

lower case letter p. The population success proportion p is a parameter, since it is a nu-

merical characteristic of the population. Notice that the population failure proportion

1− p is also a parameter.

The sample success proportion or observed proportion of successes in a sample

from a dichotomous population is denoted by p̂ (read this as p hat). The observed propor-

tion of successes in the sample p̂ is a statistic, since it is a numerical characteristic of the

sample.

We will consider two forms of inference about the population success proportion p of

a dichotomous population. In Section 5.2 we will consider the use of the observed success

proportion p̂ to estimate the value of the population success proportion p. In Section 5.3

we will consider the use of the observed success proportion p̂ to assess the support for

conjectures about the value of the population success proportion p.

The approach to inference that we will use here and in other contexts in the sequel

is based on the observed value of a statistic and the sampling distribution of the statistic.

The sampling distribution of a statistic is the distribution of the possible values of

the statistic that could be obtained from random samples. We can think of the sampling

distribution of a statistic as a theoretical relative frequency distribution for the possible

values of the statistic which describes the sample to sample variability in the statistic. The
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form of the sampling distribution of a statistic depends on the nature of the population

the sample is taken from, the size of the sample, and the method used to select the sample.

The mean and the standard deviation of the sampling distribution are of particular

interest. The mean of the sampling distribution indicates whether the statistic is biased as

an estimator of the parameter of interest. If the mean of the sampling distribution is equal

to the parameter of interest, then the statistic is said to be unbiased as an estimator of the

parameter. Otherwise, the statistic is said to be biased as an estimator of the parameter.

To say that a statistic is unbiased means that, even though the statistic will overestimate

the parameter for some samples and will underestimate the parameter for other samples,

it will do so in such a way that, in the long run, the values of the statistic will average

to give the correct value of the parameter. When the statistic is biased the statistic will

tend to consistently overestimate or consistently underestimate the parameter; therefore,

in the long run, the values of a biased statistic will not average to give the correct value

of the parameter. The standard deviation of the sampling distribution is known as the

standard error of the statistic. The standard error of the statistic provides a measure of

the sample to sample variability in the values of the statistic. The standard error of the

statistic can be used to quantify how close we can expect the value of the statistic to be

to the value of the parameter.

Note regarding formulae and calculations. Throughout this book selected for-

mulae and intermediate calculations are provided to clarify ideas and definitions. Some

readers may find it useful to reproduce these calculations; however, this is not necessary,

since a modern statistical calculator or computer statistics program will perform these

calculations and provide the desired answer.

5.2 Estimating a proportion

When sampling from a dichotomous population a primary goal is to estimate the

population success proportion p, i.e., to estimate the proportion of units in the population

success group. The observed proportion of successes in the sample p̂ is the obvious estimate

of the corresponding population success proportion p.

Clearly there will be some variability from sample to sample in the computed values

of the statistic p̂. That is, if we took several random samples from the same dichotomous

population, we would not expect the computed sample proportions, the p̂’s, to be exactly

the same. Two questions about p̂ as an estimator of p that we might ask are: (1) Can we

expect the sample success proportion p̂ to be close to the population success proportion p?

and (2) Can we quantify how close p̂ will be to p? The sampling distribution of p̂, which

describes the sample to sample variability in p̂, can be used to address these questions.

In the introduction to this chapter we mentioned that the sampling distribution of

a statistic depends on the way in which the sample is selected, as well as the nature
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of the population being sampled. Therefore, before we continue with our discussion of

the behavior of p̂ as an estimator of p we need to describe a model for sampling from a

dichotomous population. This model will be presented in terms of a sequence of n trials.

In this context a trial is a process of observation or experimentation which results in one

of two distinct outcomes (success or failure).

A sequence of n trials is said to constitute a sequence of n Bernoulli trials with

success probability p if the following conditions are satisfied.

1. There is a common probability of success p for every trial. That is, on every trial the

probability that the outcome of the trial will be a success is p.

2. The outcomes of the trials are independent of each other. That is, if we knew the out-

come of a particular trial or trials this would provide no additional information about

the probability of observing a success (or failure) on any other trial. For example, if

we knew that a success (or failure) occurred in the first trial, this would not change

the probability of success in any other trial.

The simple examples described below will help to clarify the definition of a sequence

of n Bernoulli trials and the connection between sampling from a dichotomous population

and Bernoulli trials.

Example. Tossing a fair die. Let a trial consist of tossing a fair (balanced) die and

observing the number of dots on the upturned face. Define a success to be the occurrence

of a 1, 2, 3, or 4. Since the die is fair, the probability of a success on a single trial is

p = 4/6 = 2/3. Furthermore, if the die is always tossed in the same fashion, then the

outcomes of the trials are independent. Therefore, with success defined as above, tossing

the fair die n times yields a sequence of n Bernoulli trials with success probability p = 2/3.

Example. Drawing balls from a box. Consider a box containing balls (the

population) of which 2/3 are red (successes) and 1/3 are green (failures). Suppose that a

simple random sample of size n is selected with replacement from this box. That is, a ball

is selected at random, its color is recorded, the ball is returned to the box, the balls in the

box are mixed, and this process is repeated until n balls have been selected. Thinking of

each selection of a ball as a trial we see that this procedure is abstractly the same as the die

tossing procedure described above. That is, the outcomes of the draws are independent,

and every time that a ball is drawn the probability of a success (drawing a red ball) is

p = 2/3. Therefore, selecting a simple random sample of n balls with replacement from

this collection of balls can be viewed as observing a sequence of n Bernoulli trials with

success probability p = 2/3. In general, taking a simple random sample of size n selected

with replacement from a population with success proportion p can be viewed as observing

a sequence of n Bernoulli trials with success probability p.



80 5.2 Estimating a proportion

Situations like the die tossing example above do not fit into the sample and population

setup that we have been using. That is, in the die tossing example there is not a physical

population of units from which a sample is obtained. In a situation like this we can think

of the outcomes of the n Bernoulli trials (the collection of successes and failures that make

up the sequence of outcomes of the n trials) as a sample of values of a variable. The

probability model specifies that the probability of success on a single trial is p and the

probability of failure is 1−p. This model describes the population of possible values of the

variable. Therefore, we can envision a dichotomous population of values (successes and

failures) such that the population success proportion is p; and we can think of the outcome

of a single trial as the selection of one value at random from this dichotomous population

of values. With this idea in mind, we see that the success probability p of this probability

model is a parameter and the observed proportion of successes in the n trials is a statistic.

Returning to our discussion of the sampling distribution of p̂ we first present two

important properties of this sampling distribution. The observed proportion of successes p̂

in a sequence of n Bernoulli trials with success probability p (or equivalently the observed

proportion of successes p̂ in a simple random sample selected with replacement from a

dichotomous population with population success proportion p) has a sampling distribution

with the following properties.

1. The mean of the sampling distribution of p̂ is the population success probability p.

Therefore, p̂ is unbiased as an estimator of p.

2. The population standard error of p̂, denoted by S.E.(p̂), is

S.E.(p̂) =

√
p(1− p)

n
.

The population standard error of p̂ depends on n, which will be known, and p, which

will be unknown. Notice that the population standard error gets smaller when n gets

larger. That is, when sampling from a fixed dichotomous population, the variability in

p̂ as an estimator of p is smaller for a larger sample size than it is for a smaller sample

size. This property reflects the fact that a larger sample provides more information than a

smaller sample. The dependence of the population standard error of p̂ on the population

success probability p is more complicated. The quantity p(1 − p) attains its maximum

value of 1/4 when p = 1/2 and approaches zero as p approaches zero or one. Therefore,

for a fixed sample size n, there will be more variability in p̂ as an estimator of p when p

is close to 1/2 than there will be when p is close to zero or one. This behavior reflects

the fact that a dichotomous population is most homogeneous when p is near the extremes

p = 0 and p = 1, and is least homogeneous when p is close to 1/2.
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In many sampling situations the sample is not selected with replacement. For example,

in an opinion poll we would not allow the same person to respond twice. We will now

consider the effects of sampling without replacement.

Example. Drawing balls from a box (revisited). We will now consider how

the ball drawing example from above changes when the simple random sample is selected

without replacement. As before, let the box containing the balls (the population) be such

that 2/3 are red (successes) and 1/3 are green (failures). However, suppose that the simple

random sample of n balls is selected without replacement. That is, a ball is selected at

random and its color is recorded and this process is repeated, without returning the ball

to the box, until n balls have been selected. It is readily verified that the resulting simple

random sample of size n selected without replacement cannot be viewed as a sequence

of n Bernoulli trials. To see this suppose that the box contains 12 balls of which 8 are

red and 4 are green. The probability of selecting a red ball on the first draw, denoted by

P (red first), is P (red first) = 8/12 = 2/3. The probability that the second ball drawn is

red clearly depends on the color of the first ball that was drawn. If the first ball drawn

was red, then P (red second given red first) = 7/11. However, if the first ball drawn was

green, then P (red second given green first) = 8/11. Notice that these probabilities are

not the same and neither of them is equal to the population success proportion p = 2/3.

Therefore, when the sample is selected without replacement, the sampling process is not

the same as observing a sequence of Bernoulli trials, since the draws are not independent

(the probability of drawing a red ball (success) depends on what happened in the earlier

draws) and, as a consequence of this lack of independence, the probability of red (success)

is not the same on each draw (trial).

The sampling distribution of the observed success proportion p̂ is not the same when

p̂ is based on a sample selected without replacement as it is when p̂ is based on a sample

selected with replacement. In both sampling situations, the mean of the sampling distri-

bution of p̂ is the population success proportion p. Thus p̂ is unbiased as an estimator of p

whether the sample is selected with or without replacement. On the other hand, the stan-

dard error of p̂ is not the same when p̂ is based on a sample selected without replacement

as it is when p̂ is based on a sample selected with replacement. (The standard error of

p̂ is smaller when the sample is selected without replacement than it is when the sample

is selected with replacement.) More specifically, unlike the formula for the standard error

of p̂ when the sample is selected with replacement which does not depend on the size of

the population being sampled, when sampling without replacement the standard error of

p̂ depends on the size of the population. Fortunately, if the size of the population is very

large relative to the size of the sample, then, for practical purposes, the probability of
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obtaining a success is essentially constant, the outcomes of the draws are essentially inde-

pendent, and we can use the standard error formula based on the assumption of sampling

with replacement even though the sample was selected without replacement.

Remark. When p̂ is computed from a simple random sample of size n selected without

replacement from a dichotomous population of size N , the population standard error of

p̂, S.E.(p̂) =
√

fp(1− p)/n, is smaller than the population standard error for a sample

selected with replacement by a factor of
√
f , where f = (N − n)/(N − 1). The factor f is

known as the finite population correction factor and its effect is most noticeable when N is

small relative to n. If N is very large relative to n, then f ≈ 1 and the two standard errors

are essentially equal. Actually, if N is very large relative to n and the data correspond to a

simple random sample, then the sampling distribution of p̂ is essentially the same whether

the sample is selected with or without replacement.

The sampling distribution of p̂ can be represented in tabular form as a probability

distribution or in graphical form as a probability histogram. The probability distribu-

tion of p̂ is a theoretical relative frequency distribution which indicates the probability or

theoretical relative frequency with which each of the possible values of p̂ will occur. The

probability histogram of p̂ is the theoretical relative frequency histogram corresponding

to the probabilities (theoretical relative frequencies) in the probability distribution. It is

possible to determine the exact sampling distribution of p̂, in fact, it is even possible to

find a formula which gives the probabilities of each of the possible values of p̂. However,

for our purposes it is more convenient to work with an approximation to the sampling

distribution of p̂. (The exact sampling distributions of p̂ are discussed in Chapter 4a.)

Before we discuss this approximation, which is based on the standard normal distribution,

we need to briefly discuss the standard normal distribution.

The normal distribution is widely used as a model for the probability distribution of

a continuous variable. We will discuss normal distributions in general in more detail in

Chapter 7. Here we will restrict our attention to the standard normal distribution and its

use as an approximation to the sampling distribution of p̂.

Before we discuss the standard normal distribution we first need to briefly consider

the representation of a continuous probability model via a density curve. A density curve

is a nonnegative curve for which the area under the curve (over the x–axis) is one. We

can think of the density curve as a smooth version of a theoretical probability histogram

with the rectangles of the histogram replaced by a smooth curve indicating where the tops

of the rectangles would be. With a continuous variable it does not make sense to talk

about the probability that the variable would take on a particular value, after all if we

defined positive probabilities for the infinite collection (continuum) of possible values of

the variable these probabilities could not add up to one. It does, however, make sense to
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talk about the probability that the variable will take on a value in a specified range. Given

two constants a < b the probability that the variable will take on a value in the interval

from a to b is equal to the area under the density curve over the interval from a to b on

the x–axis. In this fashion the density curve gives the probabilities which a single value of

the variable, chosen at random from the infinite population of possible values, will satisfy.

When we use a continuous probability model to approximate the distribution of a

discrete statistic, such as p̂, we use the area under the density curve, over the appropriate

interval on the number line, to approximate the area in the discrete probability histogram

over the same interval. The idea here is that, if the density curve of the approximating

continuous distribution matches the discrete probability histogram well, then the area

under the density curve will provide a good approximation of the corresponding area in

the histogram.

We will now discuss the standard normal distribution which we will use to approximate

the sampling distribution of p̂. The standard normal distribution can be characterized by

its density curve which is the familiar bell shaped curve exhibited in Figure 1. The standard

normal distribution and its density curve are symmetric around zero, i.e., if we draw a

vertical line through zero in Figure 1, then the two sides of the density curve are mirror

images of each other. From Figure 1 it may appear that the standard normal density curve

ends at -3 and 3; however, this density curve is actually positive (above the x–axis) for all

possible values. The area under the standard normal density curve from -3 to 3 is .9974;

thus, there is a small but positive area under the density curve outside of the interval from

-3 to 3.

Figure 1. The standard normal density curve.
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Z

We will use the upper case letter Z to denote a variable which behaves in accordance

with the standard normal distribution and we will refer to such a Z as a standard normal

variable. The probability that the standard normal variable Z will take on a value between

a and b, denoted by P (a ≤ Z ≤ b) (read this as the probability that Z is between a and

b), is the area under the standard normal density curve over the interval from a to b. A

probability of the form P (a ≤ Z ≤ b) is depicted, for particular values of a and b, as the

area of the shaded region in Figure 2.
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Figure 2. P (a ≤ Z ≤ b), drawn for a < 0 and b > 0.
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Computer programs and many calculators can be used to compute standard normal prob-

abilities or equivalently to compute areas under the standard normal density curve. These

probabilities can also be calculated using tables of standard normal distribution probabil-

ities. We will not need to perform such calculations here.

The inferential methods we will consider are based on a large sample size normal ap-

proximation to the sampling distribution of p̂. The normal approximation to the sampling

distribution of p̂, which is stated formally below, simply says that, for large values of n,

the standardized value of p̂ obtained by subtracting the population success proportion p

from p̂ and dividing this difference by the population standard error of p̂, behaves in ap-

proximate accordance with the standard normal distribution. That is, for large values of n

the quantity (p̂−p)/S.E.(p̂) behaves in approximate accordance with the standard normal

distribution.

The normal approximation to the sampling distribution of p̂. Let p̂ denote the

observed proportion of successes in a sequence of n Bernoulli trials with success probability

p (or equivalently the observed proportion of successes in a simple random sample drawn

with replacement from a dichotomous population with population success proportion p)

and let a < b be two given constants. If n is sufficiently large, then the probability that

(p̂−p)/S.E.(p̂) is between a and b is approximately equal to the probability that a standard

normal variable Z is between a and b. In symbols, using ≈ to denote approximate equality,

the conclusion from above is that, for sufficiently large values of n,

P

(
a ≤ p̂− p

S.E.(p̂)
≤ b

)
≈ P (a ≤ Z ≤ b).

Remark. If the population being sampled is very large relative to the size of the sam-

ple, then, for practical purposes, this normal approximation to the sampling distribution

of p̂ may also be applied when p̂ is based on a simple random sample selected without

replacement.

If we apply this approximation with a = −k and b = k, then we find that the

probability that p̂ will take on a value within k population standard error units of p
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(within kS.E.(p̂) units of p) is approximately equal to the probability that a standard

normal variable Z will take on a value between −k and k, i.e.,

P
(
|p̂− p| ≤ kS.E.(p̂)

)
= P

(
p− kS.E.(p̂) ≤ p̂ ≤ p+ kS.E.(p̂)

)
≈ P (−k ≤ Z ≤ k).

The most commonly used choice of the constant k in this probability statement is k = 1.96.

The probability that the standard normal variable takes on a value between −1.96 and

1.96 is equal to .95, i.e., P (−1.96 ≤ Z ≤ 1.96) = .95; therefore, the probability that p̂

will take on a value within 1.96 population standard error units of p is approximately .95.

This probability is indicated graphically as the shaded region of area .95 in Figure 3. Two

other common choices of the constant k in this probability statement are k = 1.645 and

k = 2.576, which give probabilities (areas) of .90 and .99, respectively.

Figure 3. P (−1.96 ≤ Z ≤ 1.96) = .95
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We now return to our discussion of estimating the population success proportion. The

following discussion is under the assumption that the data come from a simple random

sample of size n drawn with replacement from a dichotomous population with population

success proportion p or equivalently that the data correspond to a sequence of n Bernoulli

trials with success probability p. For practical purposes, the confidence interval estimates

described below are also applicable when the data come from a simple random sample of

size n drawn without replacement, provided the population is very large.

Remark. The basic ideas underlying the inferential methods discussed in this chapter can

be used to formulate confidence intervals and hypothesis tests when the data correspond

to more complex types of random samples. However, the inferential methods discussed in

this chapter are not appropriate for most national opinion polls and sample surveys which

rely on complex stratified and/or cluster sampling.

The observed proportion of successes in our sample p̂ provides a single number estimate

of the population success probability p. We can think of p̂ as our “best guess” of the value

of p. From the sampling distribution of p̂ we know that p̂ is unbiased as an estimator of

p; therefore, on the average in the long run (under repeated sampling) we know that p̂

provides a good estimate of the unknown parameter p. This unbiasedness, however, does
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not guarantee that the observed value of p̂, based on a single sample, will be close to the

true, unknown value of p.

Instead of reporting a single estimate of the unknown population success proportion p

it would be more useful to report a range or interval of plausible values for p. In particular,

given the data we would like to be able to say, with a reasonable level of confidence, that

the true value of p is between two particular values. A confidence interval estimate of

p consists of two parts. There is an interval of plausible values for p and a corresponding

level of confidence. The confidence level indicates our confidence that the unknown

p actually belongs to the corresponding interval. We will adopt the usual convention of

using a confidence level of 95%. A 95% confidence interval estimate of p is an interval

of plausible values for p constructed using a method which guarantees that 95% of such

intervals will actually contain the unknown proportion p. That is, a 95% confidence interval

is an interval constructed using a method of generating such intervals with the property

that this method will work, in the sense of generating an interval that contains p, for 95%

of all possible samples.

The starting point for using the normal approximation to the sampling distribution

of p̂ to construct a 95% confidence interval estimate of p is the approximate probability

statement

P
[
|p̂− p| ≤ 1.96S.E.(p̂)

]
≈ .95.

This probability statement indicates that the probability that the statistic p̂ is within

1.96S.E.(p̂) units of the parameter p is approximately .95. In other words, when we take

a simple random sample and compute p̂ the value we get will be within 1.96S.E.(p̂) of the

true p approximately 95% of the time. This is equivalent to saying that the probability

that the parameter p is within 1.96S.E.(p̂) units of the statistic p̂ is approximately .95,

which is exactly the type of statement we are looking for. Unfortunately, this interval of

values is not computable, since it involves the population standard error S.E.(p̂) which

depends on the unknown parameter p and is, therefore, also unknown.

We will consider two methods of forming a confidence interval for p. For ease of no-

tation and greater generality we will let C denote the desired confidence level and k the

corresponding cutoff point for the standard normal distribution, i.e., C and k are chosen

such that P (−k ≤ Z ≤ k) = C, where Z denotes a standard normal variable. (Some

common choices of C and k are: C = .95 and k = 1.96 for 95% confidence, C = .90

and k = 1.645 for 90% confidence, and C = .99 and k = 2.576 for 99% confidence.) In

terms of these symbols the starting point for using the normal approximation to the sam-

pling distribution of p̂ to construct a confidence interval estimate of p is the approximate

probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C.
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The first confidence interval estimate we consider is the Wilson interval. This

interval estimate is obtained by re–expressing the basic inequality

|p̂− p| ≤ kS.E.(p̂)

as an interval of values for p. The Wilson confidence interval is given by

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k),

(read p̃k as p tilde sub k) where

p̃k =
np̂+ k

2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2

determines the length of the interval.

If we use k = 1.96 in these expressions, then we can claim that we are 95% confident

that the population success proportion p is between p̃k−M.E.(p̃k) and p̃k+M.E.(p̃k). There

is some chance for confusion about what this statement actually means. The important

thing to remember is that it is the statistic p̃k and the margin of error M.E.(p̃k) that vary

from sample to sample. The population proportion p is a fixed, unknown parameter which

does not vary. Therefore, the 95% confidence level applies to the method used to generate

the confidence interval estimate. That is, the method (obtain a simple random sample

and compute the numbers p̃−M.E.(p̃) and p̃+M.E.(p̃)) used to generate the limits of the

confidence interval is such that 95% of the time it will yield a pair of confidence interval

limits which bracket the population success proportion p. Therefore, when we obtain a

sample, compute the confidence interval, and say that we are 95% confident that this

interval contains p what we mean is that we feel “pretty good” about claiming that p is

in this interval, since the method works for 95% of all possible samples and so it probably

worked for our sample.

Derivation of the Wilson interval. Since |p̂− p| ≥ 0 and S.E.(p̂) =
√

p(1− p)/n, we

can square each side of the basic inequality to get the equivalent inequality

(p̂− p)2 ≤ k2

n
(p− p2).

Straightforward algebra allows us to re–express this inequality as the following quadratic

inequality in p

(n+ k2)p2 − 2(np̂+
k2

2
)p+ np̂2 ≤ 0.
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Treating this inequality as an equality and solving for p gives the two values

p̃k ±M.E.(p̃k),

where p̃k =
np̂+ k

2

2

n+ k2
and M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2
.

Thus the original probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C.

is equivalent to the probability statement

P
[
p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k)

]
≈ C.

The endpoints of this interval, which are functions of n, p̂, and k, are computable. There-

fore, the Wilson confidence interval is given by

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k).

It is somewhat tedious to compute the Wilson interval by hand; but it is easy to pro-

gram a calculator or computer to do the computations. An easy to compute approximation

(the Agresti–Coull interval) to the Wilson 95% confidence interval is described after

the following examples.

Example. Insects in an apple orchard. The manager of a large apple orchard is

concerned with the presence of a particular insect pest in the apple trees in the orchard.

An insecticide that controls this particular insect pest is available. However, application

of this insecticide is rather expensive. It has been determined that the cost of applying

the insecticide is not economically justifiable unless more than 20% of the apple trees in

the orchard are infested. The manager has decided to assess the extent of infestation in

the orchard by examining a simple random sample of 200 apple trees. In this example a

unit an apple tree and the target population is all of the apple trees in this orchard. We

will assume that the simple random sample is selected from all of the apple trees in the

orchard so that the sampled population is the same as the target population. We will also

assume that the 200 trees in the sample form a small proportion of all of the trees in the

entire orchard so that we do not need to worry about whether the sample is chosen with

or without replacement. An appropriate dichotomous variable is whether an apple tree is

infested with possible values of yes (the tree is infested) and no (the tree is not infested).

Since we are interested in the extent of the infestation we will view a tree that is infested
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as a success. Thus, the population success proportion p is the proportion of all of the apple

trees in this orchard that are infested.

Two (related) questions of interest in this situation are:

(1) What proportion of all of the trees in this orchard are infested? (What is p?)

(2) Is there sufficient evidence to justify the application of the insecticide? (Is p > .20?)

We will consider four hypothetical outcomes for this scenario to demonstrate how a 95%

confidence interval estimate can be used to address these questions.

Case 1. Suppose that 35 of the 200 apple trees in the sample are infested so that

p̂ = .175. In this case we know that 17.5% of the 200 trees in the sample are infested

and we can conjecture that a similar proportion of all of the trees in the entire orchard

are infested. However, we need a confidence interval estimate to get a handle on which

values of the population success proportion p are plausible when we observe 17.5% infested

trees in a sample of size 200. Using the Wilson method with k = 1.96 we get p̃k = .1811

and a 95% confidence interval ranging from .1286 to .2336. Thus we can conclude that

we are 95% confident that between 12.86% and 23.36% of all of the trees in this orchard

are infested. Notice that this confidence interval does not exclude the possibility that

more than 20% of the trees in the entire orchard are infested, since the upper limit of the

confidence interval 23.36% is greater than 20%. In other words, even though less than 20%

of the trees in the sample were infested when we take sampling variability into account we

find that it is possible that more than 20% (as high as 23.36%) of the trees in the entire

orchard are infested.

Case 2. Suppose that 26 of the 200 apple trees in the sample are infested so that

p̂ = .13. In this case we know that 13% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .1370 and a 95% confidence interval ranging

from .0903 to .1837. Thus we can conclude that we are 95% confident that between 9.03%

and 18.37% of all of the trees in this orchard are infested. In this case the entire confidence

interval is below 20% excluding the possibility that more than 20% of the trees in the

entire orchard are infested. Therefore, in this case we have sufficient evidence to conclude

that less than 20% of the trees in the entire orchard are infested, i.e., that p < .20.

Case 3. Suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. In this case we know that 22.5% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .2302 and a 95% confidence interval ranging

from .1726 to .2877. Thus we can conclude that we are 95% confident that between 17.26%

and 28.77% of all of the trees in this orchard are infested. Notice that this confidence

interval does not exclude the possibility that less than 20% of the trees in the entire

orchard are infested, since the lower limit of the confidence interval 17.26% is less than

20%. In other words, even though mores than 20% of the trees in the sample were infested
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when we take sampling variability into account we find that it is possible that less than

20% of the trees in the entire orchard are infested.

Case 4. Suppose that 54 of the 200 apple trees in the sample are infested so that

p̂ = .27. In this case we know that 27% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .2743 and a 95% confidence interval ranging

from .2132 to .3354. Thus we can conclude that we are 95% confident that between 21.32%

and 33.54% of all of the trees in this orchard are infested. In this case the entire confidence

interval is above 20% excluding the possibility that less than 20% of the trees in the entire

orchard are infested. Therefore, in this case we have sufficient evidence to conclude that

more than 20% of the trees in the entire orchard are infested, i.e., that p > .20.

Example. Opinions about a change in tax law. Consider a public opinion poll

conducted to assess the support for a proposed change in state tax law among the taxpayers

in a particular metropolitan area. The target population is the group of approximately

200,000 taxpayers in the particular metropolitan area. Suppose that the opinion poll is

conducted as follows: first a simple random sample of 100 taxpayers in the metropolitan

area is obtained, restricting the sample to taxpayers who have telephones, then these 100

taxpayers are contacted by telephone and each person is asked to respond to the question

“Do you favor or oppose the proposed change in state tax law?” In this example we will

define a unit to be an individual taxpayer in this metropolitan area. (Note that, technically,

a unit is a household, since more than one taxpayer may share the same telephone number.)

The variable is the response of the taxpayer to the indicated question with possible values

of: “I favor the change,” “I oppose the change,” and “I do not have an opinion regarding

the change.” We will dichotomize this variable (and the population) by recording the

responses as either “I favor the change” or “I do not favor the change.” Notice that in

this example the target and sampled populations are not the same. Since there might

well be a relationship between having a telephone and opinion about the proposed tax law

change, we will restrict our attention to the sampled population of all taxpayers in this

metropolitan area who have telephones. The parameter of interest is the proportion p of

all taxpayers in this metropolitan area who have a telephone who favor the proposed tax

law change at the time of the survey. In this example the random sample would be selected

without replacement. However, since the size of the population, approximately 200,000, is

much larger than the sample size n = 100, we can use the confidence interval estimation

procedure as described above.

Suppose that the poll was conducted and 55 of the 100 taxpayers in the sample

responded that they favor the tax law change. The observed proportion who favor the

change is thus p̂ = .55, i.e., 55% of the 100 taxpayers in the sample favored the change.

Using the Wilson method with k = 1.96 we get p̃k = .5482 and a 95% confidence interval

ranging from .4524 to .6438. Therefore, we are 95% confident that the actual proportion



5.2 Estimating a proportion 91

of taxpayers in this metropolitan area (who have telephones) who favored the proposed

change in state tax law at the time of the survey is between 45.24% and 64.38%. Notice

that this confidence interval contains values for p that are both less than .5 and greater than

.5. Therefore, based on this outcome of the opinion poll there is not sufficient evidence

to conclude that more than half of the taxpayers in this metropolitan area (who have

telephones) favored the proposed tax law change at the time of this poll.

Now suppose that the poll was conducted and 64 of the 100 taxpayers in the sample

responded that they favor the tax law change. The observed proportion who favor the

change is thus p̂ = .64, i.e., 64% of the 100 taxpayers in the sample favored the change.

Using the Wilson method with k = 1.96 we get p̃k = .6348 and a 95% confidence interval

ranging from .5424 to .7273. Therefore, we are 95% confident that the actual proportion

of taxpayers in this metropolitan area (who have telephones) who favored the proposed

change in state tax law at the time of the survey is between 54.24% and 72.73%. In this

case all of the values for p in the confidence interval are greater than .5. Therefore, based

on this outcome of the opinion poll there is sufficient evidence to conclude that more than

half of the taxpayers in this metropolitan area (who have telephones) favored the proposed

tax law change at the time of this poll. However, we would also note that, based on

this confidence interval, the actual percentage in favor of the change might be as small as

54.24%.

In the preceding analysis of this opinion poll example we dichotomized the responses

to the question by combining the “oppose” and “no opinion” responses as “do not favor”.

As an alternative we might prefer to restrict our attention to only those people who are

willing to express a definite opinion by restricting our inference to the subpopulation of

taxpayers who would have been willing to respond “I favor the change” or “I oppose the

change” at the time of the survey. Thus we redefine the population success proportion

p as the proportion of all taxpayers in this metropolitan area (who have a telephone and

have reached an opinion at the time of the survey) who favor the proposed tax law change

at the time of the survey. To implement this approach we simply ignore the part of the

sample for which the respondents did not express an opinion, redefine the sample size as

n∗ the number who responded “favor” or “oppose”, and compute the confidence interval

conditional on the reduced sample size n∗. For example, if n = 100 and if 64 taxpayers

favor the change, 26 taxpayers oppose the change, and 10 taxpayers have no opinion, then

we restrict our attention to the n∗ = 64 + 26 = 90 taxpayers who expressed an opinion.

For this sample the observed proportion who favor the change is p̂ = 64/90 = .7111. Using

the Wilson method with k = 1.96 (and n∗ = 90) we get p̃k = .7025 and a 95% confidence

interval ranging from .6104 to .7946. Therefore, we are 95% confident that the actual

proportion of taxpayers in this metropolitan area (who have telephones and have reached
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an opinion) who favored the proposed tax law change at the time of this poll is between

61.04% and 79.46%.

Remark. When a confidence interval for a proportion p is based on a simple random

sample selected with replacement or a simple random sample selected without replacement

from a much larger population the precision of the confidence interval as an estimate of p

depends on the absolute size of the sample not the size of the sample relative to the size

of the population. For example, if a simple random sample of size n = 200 yields p̂ = .65

(and k = 1.96), then p̃k = .6472, M.E.(p̃k) = .0655, and we are 95% confident that p is

between .6472 − .0655 = .5817 and .6472 + .0655 = .7127. Any sample of size n = 200

for which p̂ = .65 yields this confidence interval; which has length 2(.0655) = .1310. Thus

if we were sampling from a population of 200,000 or a population of 2,000,000 and if we

obtained p̂ = .65, we would get the same confidence interval. Hence the precision of the

confidence interval, as measured by its length, depends on the sample size but does not

depend on what fraction of the population was sampled.

We will now consider a simpler method for computing a confidence interval for p.

This confidence interval estimate, known as the Wald interval, is in widespread use and

many calculators and computer programs will compute it. Unfortunately, this confidence

interval estimate has some undesirable properties and we do not recommend its use.

As we noted above (for C = .95 and k = 1.96), the probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C

is equivalent to the probability statement

P
[
p̂− kS.E.(p̂) ≤ p ≤ p̂+ kS.E.(p̂)

]
≈ C,

but this interval of values is not computable, since the population standard error S.E.(p̂) =√
p(1− p)/n depends on the unknown parameter p. The Wald interval is obtained by

replacing the unknown population standard error by an estimated standard error. The

estimated standard error of p̂

Ŝ.E.(p̂) =

√
p̂(1− p̂)

n

is obtained by replacing the unknown parameter p in the population standard error by the

observable statistic p̂. The Wald confidence interval is given by

p̂−M.E.(p̂) ≤ p ≤ p̂+M.E.(p̂), where M.E.(p̂) = kŜ.E.(p̂)

is the margin of error of p̂.
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Notice that the Wald interval is centered at p̂ and its length is determined by the

margin of error of p̂,

M.E.(p̂) = kŜ.E.(p̂).

As with the Wilson interval, if we use k = 1.96 in these expressions, then we can claim

that we are 95% confident that the population success proportion p is between p̂−M.E.(p̂)

and p̂+M.E.(p̂). With the same interpretation of “95% confident” as before.

We will now discuss the “undesirable properties” of this interval estimate and the

reason we do not recommend it. Even though p̂ performs well as a single number estimate

of p the Wald confidence interval estimate, based on p̂ and Ŝ.E.(p̂), does not perform

well. When we say that we are 95% confident that the population success proportion p is

between p̂−M.E.(p̂) and p̂+M.E.(p̂) we realize that our indicated 95% confidence level is

actually an approximation to the true confidence level. For this confidence interval estimate

the indicated 95% confidence level differs from the actual confidence level because of the

two approximations used to construct this interval, i.e., because of our use of the normal

approximation and our use of the estimated standard error. We would hope, at least for

reasonably large values of n, that the difference between the indicated 95% confidence level

of our interval estimate and its actual confidence level would be small. Unfortunately, this

is not necessarily the case and the actual confidence level of this confidence interval estimate

may be quite different from the indicated 95%. In particular, the actual confidence level of

this 95% confidence interval estimate may be much smaller than 95%. Furthermore, this

discrepancy between the indicated 95% confidence level and the actual confidence level is

not necessarily negligible even when the sample size n is quite large.

On the other hand, the Wilson confidence interval estimate, based on p̃k and M.E.(p̃k),

only requires one approximation (the normal approximation) and for this reason it performs

better than the Wald confidence interval.

We will now describe the easy to compute approximation (the Agresti–Coull inter-

val) to the Wilson 95% confidence interval. If we add 4 artificial observations to the data,

2 success and 2 failures, and then compute the Wald 95% confidence interval, it turns out

that we obtain a reasonably accurate approximation of the Wilson 95% confidence interval.

More formally, the Agresti–Coull interval is obtained by replacing the estimator p̂ and

its margin of error in the Wald interval by the alternate estimator p̃ (read this as p tilde)

and its margin of error. The estimator p̃ is obtained by adding 2 successes and 2 failures

to the data, i.e.,

p̃ =
the number of successes plus 2

the number of observations plus 4
=

np̂+ 2

n+ 4
.
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The corresponding 95% margin of error of p̃ is

M.E.(p̃) = 1.96

√
p̃(1− p̃)

n+ 4
,

which is analogous to the margin of error of p̂ with p̃ in place of p̂ and n + 4 in place of

the actual sample size n. The Agresti–Coull 95% confidence interval estimate of p,

is given by

p̃−M.E.(p̃) ≤ p ≤ p̃+M.E.(p̃),

where p̃ and M.E.(p̃) are as defined above. The reason that this works is that the value

of k for a 95% confidence interval is k = 1.96 which implies that k2/2 ≈ 2 and k2 ≈ 4 so

that p̃ ≈ p̃k (for k = 1.96) and M.E.(p̃) ≈ M.E.(p̃k) (for k = 1.96). If you have a calculator

or computer program which computes the Wald interval, then you can use this “add 2

successes / add 4 observations” trick to approximate the Wilson 95% confidence interval.

5.3 Testing for a proportion

The hypothesis testing procedures discussed in this section are based on the normal

approximation to the sampling distribution of p̂. Hence we will continue to assume that the

data form a simple random sample of size n, selected with replacement, from a dichotomous

population with population success proportion p, or equivalently, that the data correspond

to the outcomes of a sequence of n Bernoulli trials with success probability p. As before

if the population is very large, then these methods can also be used when the data form a

simple random sample of size n, selected without replacement.

A hypothesis (statistical hypothesis) is a conjecture about the nature of the popu-

lation. When the population is dichotomous, a hypothesis is a conjecture about the value

of the population success proportion p.

A hypothesis test (test of significance) is a formal procedure for deciding between

two complementary hypotheses. These hypotheses are known as the null hypothesis (H0 for

short) and the research (or alternative) hypothesis (H1 for short). The research hypothesis

is the hypothesis of primary interest, since the testing procedure is designed to address the

question: “Do the data support the research hypothesis?” The null hypothesis is defined as

the negation of the research hypothesis. The test begins by tentatively assuming that the

null hypothesis is true (the research hypothesis is false). The data are then examined to

determine whether the null hypothesis can be rejected in favor of the research hypothesis.

The probability of observing data as unusual (surprising) or more unusual as that actually

observed under the tentative assumption that the null hypothesis is true is computed. This

probability is known as the P–value of the test. (The P in P–value indicates that it is

a probability it does not refer to the population success proportion p.) A small P–value
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indicates that the observed data would be unusual (surprising) if the null hypothesis was

actually true. Thus if the P–value is small enough, then the null hypothesis is judged

untenable and the test rejects the null hypothesis in favor of the research (alternative)

hypothesis. On the other hand, a large (not small) P–value indicates that the observed

data would not be unusual (not surprising) if the null hypothesis was actually true. Thus

if the P–value is large (not small enough), then the null hypothesis is judged tenable and

the test fails to reject the null hypothesis.

There is a strong similarity between the reasoning used for a hypothesis test and the

reasoning used in the trial of a defendant in a court of law. In a trial the defendant is

presumed innocent (tentatively assumed to be innocent) and this tentative assumption

is not rejected unless sufficient evidence is provided to make this tentative assumption

untenable. In this situation the research hypothesis states that the defendant is guilty and

the null hypothesis states that the defendant is not guilty (is innocent). The P–value of

a hypothesis test is analogous to a quantification of the weight of the evidence that the

defendant is guilty with small values indicating that the evidence is unlikely under the

assumption that the defendant is innocent.

Example. Insects in an apple orchard (revisited). Recall that the manager of

a large apple orchard examined a simple random sample of 200 apple trees to gauge the

extent of insect infestation in the orchard. The manager has determined that applying the

insecticide is not economically justifiable unless more than 20% of the apple trees in the

orchard are infested. Since the manager does not want to apply the insecticide unless there

is evidence that it is needed, the question of interest here is: “Is there sufficient evidence

to justify application of the insecticide?” In terms of the population success proportion

p (the proportion of all of the apple trees in this orchard that are infested) the research

hypothesis is H1 : p > .20 (more than 20% of all the trees in the orchard are infested);

and the null hypothesis is H0 : p ≤ .20 (no more than 20% of all the trees in the orchard

are infested). A test of the null hypothesis H0 : p ≤ .20 versus the research hypothesis

H1 : p > .20 begins by tentatively assuming that no more than 20% of all the trees in the

orchard are infested. Under this tentative assumption it would be surprising to observe a

proportion of infested trees in the sample p̂ that was much larger than .20. Thus the test

should reject H0 : p ≤ .20 in favor of H1 : p > .20 if the observed value of p̂ is sufficiently

large relative to .20.

Case 1. Suppose that 52 of the 200 apple trees in the sample are infested so that

p̂ = .26. In this case we know that 26% of the 200 trees in the sample are infested and

we need to decide whether this suggests that the proportion of all the trees in the orchard

that are infested p exceeds .20. More specifically, we need to determine whether observing

52 or more infested trees in a simple random sample of 200 trees would be surprising if

in fact no more than 20% of all the trees in the orchard were infested. Assuming that
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exactly 20% of all the trees in the orchard are infested, we find that the probability of

observing 52 or more infested trees in a sample of 200 trees (seeing p̂ ≥ .26), is .0169 (this

is the P–value of the test). In other words, if no more than 20% of all the trees in the

orchard were infested, then a simple random sample of 200 trees would give p̂ ≥ .26 about

1.69% of the time. Therefore, observing 52 infested trees in a sample of 200 would be

very surprising if no more than 20% of all the trees in the orchard were infested and we

have sufficient evidence to reject the null hypothesis H0 : p ≤ .20 in favor of the research

hypothesis H1 : p > .20. In the case we would conclude that there is sufficient evidence to

contend that more than 20% of all the trees in the orchard are infested and, in this sense,

application of the insecticide is justifiable.

Case 2. Next suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. Assuming that exactly 20% of all the trees in the orchard are infested, we find

that the probability of observing 45 or more infested trees in a sample of 200 trees (seeing

p̂ ≥ .225), is .1884 (this is the P–value of the test). In other words, if no more than 20% of

all the trees in the orchard were infested, then a simple random sample of 200 trees would

give p̂ ≥ .225 about 18.84% of the time. Therefore, observing 45 infested trees in a sample

of 200 would not be very surprising if no more than 20% of all the trees in the orchard were

infested and we do not have sufficient evidence to reject the null hypothesis H0 : p ≤ .20

in favor of the research hypothesis H1 : p > .20. In the case we would conclude that there

is not sufficient evidence to contend that more than 20% of all the trees in the orchard are

infested and, in this sense, application of the insecticide not is justifiable.

The research hypothesis in the apple orchard example is a directional hypothesis of

the form H1 : p > p0, where p0 = .20. We will now discuss the details of a hypothesis

test for a directional research hypothesis of this form. For the test procedure to be valid

the specified value p0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.

Let p0 denote the hypothesized value (with 0 < p0 < 1) which we wish to compare

with p. The research hypothesis states that p is greater than p0 (H1 : p > p0). The

null hypothesis is the negation of H1 : p > p0 which states that p is no greater than p0
(H0 : p ≤ p0). The research hypothesis H1 : p > p0 specifies that the population is one

of the dichotomous populations for which the population success proportion p is greater

than p0. The null hypothesis H0 : p ≤ p0 specifies that the population is one of the

dichotomous populations for which the population success proportion p is no greater than

p0. Notice that this competing pair of hypotheses provides a decomposition of all possible

dichotomous populations into the collection of dichotomous populations where p > p0 and

the research hypothesis is true and the collection of dichotomous populations where p ≤ p0

and the null hypothesis is true. Our goal is to use the data to decide which of these two
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collections of dichotomous populations contains the actual population we are sampling

from.

Since a hypothesis test begins by tentatively assuming that the null hypothesis is true,

we need to decide what constitutes evidence against the null hypothesis H0 : p ≤ p0 and

in favor of the research hypothesis H1 : p > p0. The relationship between the observed

proportion of successes in the sample p̂ and the hypothesized value p0 will be used to

assess the strength of the evidence in favor of the research hypothesis. Generally, we would

expect to observe larger values of p̂ more often when the research hypothesis H1 : p > p0

is true than when the null hypothesis H0 : p ≤ p0 is true. In particular, we can view the

observation of a value of p̂ that is sufficiently large relative to p0 as constituting evidence

against the null hypothesis H0 : p ≤ p0 and in favor of the research hypothesis H1 : p > p0.

Deciding whether the observed value of p̂ is “sufficiently large relative to p0” is based on

the corresponding P–value, which is defined below.

The P–value for testing the null hypothesis H0 : p ≤ p0 versus the research hypothesis

H1 : p > p0 is the probability of observing a value of p̂ as large or larger than the value

of p̂ that we actually do observe. The P–value quantifies the consistency of the observed

data with the null hypothesis and may be interpreted as a, somewhat indirect, measure

of the strength of the evidence in the data in favor of the research hypothesis and against

the null hypothesis. Because the P–value is computed under the assumption that the null

hypothesis is true (and the research hypothesis is false), the smaller the P–value is, the

less consistent the observed data are with the null hypothesis. Therefore, since one of

the hypotheses must be true, when we observe a small P–value we can conclude that the

research hypothesis is more consistent with the observed data than is the null hypothesis.

The P–value is computed under the assumption that the research hypothesis H1 : p >

p0 is false and the null hypothesis H0 : p ≤ p0 is true. Because the null hypothesis only

specifies that p ≤ p0, we need to choose a particular value of p (that is no larger than p0) in

order to compute the P–value. It is most appropriate to use p = p0 for this computation.

(Recall that in the apple orchard example we used p0 = .20 to compute the P–value.)

Using p = p0, which defines the boundary between p ≤ p0, where the null hypothesis is

true, and p > p0, where the research hypothesis is true, provides some protection against

incorrectly rejecting H0 : p ≤ p0.

To compute the P–value we need to know how much variability there is in the sampling

distribution of p̂ when p = p0. When p = p0 the standard error of p̂, which provides a

suitable measure of the variability in p̂, is

S.E.(p̂) =

√
p0(1− p0)

n
.
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To use the normal approximation to the sampling distribution of p̂ to compute the P–

value we first need to determine the calculated Z statistic or Z score corresponding to the

observed value of p̂. This calculated Z statistic, denoted by Zcalc, is

Zcalc =
p̂− p0
S.E.(p̂)

,

where the standard error S.E.(p̂) is as defined above. Recall that the P–value for testing

the null hypothesisH0 : p ≤ p0 versus the research hypothesisH1 : p > p0 is the probability

of observing a value of p̂ as large or larger than the value of p̂ that we actually do observe,

computed assuming that p = p0. Using the normal approximation, this P–value is equal

to the probability that a standard normal variable takes on a value at least as large as

Zcalc. This P–value is

P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, i.e., this P–value is the area under the

standard normal density curve to the right of Zcalc, as shown in Figure 4. Notice that the

P value (the area to the right of Zcalc) is small when Zcalc is far to the right of zero which

is equivalent to p̂ being far to the right of p0.

Figure 4. P–value for H0 : p ≤ p0 versus H1 : p > p0.

0 Zcalc

Once the P–value has been computed we need to decide whether the P–value is small

enough to justify rejecting the null hypothesis in favor of the research hypothesis. In the

apple orchard example we argued that observing 52 infested trees in a sample of 200 would

be very surprising if no more than 20% of all the trees in the orchard were infested, since

the corresponding P–value of .0169 was very small. We also argued that observing 45

infested trees in a sample of 200 would not be very surprising if no more than 20% of all

the trees in the orchard were infested, since the corresponding P–value of .1884 is fairly

large. Deciding whether a P–value is small enough to reject a null hypothesis requires a

subjective judgment by the investigator in the context of the problem at hand.

The following general remarks regarding the use of P–values to assess the evidence

against a null hypothesis and in favor of a research hypothesis apply to hypothesis tests

in general, not just hypothesis tests for a proportion.
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One approach to hypothesis testing is to use a fixed cutoff value to decide whether

the P–value is “large” or “small”. The most common application of this approach is

to conclude that there is sufficient evidence to reject the null hypothesis in favor of the

research hypothesis only when the P–value is less than .05. When a fixed cutoff value like

.05 (5%) is used to decide whether to reject the null hypothesis in favor of the research

hypothesis this cutoff value is known as the significance level of the test. Hence, if we

adopt the rule of rejecting the null hypothesis in favor of the research hypothesis only

when the P–value is less than .05, then we are performing a hypothesis test at the 5%

level of significance. In accordance with this terminology, the P–value is also known as

the observed significance level of the test and if the P–value is less than the prescribed

significance level, then the results are said to be statistically significant.

To perform a hypothesis test at the 5% level of significance we compute the appropriate

P–value and compare it to the fixed significance level .05. If the P–value is less than .05,

then we conclude that there is sufficient evidence, at the 5% level of significance, to reject

the null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is less

than .05, then the data do support H1. If the P–value is not less than .05, then we

conclude that there is not sufficient evidence, at the 5% level of significance, to reject the

null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is not less

than .05, then the data do not support H1.

Instead of, or in addition to, using a fixed significance level like 5% we can use the

P–value as a measure of the evidence (in the data) against the null hypothesis H0 and in

favor of the research hypothesis H1. Some guidelines for deciding how strong the evidence

is in favor of the research hypothesis H1 are given below.

Guidelines for interpreting a P–value:

1. If the P–value is greater than .10, there is no evidence in favor of H1.

2. If the P–value is between .05 and .10, there is suggestive but very weak evidence in

favor of H1.

3. If the P–value is between .04 and .05, there is weak evidence in favor of H1.

4. If the P–value is between .02 and .04, there is moderately strong evidence in favor of

H1.

5. If the P–value is between .01 and .02, there is strong evidence in favor of H1.

6. If the P–value is less than .01, there is very strong evidence in favor of H1.

Whether you choose to use a fixed significance level or the preceding guidelines based

on the P–value you should always report the P–value since this allows someone else to

interpret the evidence in favor of H1 using their personal preferences regarding the size of

a P–value.
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In the U.S. legal system there is a similar set of guidelines for assessing the level of

proof or weight of the evidence against the null hypothesis of innocence and in favor of

the research hypothesis of guilt. The weakest level of proof is “the preponderance of the

evidence” (this is similar to a reasonably small P–value), the next level of proof is “clear

and convincing evidence” (this is similar to a small P–value), and the highest level of proof

is “beyond a reasonable doubt” (this is similar to a very small P–value).

We now return to our discussion for the particular research hypothesis H1 : p > p0.

The steps for performing a hypothesis test for

H0 : p ≤ p0 versus H1 : p > p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂− p0)/S.E.(p̂), and S.E.(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the right of Zcalc, as shown in Figure 4.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p > p0 over H0 : p ≤ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is greater than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p > p0 over H0 : p ≤ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is greater than p0.

The procedure for testing the null hypothesis H0 : p ≤ p0 versus the research hypoth-

esis H1 : p > p0 given above is readily modified for testing the null hypothesis H0 : p ≥ p0
versus the research hypothesis H1 : p < p0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population success proportion p is less than the

particular, hypothesized value p0, i.e., consider a situation where the research hypothesis

is H1 : p < p0 and the null hypothesis is H0 : p ≥ p0. For these hypotheses values of the

observed success proportion p̂ that are sufficiently small relative to p0 provide evidence in

favor of the research hypothesis H1 : p < p0 and against the null hypothesis H0 : p ≥ p0.

Therefore, the P–value for testing H0 : p ≥ p0 versus H1 : p < p0 is the probability of

observing a value of p̂ as small or smaller than the value actually observed. As before, the

P–value is computed under the assumption that p = p0. The calculated Z statistic Zcalc

is defined as before; however, in this situation the P–value is the area under the standard
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normal density curve to the left of Zcalc, since values of p̂ that are small relative to p0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : p ≥ p0 versus H1 : p < p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≤ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂− p0)/S.E.(p̂), and S.E.(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the left of Zcalc as shown in Figure 5.

Figure 5. P–value for H0 : p ≥ p0 versus H1 : p < p0.

Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p < p0 over H0 : p ≥ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is less than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p < p0 over H0 : p ≥ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is less than p0.

Example. Acceptance sampling for electronic devices. A large retailer receives

a shipment of 10,000 electronic devices from a supplier. The supplier guarantees that no

more than 6% of these devices are defective. In fact, if more than 6% of the devices in

the shipment are defective, then the supplier will allow the retailer to return the entire

shipment, provided this is done with 10 days of receiving the shipment. Therefore, the

retailer needs to decide between accepting the shipment and returning the shipment to the

supplier. This decision will be based on the information provided by examining a simple

random sample of electronic devices selected from the shipment.

In this example one of these electronic devices is a unit and the collection of 10,000

units constituting the shipment is the population. Notice that, in this example, the target

population and the sampled population are the same (each is the shipment of 10,000
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devices). A suitable variable for the indicated objective is whether an electronic device

is defective with the two possible values: yes (it is defective) and no (it is not defective).

A relevant parameter is the proportion p of defective devices in the shipment of 10,000

devices. The corresponding statistic p̂ is the proportion of defective devices in the sample

of devices that is examined.

The boundary between the null and research hypotheses is clearly p0 = .06, since

we need to decide whether the population proportion of defective devices p exceeds .06.

Assuming that the supplier is trustworthy, it would seem to be a reasonable business

practice to accept the shipment of electronic devices unless we find sufficient evidence,

by examining the sample of devices, to conclude that more than 6% of the devices in

the shipment are defective. Hence, we will use a hypothesis test to determine whether

there is sufficient evidence to conclude that the population defective proportion p exceeds

.06. More formally, our research hypothesis is H1 : p > .06 and our null hypothesis is

H0 : p ≤ .06.

To continue with this example we need to know the sample size n and the results

of the examination of the sample of electronic devices. Suppose that the simple random

sample contains n = 200 electronic devices. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .06 is

S.E.(p̂) =

√
(.06)(.94)

200
= .0168.

Case 1. Suppose that 16 of the 200 devices in the sample are defective so that p̂ = .08.

In this case we know that 8% of the 200 devices in the sample are defective and we need

to decide whether this suggests that more than 6% of all the devices in the shipment are

defective. The calculated Z statistic is

Zcalc =
p̂− p0
S.E.(p̂)

=
.08− .06

.0168
= 1.1910

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 1.1910) = .1168.

Since this P–value is large there is not sufficient evidence to reject the null hypothesis

p ≤ .06 in favor of the research hypothesis p > .06. Therefore, if we observe 16 defective

devices in a random sample of n = 200 devices, then we should accept the shipment of

devices, since there is not sufficient evidence to conclude that more than 6% of the shipment

of 10,000 devices is defective.
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Case 2. Now suppose that 20 of the 200 devices in the sample are defective so that

p̂ = .10. In this case

Zcalc =
p̂− p0
S.E.(p̂)

=
.10− .06

.0168
= 2.3820

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 2.3820) = .0086.

This P–value is very small indicating that we have strong evidence against the null hypoth-

esis p ≤ .06 and in favor of the research hypothesis p > .06. Therefore, if we observe 20

defective devices in a random sample of n = 200 devices, then we are justified in returning

the shipment of devices, since there is strong evidence that more than 6% of the shipment

of 10,000 devices is defective.

In both of the cases described above, in addition to the conclusion of the hypothesis

test the retailer might also wonder exactly what proportion of devices in the shipment of

10,000 devices are defective. We can use a 95% confidence interval estimate of p to answer

this question.

In the first case there are 16 defective devices in the sample of n = 200 giving an

observed proportion of defective devices of p̂ = .08. The confidence interval estimate is

based on p̃k = .0879 and the 95% margin of error M.E.(p̃k) = .0381. Therefore, we are

95% confident that the actual proportion of defective devices in the shipment of 10,000 is

between .0879− .0381 = .0498 and .0879 + .0381 = .1260. As expected, since we did not

reject the tentative assumption that p ≤ .06, we see that this confidence interval includes

proportions that are both less than .06 and greater than .06.

In the second case there are 20 defective devices in the sample of n = 200 giving

p̂ = .10, p̃k = .1075, and the 95% margin of error M.E.(p̃k) = .0419. Therefore, in this

case we are 95% confident that the actual proportion of defective devices in the shipment

of 10,000 is between .1075− .0419 = .0656 and .1075 + .0419 = .1494. As expected, since

we did reject the tentative assumption that p ≤ .06, we see that all of the values in this

confidence interval are greater than .06. Notice that in this case the P–value .0086 is quite

small indicating that there is very strong evidence that the proportion of defective devices

in the shipment is larger than .06. However, from the 95% confidence interval estimate

of p we find that this proportion of defective devices might actually be as small as .0656,

which is not much larger than .06. Thus, the small P–value indicates strong evidence that

p is greater than .06 but it does not necessarily indicate that p is a lot larger than .06. Of

course the 95% confidence interval estimate also indicates that p may be as large as .1494

which is a good bit larger than .06.

The scenario in the acceptance sampling example where there is strong evidence that

p > .06 (P–value .0086) but the lower limit of the 95% confidence interval .0656 is not
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much larger than .06 highlights the need for a confidence interval to estimate the value

of p in addition to a hypothesis test to clarify the practical importance of the result of

the test. Bear in mind that a hypothesis test addresses a very formal distinction between

two complementary hypotheses and that in some situations the results may be statistically

significant (in the sense that the P–value is small) but of little practical significance (in

the sense that p is not very different from p0).

Example. Machine parts. The current production process used to manufacture

a particular machine part is known (from past experience) to produce parts which are

unacceptable, in the sense that they require further machining, 35% of the time. A new

production process has been developed with the hope that it will reduce the chance of pro-

ducing unacceptable parts. Suppose that 200 parts are produced using the new production

process and that 54 of these parts are found to be unacceptable.

In this example we have a sequence of 200 dichotomous trials, where a trial consists

of producing a part with the new production process and determining whether it is unac-

ceptable. In this example p denotes the probability that a part produced using the new

production process will be unacceptable. We will model these 200 trials as a sequence of

n = 200 Bernoulli trials with population success probability p. This assumption is reason-

able provided: (1) the probability that a part is unacceptable is essentially constant from

part to part; and, (2) whether a specific part is unacceptable or not has no effect on the

probability that any other part is unacceptable.

In this example the boundary between the null and research hypotheses is clearly

p0 = .35. Since these data were collected to determine if the new production process

is better than the old process, we want to know whether there is sufficient evidence to

conclude that less than 35% of the parts produced using the new production process would

be unacceptable. Thus our research hypothesis is H1 : p < .35 and our null hypothesis is

H0 : p ≥ .35. Since 54 of the 200 parts in our sample are unacceptable we know that p̂ = .27

and we need to determine whether this is small enough to suggest that the corresponding

population probability p is also less than .35. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .35 is

S.E.(p̂) =

√
(.35)(.65)

200
= .0337.

The calculated Z statistic is

Zcalc =
p̂− p0
S.E.(p̂)

=
.27− .35

.0337
= −2.3739

and the P–value is

P–value = P (Z ≤ Zcalc) = P (Z ≤ −2.3739) = .0088.
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Since this P–value is very small, there is sufficient evidence to reject the null hypothesis

p ≥ .35 in favor of the research hypothesis p < .35. Hence, based on this sample of 200

parts there is very strong evidence that the new production process is superior in the sense

that the probability of producing an unacceptable part is less than .35.

Clearly this conclusion should be accompanied by an estimate of how much smaller

this probability is likely to be. Observing 54 unacceptable parts in the sample of n = 200

gives p̂ = .27, p̃k = .2743, and the 95% margin of error M.E.(p̃k) = .0611. Therefore,

we are 95% confident that the probability of a part produced using the new production

process being unacceptable is between .2743 − .0611 = .2132 and .2743 + .0611 = .3354.

As expected, since we did reject the tentative assumption that p ≥ .35, we see that all

of the values in this confidence interval are less than .35. The P–value .0088 is quite

small indicating that there is very strong evidence that the probability of producing an

unacceptable part is less than .35. However, from the 95% confidence interval estimate

of p we find that this probability might actually be as large as .3354 which is not much

smaller than .35. Of course the 95% confidence interval estimate also indicates that p may

be as small as .2132 which is a good bit smaller than .35.

The hypothesis tests we have discussed thus far are only appropriate when we have

enough a priori information, i.e., information that does not depend on the data to be

used for the hypothesis test, to postulate that the population success proportion p is on

one side of a particular value p0. That is, we have only considered situations where the

research hypothesis is directional in the sense of specifying either that p > p0 or that

p < p0. In some situations we will not have enough a priori information to allow us to

choose the appropriate directional research hypothesis. Instead, we might only conjecture

that the population success proportion p is different from some particular value p0. In a

situation like this our research hypothesis specifies that the population success proportion

p is different from p0, i.e., H1 : p 6= p0 and the corresponding null hypothesis specifies

that p is exactly equal to p0, i.e., H0 : p = p0. As we will see in the inheritance model

considered below, when testing to see whether p is equal to a specified value p0 the null

hypothesis H0 : p = p0 often corresponds to the validity of a particular theory or model

and the research hypothesis or alternative hypothesis specifies that the theory is invalid.

In order to decide between the null hypothesis H0 : p = p0 and the research hypothesis

H1 : p 6= p0, we need to decide whether the observed success proportion p̂ supports the

null hypothesis by being “close to p0”, or supports the research hypothesis by being “far

away from p0”. In this situation the P–value is the probability that the observed success

proportion p̂ would be as far or farther away from p0 in either direction as is the value

that we actually observe. In other words, the P–value corresponds to large values of the

distance |p̂ − p0| (the absolute value of the difference between p̂ and p0). The P–value is

computed under the assumption that p = p0 so that the null hypothesis is true. In this
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situation the calculated Z statistic Zcalc is the absolute value of the Z statistic that would

be used for testing a directional hypothesis. That is, the calculated Z statistic is

Zcalc =

∣∣∣∣
p̂− p0
S.E.(p̂)

∣∣∣∣ .

In terms of this Z statistic the P–value is the probability that the absolute value of a

standard normal variable Z would take on a value as large or larger than Zcalc assuming

that p = p0. This probability is the sum of the area under the standard normal density

curve to the left of −Zcalc and the area under the standard normal density curve to the

right of Zcalc. We need to add these two areas (probabilities) since we are finding the

probability that the observed success proportion p̂ would be as far or farther away from

p0 in either direction as is the value that we actually observe, when p = p0.

The steps for performing a hypothesis test for

H0 : p = p0 versus H1 : p 6= p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|Z| ≥ Zcalc) =

P (Z ≤ −Zcalc) +P (Z ≥ Zcalc), where Z denotes a standard normal variable, Zcalc =

|(p̂− p0)/S.E.(p̂)|, and S.E.(p̂) =
√
p0(1− p0)/n. This P–value is the sum of the area

under the standard normal density curve to the left of −Zcalc and the area under the

standard normal density curve to the right of Zcalc as shown in Figure 6.

Figure 6. P–value for H0 : p = p0 versus H1 : p 6= p0.

Zcalc-Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p 6= p0 over H0 : p = p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is different from p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p 6= p0 over H0 : p = p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is different from p0.
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Example. Inheritance in peas (flower color). In his investigations, during the

years 1856 to 1868, of the chromosomal theory of inheritance Gregor Mendel performed

a series of experiments on ordinary garden peas. One characteristic of garden peas that

Mendel studied was the color of the flowers (red or white). When Mendel crossed a plant

with red flowers with a plant with white flowers, the resulting offspring all had red flowers.

But when he crossed two of these first generation plants, he observed plants with white as

well as red flowers. We will use the results of one of Mendel’s experiments to test a simple

model for inheritance of flower color. Mendel observed 929 pea plants arising from a cross

of two of these first generation plants. Of these 929 plants he found 705 plants with red

flowers and 224 plants with white flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers

(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (ordered combinations) RR,Rr, rR,

and rr. The three genotypes RR,Rr, and rR, which include the dominant R allele, will

yield red flowers while the fourth genotype rr will yield white flowers. If a red flowered

RR genotype parent is crossed with a white flowered rr genotype parent, then all of the

offspring will have genotype Rr and will produce red flowers. If two of these first generation

Rr genotype plants are crossed, each of the four possible genotypes RR,Rr, rR, and rr is

equally likely and plants with white as well as red flowers will occur. Under this simple

model for inheritance, with each of the four genotypes having the same probability of

occurring (and with each plant possessing only one genotype), the probability that a plant

will have red flowers is p = 3/4 and the probability that a plant will have white flowers is

1− p = 1/4. In other words, this model for inheritance of flower color says that we would

expect to see red flowers 3/4 of the time and white flowers 1/4 of the time.

We can test the validity of this model by testing the null hypothesisH0 : p = 3/4 versus

the alternative hypothesis H1 : p 6= 3/4. Notice that the model is valid under the null

hypothesis and the model is not valid under the alternative hypothesis. Mendel observed

705 plants with red flowers out of the n = 929 plants giving an observed proportion of

plants with red flowers of p̂ = 705/929 = .7589. The standard error of p̂, computed under

the assumption that p = p0 = 3/4, is

S.E.(p̂) =

√
(.75)(.25)

929
= .0142

and the calculated Z statistic is Zcalc = .6251 giving a P–value of

P–value = P (|Z| ≥ Zcalc) = P (|Z| ≥ .6251) = .5319.
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This P–value is quite large and we are not able to reject the null hypothesis; therefore,

we conclude that the observed data are consistent with Mendel’s model. Technically, we

should say that the data are not inconsistent with the model in the sense that we cannot

reject the hypothesis that p = 3/4. In this example, the 95% confidence interval estimate

of p ranges from .7303 to .7853.

5.4 Directional confidence bounds

In our discussion of hypothesis testing we considered directional research hypotheses

of the form p > p0 and p < p0 as well as nondirectional research hypotheses of the form

p 6= p0. However, in our discussion of 95% confidence intervals for p we only considered

confidence intervals of the form

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k).

A 95% confidence interval of this form consists of a lower bound p̃k −M.E.(p̃k) for p and

an upper bound p̃k +M.E.(p̃k) for p, thereby giving a range of plausible values for p. In a

situation where we have enough a priori information to justify a directional research hy-

pothesis we might argue that it would be more appropriate to determine a 95% confidence

bound (a lower bound or an upper bound) for p instead of a range of values.

For example, in the acceptance sampling example we might argue that we are less

concerned with how large p might be than with how small it might be. Therefore, we

might be satisfied with an estimate of the smallest value of p which would be consistent

with the data, i.e., we might only need a 95% confidence lower bound for p.

We will now show how a 90% confidence interval for p can be used to provide a 95%

confidence lower (or upper) bound for p. The cutoff point k for the margin of error for

a 90% confidence interval for p is k = 1.645. Three relevant probabilities associated with

the 90% confidence interval with lower limit L and upper limit U are:

P [L ≤ p ≤ U ] = .90, P [p < L] = .05, and P [U < p] = .05.

Combining the probability that p is between L and U and the probability that p is greater

than U we see that

P [p > L] = .90 + .05 = .95.

In other words, 95% of the time the computed value of the lower limit L of a 90% confidence

interval for p will be less than p. Therefore, the lower limit L of a 90% confidence interval

for p can be used as a 95% confidence lower bound for p. An analogous argument shows

that the upper limit U of a 90% confidence interval for p can be used as a 95% confidence

upper bound for p.
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Example. Acceptance sampling for electronic devices (revisited). If there

are 16 defective devices in a sample of n = 200, then the observed proportion of defective

devices is p̂ = .08 and taking k = 1.645 gives p̃k = .0856 and a 90% margin of error of

M.E.(p̃k) = .0318. Therefore, we are 95% confident that the actual proportion of defective

devices in the shipment of 10,000 is at least .0856 − .0318 = .0538, which allows for the

possibility that p < .06.

If there are 20 defective devices in a sample of n = 200, then the observed proportion

of defective devices is p̂ = .10 and taking k = 1.645 gives p̃k = .1053 and a 90% margin of

error of M.E.(p̃k) = .0351. Therefore, we are 95% confident that the actual proportion of

defective devices in the shipment of 10,000 is at least .1053− .0351 = .0702, which supports

the conclusion that p > .06.

5.5 Summary

Basic inferential methods (confidence intervals and hypothesis tests) were introduced

in this chapter in the context of making inferences about a population proportion p. These

inferential methods are based on the sampling distribution of a statistic (the sample pro-

portion p̂ in this chapter) which describes the sample to sample variability in the statistic

as an estimator of the corresponding parameter.

The specific inferential methods introduced in this chapter involve the use of the

observed proportion of successes p̂ in a random sample to make inferences about the corre-

sponding population success proportion p. In particular, we discussed confidence interval

estimates of p and formal tests of hypotheses about p. These inferences about p are based

on a normal approximation to the sampling distribution of p̂ and require certain assump-

tions about the random sample. Strictly speaking, the inferential methods discussed in this

chapter are not appropriate unless these assumptions are valid. The requisite assumptions

are that the sample is a simple random sample selected with replacement or equivalently

that the sample corresponds to a sequence of Bernoulli trials. We also noted that this

approximation works well for a simple random sample selected without replacement pro-

vided the population being sampled is very large. The sampling distribution of p̂ is the

theoretical probability distribution of p̂ which indicates how p̂ behaves as an estimator of

p. Under the assumptions described above, the sampling distribution of p̂ indicates that

p̂ is unbiased as an estimator of p (p̂ neither consistently overestimates p nor consistently

underestimates p) and provides a measure of the variability in p̂ as an estimator of p (the

population standard error of p̂, S.E.(p̂) =
√
p(1− p)/n). The normal approximation allows

us to compute probabilities concerning p̂ by re–expressing these probabilities in terms of

the standardized variable Z = (p̂− p)/S.E.(p̂) and using the standard normal distribution

to compute the probabilities.
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A 95% confidence interval estimate of p is an interval of plausible values for p con-

structed using a method which guarantees that 95% of such intervals will actually contain

the unknown proportion p. That is, a 95% confidence interval is an interval constructed

using a method of generating such intervals with the property that this method will work,

in the sense of generating an interval that contains p, for 95% of all possible samples. We

recommended the Wilson interval as a confidence interval estimate of p. For a confidence

level C (usually .95) and the corresponding standard normal cutoff point k (k = 1.96 when

C = .95) the Wilson interval is of the form

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k),

where

p̃k =
np̂+ k

2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2

determines the length of the interval. We also discussed a simple but less accurate con-

fidence interval for p (the Wald interval) and a simple approximation to the 95% Wilson

interval (the Agresti–Coull interval). The 95% Agresti–Coull interval is of the form

p̃−M.E.(p̃) ≤ p ≤ p̃+M.E.(p̃),

where

p̃ =
the number of successes plus 2

the number of observations plus 4
=

np̂+ 2

n+ 4

and

M.E.(p̃) = 1.96

√
p̃(1− p̃)

n+ 4
.

The “add 2 successes / add 4 observations” trick used in the Agresti–Coull interval can

be used in a computer program or calculator implementation of the Wald interval to

approximate the 95% Wilson interval.

A hypothesis test is used to compare two competing, complementary hypotheses (the

null hypothesis H0 and the research or alternative hypothesis H1) about p by tentatively

assuming that H0 is true and examining the evidence, which is quantified by the appropri-

ate P–value, against H0 and in favor of H1. Since the P–value quantifies evidence against

H0 and in favor of H1, a small P–value constitutes evidence in favor of H1. Guidelines for

interpreting a P–value are given on page 99.
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If there is sufficient a priori information to specify a directional hypothesis of the

form H1 : p > p0 or H1 : p < p0, then we can perform a hypothesis test to address

the respective questions “Is there sufficient evidence to conclude that p > p0?” or “Is

there sufficient evidence to conclude that p < p0?” The null hypotheses for these research

hypotheses are their negations H0 : p ≤ p0 and H0 : p ≥ p0, respectively. The hypothesis

test proceeds by tentatively assuming that the null hypothesisH0 is true and checking to see

if there is sufficient evidence (a small enough P–value) to reject this tentative assumption

in favor of the research hypothesis H1. The P–values for these directional hypothesis

tests are based on the observed value of the Z–statistic Zcalc = (p̂ − p0)/S.E.(p̂), where

S.E.(p̂) =
√

p0(1− p0)/n is the standard error for testing. For H1 : p > p0 large values of

p̂, relative to p0, favor H1 over H0 and the P–value is the probability that Z ≥ Zcalc. For

H1 : p < p0 we look for small values of p̂, relative to p0, and the P–value is the probability

that Z ≤ Zcalc.

For situations where there is not enough a priori information to specify a directional

hypothesis we considered a hypothesis test for the null hypothesis H0 : p = p0 versus the

alternative hypothesis H1 : p 6= p0. Again we tentatively assume that H0 is true and

check to see if there is sufficient evidence (a small enough P–value) to reject this tentative

assumption in favor ofH1. In this situation the hypothesis test addresses the question “Are

the data consistent with p = p0 or is there sufficient evidence to conclude that p 6= p0?”

For this non–directional hypothesis test we take the absolute value when computing the

observed value of the Z–statistic Zcalc = |(p̂− p0)|/S.E.(p̂), since values of p̂ which are far

away from p0 in either direction support p 6= p0 over p = p0. Thus the P–value for this

hypothesis test is the probability that |Z| ≥ Zcalc.

For all of these hypothesis tests, the P–value is computed under the assumption that

H0 is true, and the P–value is the probability of observing a value of p̂ that is as extreme

or more extreme, relative to p0, than the value we actually observed, under the assumption

that H0 is true (in particular p = p0). In this statement the definition of extreme (large,

small, or far from in either direction) depends on the form of H1.

5.6 Exercises

For each of the following examples:

a) Define the relevant population success proportion or probability. Be sure to indicate

the corresponding population.

b) Using the information provided, formulate an appropriate research hypothesis about

the population success proportion and briefly explain why your hypothesis is appropriate.
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c) Perform a hypothesis test to determine whether the data support your research hypoth-

esis. Provide the P–value and briefly summarize your conclusion in the context of the

example.

d) Construct a 95% confidence interval for the success proportion and interpret it in context

of the example.

1. A company which provides telephone based support for its products has found that 20%

of the users of this service file complaints about the quality of the service they receive.

Recently this company retrained its support personnel with the hope of reducing the

percentage of users who file complaints. A random sample of 150 customers who used

the telephone support after the support personnel had been retrained revealed that 20

customers were not satisfied with the quality of support they received.

2. A manufacturer has found that 15% of the items produced at its old manufactur-

ing facility fail to pass final inspection and must be remanufactured before they can be

sold. This manufacturer has recently opened a new manufacturing facility and wants to

determine whether the items produced at the new facility are more or less likely to fail

inspection and require remanufacture. A random sample of 200 items is selected from a

large batch of items produced at the new facility and of these 42 fail inspection and require

remanufacturing.

3. A supplier of vegetable seeds has a large number of bean seeds left over from last season

and is trying to decide whether these seeds are suitable for sale for the current season.

This supplier normally advertises that more than 85% of its bean seeds will germinate. A

random sample of 200 of the leftover beans seeds was selected and of these 200 seeds 181

germinated.
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Chapter 6

Comparing Two Proportions

6.1 Introduction

In this chapter we consider inferential methods for comparing two population propor-

tions p1 and p2. More specifically, we consider methods for making inferences about the

difference p1 − p2 between two population proportions p1 and p2. The inferential methods

for a single proportion p discussed in Chapter 5 are based on a large sample size normal

approximation to the sampling distribution of p̂. The inferential methods we will discuss

in this chapter are based on an analogous large sample size normal approximation to the

sampling distribution of p̂1− p̂2. Sections 6.2 and 6.3 deal with inferential methods appro-

priate when the data consist of independent random samples. The modifications needed

for dependent (paired) samples are discussed in Section 6.4.

6.2 Estimation for two proportions (independent samples)

In some applications there are two actual physical dichotomous populations so that

p1 denotes the population success proportion for population one and p2 denotes the pop-

ulation success proportion for population two. In other applications, such as randomized

comparative experiments p1 and p2 denote hypothetical population success probabilities

corresponding to two treatments. We will assume that the data correspond to two inde-

pendent sequences of Bernoulli trials: a sequence of n1 Bernoulli trials with population

success probability p1 and an independent sequence of n2 Bernoulli trials with population

success probability p2. The assumption that these are independent sequences of Bernoulli

trials means that the outcomes of all n1 +n2 trials are independent. When sampling from

physical populations these assumptions are equivalent to assuming that the data consist

of two independent simple random samples (of sizes n1 and n2) selected with replacement

from dichotomous populations with population success proportions p1 and p2. In this con-

text the assumption of independence basically means that the method used to select the

random sample from the first population is not influenced by the method used to select

the random sample from the second population, and vice versa.

The observed success proportions p̂1 and p̂2 are the obvious estimates of the two pop-

ulation success proportions p1 and p2; and the difference p̂1 − p̂2 between these observed

success proportions is the obvious estimate of difference p1−p2 between the two population

success proportions. The behavior of p̂1 − p̂2 as an estimator of p1 − p2 can be determined

from its sampling distribution. As you might expect, since p̂1 and p̂2 are unbiased es-

timators of p1 and p2, p̂1 − p̂2 is an unbiased estimator of p1 − p2. Thus the sampling
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distribution of p̂1 − p̂2 has mean equal to p1 − p2. The standard deviation of the sampling

distribution of p̂1 − p̂2 is the population standard error of p̂1 − p̂2

S.E.(p̂1 − p̂2) =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

.

Notice that the population variance var(p̂1− p̂2) (the square of S.E.(p̂1− p̂2)) is equal to the

sum of the population variance of p̂1 and the population variance of p̂2. This property is a

consequence of our assumption that the random samples are independent. This expression

for the standard error of the difference between two sample success proportions is not

appropriate if the random samples are not independent.

As was the case for the sampling distribution of a single sample proportion, the sam-

pling distribution of p̂1 − p̂2 is not the same when p̂1 and p̂2 are based on samples selected

without replacement as it is when p̂1 and p̂2 are based on samples selected with replace-

ment. In both sampling situations, the mean of the sampling distribution of p̂1 − p̂2 is

p1−p2. Thus p̂1− p̂2 is an unbiased estimator of p1−p2, whether the samples are selected

with or without replacement. On the other hand, as with a single proportion, the standard

error of p̂1− p̂2 is smaller when the samples are selected without replacement. This implies

that, strictly speaking, the confidence interval estimates of p1 − p2 given below, which are

based on the assumption that the samples are selected with replacement, are not appro-

priate when the samples are selected without replacement. However, if the sizes of the two

populations are both very large relative to the sizes of the samples, then, for practical pur-

poses, we can ignore the fact that the samples were selected without replacement. Hence,

when we have samples selected without replacement and we know that the populations are

very large, it is not unreasonable to compute a confidence interval estimate of p1 − p2 as

if the samples were selected with replacement.

Remark. When p̂1 and p̂2 are computed from independent simple random samples of

sizes n1 and n2 selected without replacement from dichotomous populations of sizes N1

and N2, the population standard error of p̂1 − p̂2

S.E.(p̂1 − p̂2) =

√
f1

p1(1− p1)

n1

+ f2
p2(1− p2)

n2

,

is smaller than the population standard error for independent samples selected with re-

placement. In this situation there are two finite population correction factors f1 =

(N1 − n1)/(N1 − 1) and f2 = (N2 − n2)/(N2 − 1) and the effect on the standard er-

ror is most noticeable when one or both of the N ′s is small relative to the corresponding

n. If N1 and N2 are both very large relative to the respective n1 and n2, then f1 ≈ 1,

f2 ≈ 1, and the two standard errors are essentially equal.
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We will consider inferential methods based on a large sample size normal approxima-

tion to the sampling distribution of p̂1 − p̂2. This normal approximation is analogous to

the normal approximation to the sampling distribution of p̂ of Section 5.2. In the present

context the normal approximation simply says that, when both n1 and n2 are large, the

standardized value of p̂1 − p̂2, obtained by subtracting the population difference p1 − p2
and dividing by the population standard error of p̂1 − p̂2, behaves in approximate accor-

dance with the standard normal distribution. For completeness, a formal statement of this

normal approximation is given below.

The normal approximation to the sampling distribution of p̂1 − p̂2. Let p̂1 de-

note the observed proportion of successes in a sequence of n1 Bernoulli trials with success

probability p1 (or equivalently the observed proportion of successes in a simple random

sample drawn with replacement from a dichotomous population with population success

proportion p1). Let p̂2 denote the observed proportion of successes in a sequence of n2

Bernoulli trials with success probability p2 (or equivalently the observed proportion of suc-

cesses in a simple random sample drawn with replacement from a dichotomous population

with population success proportion p2). Assume that these two sequences of Bernoulli

trials (or random samples) are independent. Finally let a < b be two given constants and

S.E.(p̂1 − p̂2) =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

.

If n1 and n2 are sufficiently large, then the probability that

(p̂1 − p̂2)− (p1 − p2)

S.E.(p̂1 − p̂2)

is between a and b is approximately equal to the probability that a standard normal variable

Z is between a and b. In symbols, using ≈ to denote approximate equality, the conclusion

from above is that, for sufficiently large values of n1 and n2,

P

(
a ≤ (p̂1 − p̂2)− (p1 − p2)

S.E.(p̂1 − p̂2)
≤ b

)
≈ P (a ≤ Z ≤ b).

Remark. If the two populations being sampled are very large relative to the sizes of

the samples, then, for practical purposes, this normal approximation to the sampling

distribution of p̂1 − p̂2 may also be applied when p̂1 and p̂2 are based on independent

simple random samples selected without replacement.

The starting point for using this normal approximation to construct a 95% confidence

interval estimate of the difference p1 − p2 between the two population success proportions

is the approximate probability statement

P
(
|(p̂1 − p̂2)− (p1 − p2)| ≤ 1.96S.E.(p̂1 − p̂2)

)
≈ .95.
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This probability statement indicates that the probability that the actual difference p1−p2

is within 1.96S.E.(p̂1− p̂2) units of the observed difference p̂1− p̂2 is approximately .95. As

was the case with the analogous interval for one proportion, this interval is not computable,

since it involves the population standard error S.E.(p̂1−p̂2) which depends on the unknown

parameters p1 and p2 and is therefore also unknown.

The method we used to derive the Wilson confidence interval for a single proportion

will not work in the present context. Therefore, in the present context we will consider

a confidence interval estimate of the difference p1 − p2 based on the estimated difference

p̂1 − p̂2 and the estimated standard error of p̂1 − p̂2

Ŝ.E.(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

We will refer to this estimated standard error as the standard error for estimation.

The margin of error of p̂1 − p̂2 is obtained by multiplying this estimated standard error

by a suitable constant k. (Recall that: for a 95% confidence level k = 1.96, for a 90%

confidence level k = 1.645, and for a 99% confidence level k = 2.576.) The 95% margin

of error of p̂1 − p̂2 is

M.E.(p̂1 − p̂2) = 1.96Ŝ.E.(p̂1 − p̂2)

and the interval from (p̂1 − p̂2) − M.E.(p̂1 − p̂2) to (p̂1 − p̂2) + M.E.(p̂1 − p̂2) is a 95%

confidence interval estimate of the difference p1 − p2. Thus we can claim that we are 95%

confident that the difference p1−p2 between the population success proportions is between

(p̂1 − p̂2)−M.E.(p̂1 − p̂2) and (p̂1 − p̂2) + M.E.(p̂1 − p̂2).

Recall that it is the estimate p̂1 − p̂2 and the margin of error M.E.(p̂1 − p̂2) which vary

from sample to sample. Therefore, the 95% confidence level applies to the method used to

generate the confidence interval estimate.

Example. Rural versus urban voter preferences. Suppose that a polling or-

ganization has separate listings of all the registered voters in a large rural district and

a large urban district and wishes to compare the proportions of voters in these districts

who favor a proposition which is to appear on an upcoming election ballot. Let p1 denote

the proportion of all registered voters in the rural district who favor the proposition at

the time of the poll and let p2 denote the proportion of all registered voters in the urban

district who favor the proposition at the time of the poll. (In terms of the box of balls

analogy of Chapter 5, we now have two boxes of balls with p1 denoting the proportion of

red balls in box one and p2 denoting the proportion of red balls in box two.)
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The most obvious way to obtain independent random samples in this scenario is to: (1)

randomly generate a set of n1 labels for the rural district, contact the corresponding voters,

and compute the estimate p̂1 for the voters in the rural district; and, (2) randomly generate

a set of n2 labels for the urban district, contact the corresponding voters, and compute the

estimate p̂2 for the voters in the urban district. (Select a simple random sample of balls

from box one and compute p̂1 and, independently, select a simple random sample of balls

from box two and compute p̂2.) Assuming that simple random samples are selected (with

replacement or from large populations) this method clearly yields independent samples

and the confidence interval method described above is valid.

Now suppose that we do not have separate listings of the rural voters and the urban

voter but instead have a single listing of all registered voters in a large district which

includes both rural and urban voters. In this situation we could randomly generate a

set of n labels for the entire district, contact the corresponding voters, and in addition to

determining whether the voter favors the proposition also determine whether the voter lives

in a rural or urban area. We could then partition the simple random sample of n voters into

the subsample of n1 voters who live in a rural area and the subsample of n2 voters who live

in an urban area. (This is like labeling the balls in box one with a one, labeling the balls

in box two with a two, then combining the balls in a single box, selecting a simple random

sample of n balls from this box, and dividing it to get a sample of n1 balls from box one and

a sample of n2 balls from box two.) This approach yields independent random samples but,

technically (based on the formal definition), these random samples are not simple random

samples, since the sample sizes n1 and n2 were not selected in advance. Actually this is

not a problem, since it is readily verified that the samples can be viewed as independent

sequences of Bernoulli trials (exactly if selection is with replacement and approximately

if selection is without replacement from a large population and both subpopulations are

also large). Therefore, the confidence interval method described above is also valid when

this alternate method of forming independent random samples by partitioning a simple

random sample is used.

Example. An opinion poll. The purpose of this example is to demonstrate the

application of a 95% confidence interval for p1 − p2. To make the numbers more realistic

we will use numbers from a New York Times/CBS News poll conducted September 9–13,

2005. To place this in context note that hurricane Katrina made landfall on September 1,

2005. Like all such national polls this poll was not based on a simple random sample; it

employed a complex random sampling method involving stratification and clustering.

Suppose that a listing of telephone numbers for a well–defined population of adults in

the U.S. was used to select a simple random sample of n = 1, 167 adults. When asked “Are

you white, black, Asian, or some other race?” 877 of these 1,167 adults chose white and

211 chose black. Therefore, we have independent simple random samples of size n1 = 877
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(from the subpopulation of white adults) and n2 = 211 (from the subpopulation of black

adults).

First consider the responses to question 10: “Do you think George W. Bush has the

same priorities for the country as you have, or not?” Let p1 denote the proportion of

all white adults in this population who would respond “has the same priorities” and let

p2 denote the proportion of all black adults in this population who would respond “has

the same priorities”. Of the n1 = 877 whites 360 responded “has the same priorities”

giving p̂1 = .4105 while 27 of the n2 = 211 blacks responded “has the same priorities”

giving p̂2 = .1280. These data clearly suggest that the population proportion p1 is greater

than the population proportion p2, since 41.05% of the whites responded “has the same

priorities” while only 12.80% of the blacks responded this way. In this situation we are

95% confident that p1−p2 is between .2269 and .3381. Since this entire interval is positive

we can conclude that we are 95% confident that the population proportion of whites who

would have responded “has the same priorities” if all had been asked exceeds the analogous

population proportion for blacks by at least .2269 and perhaps as much as .3381. In other

words, we are 95% confident that the percentage of all whites who would have responded

“has the same priorities” exceeds the corresponding proportion for blacks by between 22.69

and 33.81 percentage points.

Next consider the responses to question 14: “Do you think Congress has the same

priorities for the country as you have, or not?” Let p1 denote the proportion of all white

adults in this population who would respond “has the same priorities” and let p2 denote

the proportion of all black adults in this population who would respond “has the same

priorities”. Of the n1 = 877 whites 252 responded “has the same priorities” giving p̂1 =

.2873 while 51 of the n2 = 211 blacks responded “has the same priorities” giving p̂2 = .2417.

In this case it is not clear whether the data suggest that the population proportion p1 is

greater than the population proportion p2, since the sample proportions are reasonably

similar. In this situation we are 95% confident that p1 − p2 is between –.0194 and .1107.

Since the lower limit of this interval is negative (suggesting p1 < p2) and the upper limit

of this interval is positive (suggesting p1 > p2) we cannot exclude the possibility that the

population proportions p1 and p2 are the same.

Finally consider the responses to question 62: “As a result of the recent increase in

gas prices, have you cut back on household spending on other things?” Let p1 denote

the proportion of all white adults in this population who would respond yes and let p2

denote the proportion of all black adults in this population who would respond yes. Of

the n1 = 877 whites 517 responded yes giving p̂1 = .5895 while 158 of the n2 = 211 blacks

responded yes giving p̂2 = .7588. These data clearly suggest that the population proportion

p1 is less than the population proportion p2, since only 58.95% of the whites responded

yes while 75.88% of the blacks responded yes. In this situation we are 95% confident that
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p1 − p2 is between -.2263 and -.0923 (or equivalently that p2 − p1 is between .0923 and

.2263). Since this entire interval (for p1 − p2) is negative we can conclude that we are 95%

confident that the population proportion of whites who would have responded yes if all had

been asked is less than the analogous population proportion for blacks by at least .0923

and perhaps as much as .2263. In other words, we are 95% confident that the percentage of

all blacks who would have responded yes exceeds the corresponding percentage for whites

by between 9.23 and 22.63 percentage points.

Another common application of this confidence interval for the difference between two

population proportions is for randomized comparative experiments. Consider a random-

ized comparative experiment where N = n1 + n2 available units are randomly assigned to

receive one of two treatments (with n1 units assigned to treatment 1 and the remaining n2

units assigned to treatment 2). We can imagine two hypothetical populations of responses

and two population success proportions corresponding to the two treatments. The first

hypothetical population is the collection of responses (S or F), corresponding to all N

available units, which we would observe if all N available units were subjected to treat-

ment 1 and p1 is the proportion of successes among these units. The second hypothetical

population and population success proportion p2 are defined similarly to correspond to the

responses we would observe if all N available units were subjected to treatment 2.

The model corresponding to the assumptions we made to justify the confidence interval

for p1−p2 treats the data as if they constitute independent simple random samples selected

with replacement from these two hypothetical populations. In terms of balls in a box, this

means that we are assuming that we have independent simple random samples selected

with replacement from two separate boxes of balls, with each box containing N balls.

Clearly this model is not appropriate for this application; a more appropriate model treats

the data as two dependent random samples selected without replacement from a single

box of N balls. Fortunately, even though the underlying assumptions are not valid for this

application the method still works reasonably well. Before we describe why it is helpful to

consider a specific example.

Example. Leading questions. The wording of questions in surveys can have a ma-

jor impact on the responses elicited. The effect of wording of questions was investigated in

Schuman and Presser, Attitude measurement and the gun control paradox, Public Opinion

Quarterly, 41 winter 1977–1978, 427–438. Two groups of adults were used to estimate the

difference in response to the following two versions of a question regarding gun control.

1. Would you favor or oppose a law which would require a person to obtain a police

permit before he could buy a gun?
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2. Would you favor a law which would require a person to obtain a police permit

before he could buy a gun, or do you think that such a law would interfere too much

with the right of citizens to own guns?

We might expect the second version of the question, with the added remark about the

right of citizens to own guns, to lead to less responses in favor of requiring a permit.

This study was conducted in 1976. The researchers began with a group of 1263 adults

which had been obtained by a random sampling method for a survey conducted by the

Survey Research Center of the University of Michigan. These 1263 adults were randomly

divided into two groups with 642 adults in the first group and 621 adults in the second

group. The adults in the first group were asked to respond to the first version of the gun

control question and the adults in the second group were asked to respond to the second

version of the gun control question. Twenty–seven adults in the first group and 36 adults

in the second group would not respond to the question. Therefore, we will restrict our

attention to the 1200 adults who were willing to respond to a question about gun control,

and we will use the n1 = 615 adults in the first group and the n2 = 585 adults in the

second group who responded to the question as our samples.

In this randomized comparative experiment the group of available units is the group

of 1200 adults who were willing to respond to a question about gun control in 1976. Let p1

denote the proportion of these 1200 adults who would respond “favor” (in 1976) if all 1200

were asked the first question and let p2 denote the proportion of these 1200 adults who

would respond “favor” (in 1976) if all 1200 were asked the second question. Our goal is to

estimate the difference p1− p2 between these proportions. When the study was conducted

463 of the 615 adults in the first group responded “favor” and 403 of the 585 adults in the

second group responded “favor”. The observed proportions of adults who respond “favor”

are p̂1 = .7528 and p̂2 = .6889 giving a difference of p̂1 − p̂2 = .0639. The standard error

is Ŝ.E.(p̂1 − p̂2) = .02586 and the margin of error is M.E.(p̂1 − p̂2) = .0507; therefore,

we are 95% confident that the difference p1 − p2 is between .0639 − .0507 = .0132 and

.0639 + .0507 = .1146. That is, we are 95% confident that modifying the first question

about gun control by adding the comment about the right of citizens to own guns lowers

the probability that an individual adult (from this group of 1200 adults) would respond

“favor” (in 1976) by at least .0132 and at most .1146.

In summary, we estimate that, in 1976, about 75.28% of these 1200 adults would

respond “favor” if asked the first question and we estimate that, if these same people had

instead been asked the second question with the comment about the right of citizens to

own guns, then we would see a reduction of this percentage in the range of 1.32 to 11.46

percentage points. Thus we find sufficient evidence to conclude that the added comment

has the anticipated effect of lowering the percentage who would respond “favor”; note,

however, that this reduction might be as small as 1.32 percentage points, as large as 11.46
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percentage points, or anywhere within this range. As we noted above these 1200 adults can

be viewed as a random sample from the population of adults sampled by the University

of Michigan researchers who would respond to a question about gun control, thus it is

reasonable to claim that this inference applies to this entire population of adults (in 1976)

not just these 1200.

Returning to our discussion of the validity of the assumptions for a randomized com-

parative experiment we will now expand on the single box of N balls model for this situ-

ation. Imagine a box containing N balls and suppose that each ball is marked with two

values, one indicating the response to treatment 1 and the other indicating the response

to treatment 2. Randomly assigning n1 units to treatment 1 and observing their response

to the treatment is like selecting a simple random sample of n1 balls without replacement

from this box of N balls and observing the values corresponding to treatment 1 on these

balls. Once these n1 balls have been selected for treatment 1 there are only n2 balls left

in the box and we have no choice in our selection of the balls for treatment 2. Thus we

cannot view these as independent samples. Furthermore, in this application both of the

sample sizes n1 and n2 are usually large relative to the number of available units N (often

each is approximately half of N) and we should not ignore the fact that we are sampling

without replacement.

The fact that the samples are selected without replacement causes the formula we are

using for the standard error of p̂1− p̂2 to overstate the amount of variability in p̂1− p̂2 and

as a result this causes the estimate of the standard error used to construct the confidence

interval to be too large which makes the confidence interval longer than it should be.

We will discuss the dependence of these samples in the context of the leading question

example but the same basic argument applies to randomized comparative experiments in

general. We might argue that an individual with strong feelings (pro or con) about gun

control would probably respond the same way (favor or oppose) whether the individual

was asked the first or second question. If by the luck of the draw many individuals who

are strongly supportive of gun control happen to be assigned to the group asked the first

question, then there will be fewer such individuals to be assigned to the group asked the

second question. This suggests that random assignments which tend to make p̂1 larger

(smaller) tend at the same time to make p̂2 smaller (larger). Therefore, in this context we

expect negative association between p̂1 and p̂2 so that assignments which give large (small)

values of p̂1 tend to give small (large) values of p̂2.

This type of dependence (negative association between p̂1 and p̂2) causes the formula

we are using for the standard error of p̂1 − p̂2 to understate the amount of variability in

p̂1 − p̂2 and as a result this causes the estimate of the standard error used to construct

the confidence interval to be too small which makes the confidence interval shorter than it

should be.
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Fortunately, provided that n1 and n2 are reasonably large, the effects of these two

violations of the underlying assumptions tend to cancel each other and the confidence

interval based on the assumptions of independent simple random samples selected with

replacement work reasonably well for randomized comparative experiments.

Remark. The use of one of the confidence limits of a 90% confidence interval as a 95%

confidence bound discussed in Section 5.4 can also be used in the present context. Thus, we

can find an upper or lower 95% confidence bound for p1 − p2 by selecting the appropriate

confidence limit from a 90% confidence interval estimate of p1 − p2.

6.3 Testing hypotheses about two proportions (independent samples)

In this section we will consider hypothesis tests for hypotheses relating two population

success proportions p1 and p2. The tests we consider are based on the same normal ap-

proximation to the sampling distribution of p̂1− p̂2 that we used for confidence estimation.

Thus we will assume that the data on which the hypothesis test is based correspond to

two independent simple random samples of sizes n1 and n2, selected with replacement,

from dichotomous populations with population success proportions p1 and p2, or equiv-

alently, that the data correspond to the outcomes of two independent sequences of n1

and n2 Bernoulli trials with success probabilities p1 and p2. However, as with confidence

estimation, for practical purposes, we do not need to worry about whether the samples

are selected with or without replacement, provided both of the populations are very large;

and, these tests are also applicable to randomized comparative experiments.

Many hypotheses about the relationship between the population proportions p1 and

p2 can be expressed as hypotheses about the relationship between p1 − p2 and zero, e.g.,

p1 > p2 is equivalent to p1 − p2 > 0. Therefore, we will consider tests which are based

on a suitably standardized value of the difference p̂1 − p̂2 between the observed success

proportions.

The P–value for a hypothesis about the relationship between a single proportion p

and a hypothesized value p0 is computed under the assumption that p = p0, therefore, we

used p = p0 in the standard error of p̂ for the Z–statistic of the test. The P–value for a

hypothesis about the relationship between p1 and p2 is computed under the assumption

that p1 = p2, therefore, we need to determine a suitable standard error of p̂1 − p̂2 (the

standard error for testing) under this assumption. Notice that p1 = p2 (p1 − p2 = 0)

specifies a common value for p1 and p2 but does not specify what this common value

is, e.g., we might have p1 = p2 = .5 or p1 = p2 = .1. When p1 = p2, p̂1 and p̂2 are

estimates of the same population success proportion. This suggests that we can pool or

combine the information in the two random samples to obtain a pooled estimate, p̂, of this

common population success proportion. This pooled estimate p̂ can then be used to get an
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estimate of S.E.(p̂1 − p̂2) that is suitable for use in the hypothesis test. If we let p denote

the common population success proportion under the assumption that p1 = p2, then the

population standard error of p̂1 − p̂2 simplifies to

S.E.(p̂1 − p̂2) =

√
p(1− p)

(
1

n1

+
1

n2

)
.

Replacing p in this population standard error by the pooled estimate p̂ gives the standard

error for testing

Ŝ.E.(p̂1 − p̂2) =

√
p̂(1− p̂)

(
1

n1

+
1

n2

)
,

where

p̂ =
the total number of successes in both samples

the total number of observations in both samples
=

n1p̂1 + n2p̂2
n1 + n2

.

When testing H0 : p1 ≤ p2 versus H1 : p1 > p2 values of p̂1 − p̂2 which are sufficiently

larger than zero provide evidence against the null hypothesis H0 : p1 ≤ p2 and in favor of

the research hypothesis H1 : p1 > p2. Thus large (positive) values of

Zcalc =
p̂1 − p̂2

Ŝ.E.(p̂1 − p̂2)
,

where Ŝ.E.(p̂1 − p̂2) denotes the standard error for testing, favor the research hypothesis

and the P–value is the probability that a standard normal variable takes on a value at

least as large as Zcalc, i.e., the P–value is the area under the standard normal density

curve to the right of Zcalc.

The steps for performing a hypothesis test for

H0 : p1 ≤ p2 versus H1 : p1 > p2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable and Zcalc is as defined above. This P–

value is the area under the standard normal density curve to the right of Zcalc as

shown in Figure 1.

Figure 1. P–value for H0 : p1 ≤ p2 versus H1 : p1 > p2.

0 Zcalc
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2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p1 > p2 over H0 : p1 ≤ p2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the population

proportion p1 is greater than the population success proportion p2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p1 > p2 over H0 : p1 ≤ p2. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population proportion p1 is greater than the population success proportion

p2.

When testing H0 : p1 ≥ p2 versus H1 : p1 < p2 values of p̂1 − p̂2 which are sufficiently

smaller than zero provide evidence against the null hypothesis H0 : p1 ≥ p2 and in favor of

the research hypothesis H1 : p1 < p2. Thus sufficiently negative values of Zcalc (as defined

above) favor the research hypothesis and the P–value is the probability that a standard

normal variable takes on a value no larger than Zcalc, i.e., the P–value is the area under

the standard normal density curve to the left of Zcalc.

The steps for performing a hypothesis test for

H0 : p1 ≥ p2 versus H1 : p1 < p2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≤ Zcalc),

where Z denotes a standard normal variable and Zcalc is as defined above. This P–

value is the area under the standard normal density curve to the left of Zcalc as shown

in Figure 2.

Figure 2. P–value for H0 : p1 ≥ p2 versus H1 : p1 < p2.

Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p1 < p2 over H0 : p1 ≥ p2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the population

proportion p1 is less than the population success proportion p2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p1 < p2 over H0 : p1 ≥ p2. That



6.3 Testing for two proportions (independent samples) 125

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population proportion p1 is less than the population success proportion p2.

When testing H0 : p1 = p2 versus H1 : p1 6= p2 values of p̂1 − p̂2 which are sufficiently

far away from zero in either direction provide evidence against the null hypothesis H0 :

p1 = p2 and in favor of the research hypothesis H1 : p1 6= p2. Thus sufficiently large values

of the absolute value of Zcalc (as defined above) favor the research hypothesis and the

P–value is the probability that a standard normal variable takes on a value below −|Zcalc|
or above |Zcalc|, i.e., the P–value is the combined area under the standard normal density

curve to the left of −|Zcalc| and to the right of |Zcalc|.
The steps for performing a hypothesis test for

H0 : p1 = p2 versus H1 : p1 6= p2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|Z| ≥ |Zcalc|) =
P (Z ≤ −|Zcalc|) + P (Z ≥ |Zcalc|), where Z denotes a standard normal variable and

Zcalc is as defined above. This P–value is the combined area under the standard

normal density curve to the left of −|Zcalc| and to the right of |Zcalc| as shown in

Figure 3.

Figure 3. P–value for H0 : p1 = p2 versus H1 : p1 6= p2.

Zcalc-Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p1 6= p2 over H0 : p1 = p2. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportions p1 and p2 are different.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p1 6= p2 over H0 : p1 = p2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the population success proportions p1 and p2 are different.

Example. An HIV vaccine trial. This example is based on a study described in

Flynn et al., Placebo–controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to
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prevent HIV–1 infection, J. of Infect. Dis., 191 Mar. 1, 2005, 654–665. A double–blind

randomized trial was conducted to investigate the effect of an rgp120 vaccine among men

who have sex with men and among women at high risk for heterosexual transmission of

type 1 HIV. A group of 5403 volunteers (5095 men and 308 women) was randomly divided

into two groups (a control group (n1 = 1805) and a vaccine group (n2 = 3598)). Each

volunteer received 7 injections of either placebo or vaccine over a 30 month period. These

individuals were tracked for a period of 3 years to see whether they developed HIV–1.

We can envision two hypothetical populations based on this group of 5403 individuals

and these two experimental treatments. Since these 5403 volunteers do not form a random

sample from some well defined population of people at high risk for developing HIV–1 we

should restrict our inferences to these 5403 volunteers. Let p1 denote the proportion of this

group of 5403 volunteers who would develop HIV–1 within 3 years if all 5403 volunteers

were given the placebo. Let p2 denote the proportion of this group of 5403 volunteers who

would develop HIV–1 within 3 years if all 5403 volunteers were given the vaccine. We can

also think of these proportions as the probabilities that one of these 5403 volunteers would

develop HIV–1 within 3 years if he or she was treated with the placebo (p1) or if he or she

was treated with the vaccine (p2). In terms of these parameters our research hypothesis is

H1 : p1 > p2 (the vaccine reduces the risk of developing HIV–1) and our null hypothesis is

H0 : p1 ≤ p2 (the vaccine does not reduce the risk of developing HIV–1).

By the end of the 3 years, 126 of the 1805 individuals treated with the placebo

developed HIV–1 while 241 of the 3598 individuals treated with the vaccine developed

HIV–1. The observed proportions are p̂1 = .0698 and p̂2 = .0670, and the difference is

p̂1 − p̂2 = .0028. The fact that this difference is positive (p̂1 is greater than p̂2) shows that

there is some evidence in favor of the research hypothesis p1 > p2. We need to determine

whether observing a difference of .0028, with samples of size n1 = 1805 and n2 = 3598,

is sufficiently surprising under the assumption that p1 ≤ p2 to allow us to reject this null

hypothesis as untenable. When we use the standard error for testing to standardize this

difference we get Zcalc = .3892. The corresponding P–value= P (Z ≥ .38929) = .3486 is

quite large. In words, this means that (for these sample sizes) if the null hypothesis was

true (p1 was actually no greater than p2), then we would observe a difference this far above

zero about 34.86% of the time. In other words, for the volunteers used in this study, these

data do not provide enough evidence to allow us to claim that this vaccine is better than

a placebo.

Example. Scotland coronary prevention study. This example is based on the

West of Scotland Coronary Prevention Study as described in Shepherd et al., Prevention

of coronary heart disease with pravastatin in men with hypercholesterolemia, New England

Journal of Medicine, 333 Nov. 16, 1995, 1994–1307, and Ford et al., Long–term follow–up

of the West of Scotland coronary prevention study, New England Journal of Medicine,
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357 Oct. 11, 2007, 1477–1486. The primary goal of this study was to determine whether

the administration of pravastatin to middle–aged men with high cholesterol levels and no

history of myocardial infarction over a period of five years reduces the risk of coronary

events. In this context a coronary event is defined as a nonfatal myocardial infarction

or death from coronary heart disease. A group of 6595 men, aged 45 to 64 years, with

high plasma cholesterol levels (mean 272 mg/dl) was randomly divided into two groups (a

control group and a treatment group). The 3302 men in the treatment group received 40

mg of pravastatin daily while the 3293 men in the control group received a placebo. All of

the men were given smoking cessation and dietary advice throughout the study.

We can envision two hypothetical populations based on this group of 6595 men and

these two experimental treatments. Since these 6595 men do not form a random sample

from some well defined population of middle–aged men with high cholesterol levels we

should restrict our inferences to these 6595 men. However, the investigators examined

these men to see if extrapolations beyond this group may be reasonable and they concluded

that: “The subjects in this study were representative of the general population in terms of

socioeconomic status and risk factors (Table 1). Their plasma cholesterol levels were in the

highest quartile of the range found in the British population. A number had evidence of

minor vascular disease, and in order to make the findings of the trial applicable to typical

middle-aged men with hypercholesterolemia, they were not excluded.”

Let p1 denote the proportion of this group of 6595 men who would experience a

cardiac event (as defined above) if all 6595 men were subjected to the five year pravastatin

treatment. Let p2 denote the proportion of this group of 6595 men who would experience

a cardiac event if all 6595 men were subjected to the five year placebo treatment. We can

also think of these proportions as the probabilities that one of these 6595 men would have

a cardiac event within five years if he was treated with pravastatin (p1) or if he was treated

with placebo (p2). In terms of these parameters our research hypothesis is H1 : p1 < p2

(pravastatin reduces the risk of a coronary event) and our null hypothesis is H0 : p1 ≥ p2
(pravastatin does not reduce the risk of a coronary event).

By the end of this five year trial, 174 of the 3302 men treated with pravastatin had

experienced a cardiac event and 248 of the 3293 men treated with a placebo had experienced

a cardiac event. The observed proportions are p̂1 = .0527 and p̂2 = .0753, and the difference

is p̂1− p̂2 = −.0226. The fact that this difference is negative (p̂1 is less than p̂2) shows that

there is some evidence in favor of the research hypothesis p1 < p2. We need to determine

whether observing a difference of −.0226, with samples of size n1 = 3302 and n2 = 3293,

is sufficiently surprising under the assumption that p1 ≥ p2 to allow us to reject this null

hypothesis as untenable. When we use the standard error for testing to standardize this

difference we get Zcalc = −3.7523. The corresponding P–value= P (Z ≤ −3.7523) is less

than .0001 (approximately 8.8×10−5). In words, this means that (for these sample sizes) if
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the null hypothesis was true (p1 was actually no less than p2), then we would almost never

(less than .01% of the time) observe a difference this far below zero. Therefore, these data

provide very strong evidence in favor of the research hypothesis that pravastatin reduces

the probability of a cardiac event in the sense that the probability that one of these 6595

men would have a cardiac event within five years would be lower if he was treated with

pravastatin than if he was treated with placebo.

In addition to this conclusion that pravastatin reduces the probability of a cardiac

event we can construct a confidence interval to quantify the practical importance of this

reduction. In this example we are 95% confident that p1 − p2 is between -.0344 and -.0108

(p2 − p1 is between .0108 and .0344).

In summary, for these 6595 men, we have very strong evidence (P–value < .0001) that

pravastatin reduces the risk of a cardiac event (versus placebo). We estimate that about

7.53% of these men would have a cardiac event if they all were treated with a placebo,

and we are 95% confident that if they all were treated with pravastatin we would see a

1.08 to 3.44 percentage point reduction in this percentage. Since we are dealing with small

percentages it is instructive to note that a reduction from 7.53% (p̂2) to 5.27% (p̂1) is a

30% reduction ((7.53− 5.27)/7.53 = .3001) in the risk of a man having a cardiac event.

A follow–up to this study tracked the men used in this trial for ten additional years

to assess the long term effects of treatment with pravastatin. At the end of the five year

trial, treatment with pravastatin or placebo ceased, and the patients returned to the care

of their primary care physicians. Five years after the conclusion of the trial 38.7% of the

original pravastatin group and 35.2% of the original placebo group were being treated with

statin drugs. The purpose of the follow–up study was to assess long–term effects regardless

of treatment received after the initial trial period.

For this part of the study, let p3 denote the proportion of this group of 6595 men

who would experience a cardiac event within 15 years of the beginning of the initial trial

if all 6595 men were subjected to the five year pravastatin treatment. Let p4 denote the

analogous proportion if all the men were subjected to the placebo treatment. In terms of

these parameters our research hypothesis is H1 : p3 < p4 (pravastatin reduces the long–

term risk of a coronary event) and our null hypothesis is H0 : p3 ≥ p4 (pravastatin does

not reduce the long–term risk of a coronary event).

By the end of the 15 year period, 390 of the 3302 men treated with pravastatin

had experienced a cardiac event and 509 of the 3293 men treated with a placebo had

experienced a cardiac event. The observed proportions are p̂3 = .1181 and p̂4 = .1546, and

the difference is p̂3 − p̂4 = −.0365. The fact that this difference is negative (p̂3 is less than

p̂4) shows that there is some evidence in favor of the research hypothesis p3 < p4. Since

the sample sizes for this test are the same as for the test above and since the difference

in this case is more extreme than before, we know that the P–value will be even smaller.
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In this case, when we use the standard error for testing to standardize this difference we

get Zcalc = −4.3136. The corresponding P–value= P (Z ≤ −4.3146) is less than .0001

(approximately 8.0×10−6). Therefore, these data provide very strong evidence in favor of

the research hypothesis that the five year pravastatin treatment reduces the probability of

a cardiac event in the long–term in the sense that the probability that one of these 6595

men would have a cardiac event within 15 years would be lower if he was treated with

pravastatin than if he was treated with placebo. In this case we are 95% confident that p4
exceeds p3 by at least .0199 and perhaps as much as .0530. Here we would estimate that

about 15.46% of these men would have a cardiac event within 15 years if they were all given

the five year placebo treatment and we are 95% confident that the five year pravastatin

treatment would reduce this percentage by between 1.99 and 5.30 percentage points.

6.4 Inference for two proportions (paired samples)

The inferential methods for comparing two population success proportions p1 and p2

we have considered thus far require independent estimates p̂1 and p̂2. We will now show

how these methods can be modified when p̂1 and p̂2 are dependent.

In some situations each unit in the first sample is paired with a corresponding unit

in the second sample. The units which form a pair may be the same unit measured at

two times or measured under two treatments; or the units which form a pair may be

distinct units which are matched on the basis of characteristics believed to be related to

the response of interest.

Consider the problem of assessing the effect of a debate between two candidates (A and

B) in an upcoming election on voter opinion. Let p1 denote the population proportion of

voters who favor candidate A on the day before the debate and let p2 denote the population

proportion of all voters who favor candidate A on the day after the debate. Instead of

selecting two independent simple random samples of voters, we could select a single simple

random sample of voters and get responses (whether the voter favors candidate A) for each

of these voter one day before the debate and one day after the debate.

Suppose that we wish to compare two methods of training workers to perform a com-

plex task. Let p1 denote the probability that a worker could perform this task satisfactorily

if the worker was trained using the first method and let p2 denote the probability that a

worker could perform this task satisfactorily if the worker was trained using the second

method. Instead of randomly assigning workers to two groups, we could use preliminary

information about the ability of the workers to perform this task to form matched pairs of

workers (each having essentially the same ability). For each pair we could randomly assign

one member to be trained using the first method and the other to be trained using the

second method. Then we could determine whether each worker could successfully perform

the task.
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In both of the situations described above the data consist of n ordered pairs of re-

sponses (response 1, response 2). Letting S denote a success and F denote a failure, the four

possible response pairs are: (S,S), (S,F), (F,S), and (F,F). The probability model for these

responses shown in Table 1 is determined by the corresponding population probabilities

pSS , pSF , pFS, and pFF . Notice that these four probabilities must sum to one.

Table 1. Probability model for paired dichotomous responses

response 1 response 2 probability

S S pSS

S F pSF

F S pFS

F F pFF

The probability that the first response is a success is p1 = pSS + pSF , the probability that

the second response is a success is p2 = pSS+pFS, and the difference is p1−p2 = pSF −pFS.

Therefore, the probabilities pSF and pFS of the outcomes SF and FS where the responses

are different determine the difference between the first and second response probabilities.

When p̂1 and p̂2 are computed from a random sample of n paired responses, p̂1, p̂2, and

p̂1 − p̂2 are unbiased estimators of p1, p2, and p1 − p2. In this situation the population

standard error of p̂1 − p̂2

S.E.(p̂1 − p̂2) =

√
pSF + pFS − (pSF − pFS)2

n
,

depends on the sample size n and the two probabilities pSF and pFS. When n is large, the

standardized value of p̂1− p̂2, obtained by subtracting the population difference p1−p2 and

dividing by this population standard error of p̂1 − p̂2, behaves in approximate accordance

with the standard normal distribution.

Given a simple random sample of n response pairs we can use the observed proportions

of (S,F) and (F,S) pairs p̂SF and p̂FS to estimate the standard error of p̂1 − p̂2.

For confidence estimation the estimated standard error of p̂1 − p̂2 is

Ŝ.E.(p̂1 − p̂2) =

√
p̂SF + p̂FS − (p̂SF − p̂FS)2

n
.

The 95% margin of error of p̂1 − p̂2 is

M.E.(p̂1 − p̂2) = 1.96Ŝ.E.(p̂1 − p̂2)

and the interval from (p̂1 − p̂2) − M.E.(p̂1 − p̂2) to (p̂1 − p̂2) + M.E.(p̂1 − p̂2) is a 95%

confidence interval estimate of the difference p1 − p2.
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When computing the P–value for a hypothesis test we will assume that p1 = p2 which

is equivalent to assuming that pSF = pFS. Under this assumption the population standard

error of p̂1 − p̂2 simplifies to

S.E.(p̂1 − p̂2) =

√
pSF + pFS

n
.

Thus for hypothesis testing the estimated standard error of p̂1 − p̂2 is

Ŝ.E.(p̂1 − p̂2) =

√
p̂SF + p̂FS

n
.

The Z–statistic for this situation is

Zcalc =
p̂1 − p̂2√

(p̂SF + p̂FS)/n
=

nSF − nFS√
nSF + nFS

,

where nSF and nFS are the respective frequencies of (S,F) and (F,S) pairs. Notice that

this test statistic only depends on the frequencies nSF and nFS, it does not depend on the

sample size n.

Example. Instant coffee purchases. This example is based on a study described

in Grover and Srinivasan, A simultaneous approach to market segmentation and market

structuring, J. of Marketing Research, 24 May 1987, 139–153. The authors selected a sim-

ple random sample of households from the 4657 households constituting the 1981 MRCA

market research panel. The data summarized in Table 2 correspond to a simple random

sample of n = 541 households selected from the subpopulation of the MRCA households

that purchased decaffeinated instant coffee at least twice during the one year study period.

These purchases are recorded as Sanka or other to indicate the brand of coffee purchased.

Let p1 denote the population proportion of households that chose Sanka on the first pur-

chase and let p2 denote the population proportion of households that chose Sanka on the

second purchase.

Table 2. Instant coffee purchase data

first purchase second purchase freq. rel. freq.

Sanka Sanka 155 .2865
Sanka other 49 .0906
other Sanka 76 .1405
other other 261 .4824

541 1.0000

In this sample 37.71% of the first purchases were Sanka and 42.70% of the second pur-

chases were Sanka. Note that p̂SF = .0906 and p̂FS = .1405 indicating that 9.06% of
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the households switched from Sanka to other and 14.05% of the households switched from

other to Sanka. In this case p̂1 − p̂2 = .3771 − .4270 = −.0499, the standard error for

estimation is

Ŝ.E.(p̂1 − p̂2) =

√
.0906 + .1405− (.0906− .1405)2

541
= .02056

and the 95% margin of error is M.E.(p̂1− p̂2) = .0403. This gives a 95% confidence interval

for p1−p2 ranging from −.0499− .0403 = −.0902 to −.0499+ .0403 = −.0096. Thus we are

95% confident that the proportion of all households in the subpopulation defined above that

chose Sanka first is between .0096 and .0902 smaller than the proportion of all households

that chose Sanka second. In other words, for this population of decaffeinated instant coffee

purchasers, we are 95% confident that the percentage of all households that chose Sanka

on the second purchase is .96 to 9.02 percentage points higher than the percentage of all

households that chose Sanka on the first purchase.

To demonstrate the method, consider a test of the null hypothesis H0 : p1 = p2 (the

same proportion purchase Sanka first as second) versus the research hypothesisH1 : p1 6= p2

(the proportions are different). For this test the Z–statistic is

Zcalc =
nSF − nFS√
nSF + nFS

=
49− 76√
49 + 76

= −2.4150

and the P–value is P (Z ≤ −2.415) + P (Z ≥ 2.415) = .0157. Therefore, there is sufficient

evidence to conclude that p1 and p2 are different.

Another situation where an inference about p1 − p2 is based on dependent estimates

p̂1 and p̂2 arises when a single sample of units is categorized into three or more categories.

Suppose that three or more candidates are listed on a ballot and we want to compare the

proportion of all voters who favor candidate A, pA, with the proportion of all voters who

favor candidate B, pB . Let pC = 1 − (pA + pB) denote the proportion of all voters who

favor neither A nor B or who have no opinion. The probability model for this situation

given in Table 3 is determined by the corresponding population probabilities pA, pB, and

pC . Notice that these three probabilities must sum to one.

Table 3. Probability model for trichotomous responses

response probability

A pA
B pB
C pC
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Assuming that the data form a simple random sample of size n; p̂A, p̂B and p̂A−p̂B are

unbiased estimators of pA, pB, and pA − pB. In this situation the population standard

error of p̂A − p̂B ,

S.E.(p̂A − p̂B) =

√
pA + pB − (pA − pB)2

n
,

depends on the sample size n and the two probabilities pA and pB .

For confidence estimation the estimated standard error of p̂A − p̂B is

Ŝ.E.(p̂A − p̂B) =

√
p̂A + p̂B − (p̂A − p̂B)2

n
,

and the 95% margin of error of p̂A − p̂B is

M.E.(p̂A − p̂B) = 1.96Ŝ.E.(p̂A − p̂B).

When computing the P–value for a hypothesis test we will assume that pA = pB.

Under this assumption the population standard error of p̂A − p̂B simplifies to

S.E.(p̂A − p̂B) =

√
pA + pB

n
.

Thus for hypothesis testing the estimated standard error of p̂A − p̂B is

Ŝ.E.(p̂A − p̂B) =

√
p̂A + p̂B

n
.

The Z–statistic for this situation is

Zcalc =
p̂A − p̂B√
(p̂A + p̂B)/n

=
nA − nB√
nA + nB

,

where nA and nB are the respective frequencies of categories A and B. As in the previous

application, this test statistic only depends on the frequencies nA and nB, it does not

depend on the sample size n.

Example. Opinions about a change in tax law (revisited). Recall that a simple

random sample of 100 taxpayers with telephones was selected and each taxpayer was asked

“Do you favor or oppose the proposed change in state tax law?”. For this population of

taxpayers let pA denote the proportion who would respond “favor”, let pB denote the

proportion who would respond “oppose”, and let pC denote the proportion who would

respond “no opinion”. When we first looked at this example we considered two ways to

dichotomize this population so that we could use inferential methods for a single proportion

p. First we considered “favor” versus “not favor” for the entire population and inference
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about p = pA (with 1 − p = pB + pC). Then we considered “favor” versus “oppose” for

the subpopulation of taxpayers who had an opinion and inference about p = pA/(pA+pB)

(with 1 − p = pB/(pA + pB)). We now have methods for making inferences about the

difference pA − pB without restricting the population.

As before, suppose that n = 100, 64 taxpayers favor the change, 26 taxpayers oppose

the change, and 10 taxpayers have no opinion. For this sample we have p̂A = .64 and

p̂B = .26, which gives the estimated standard error for estimation of

Ŝ.E.(p̂A − p̂B) =

√
.64 + .26− (.64− .26)2

100
= .0869

and a 95% margin of error of .1703. Therefore, we are 95% confident that pA − pB is

between .38− .1703 = .2097 and .38+ .1703 = .5503. In other words, we are 95% confident

that the actual proportion of taxpayers in this metropolitan area (who have telephones)

who favored the proposed tax law change at the time of this poll is between 20.97 and 55.03

percentage points higher than the corresponding proportion who opposed the change.

To demonstrate a hypothesis test consider the research hypothesis H1 : pA > pB that

a larger proportion of all the taxpayers in this metropolitan area (who have telephones)

favored the proposed tax law change at the time of this poll than opposed the change. The

estimated standard error for testing is

Ŝ.E.(p̂A − p̂B) =

√
.64 + .26

100
= .09487,

giving Zcalc = .38/.09487 = 4.0055 with P–value = P (Z ≥ 4.0055) = 3.1 × 10−5. Thus

there is very strong evidence that a larger proportion of all the taxpayers in this metropoli-

tan area (who have telephones) favored the proposed tax law change at the time of this

poll than opposed the change.

Remark. This hypothesis test is actually equivalent to the conditional test for the research

hypothesis H1 : p > .5 for p = pA/(pA+pB) when the population and sample are restricted

to the subpopulation and subsample of taxpayers who had an opinion at the time of the

poll. That is, if we compute Zcalc and the P–value for n = 90 and p̂ = 64/90 = .7111 we

get Zcalc = 4.0055 and P–value = 3.1× 10−5.

6.5 Summary

In this chapter we considered the use of the observed difference between two propor-

tions p̂1 − p̂2 to make inferences about the corresponding population difference p1 − p2.

First we considered the case when the estimates p̂1 and p̂2 are independent. In this case

we assumed that p̂1 and p̂2 were computed from independent random samples. Then we
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considered the case when the estimates p̂1 and p̂2 are dependent. In this case we consid-

ered two situations. First we assumed that p̂1 and p̂2 were computed from a single random

sample of paired observations and then we assumed that p̂1 and p̂2 were computed from a

single random sample from a population of units with three or more possible categorical

values.

The confidence interval estimates of p1 − p2 and formal tests of hypotheses about

p1 − p2 are based on a normal approximation to the sampling distribution of p̂1 − p̂2 and

require certain assumptions about the random samples. Strictly speaking, the inferential

methods discussed in this chapter are not appropriate unless these assumptions are valid.

Independent estimates

For the independent estimates case the requisite assumptions are that the data consist

of two independent simple random samples selected with replacement or equivalently two

independent sequences of Bernoulli trials. The assumption of independent random samples

is very important. We also noted that this approximation works well for independent

simple random samples selected without replacement provided both of the populations

being sampled are very large. The sampling distribution of p̂1 − p̂2 is the theoretical

probability distribution of p̂1 − p̂2 which indicates how p̂1 − p̂2 behaves as an estimator

of p1 − p2. Under the assumptions described above, the sampling distribution of p̂1 − p̂2
indicates that p̂1 − p̂2 is unbiased as an estimator of p1 − p2 (p̂1 − p̂2 neither consistently

overestimates p1 − p2 nor consistently underestimates p1 − p2) and provides a measure

of the variability in p̂1 − p̂2 as an estimator of p1 − p2 (the population standard error of

p̂1 − p̂2, S.E.(p̂1 − p̂2) =
√

p1(1− p1)/n1 + p2(1− p2)/n2 ). The normal approximation

allows us to compute probabilities concerning p̂1 − p̂2 by re–expressing these probabilities

in terms of the standardized variable Z = [(p̂1 − p̂2) − (p1 − p2)]/S.E.(p̂1 − p̂2) and using

the standard normal distribution to compute the probabilities.

A 95% confidence interval estimate of p1 − p2 is an interval of plausible values for

p1 − p2 constructed using a method which guarantees that 95% of such intervals will

actually contain the unknown difference p1 − p2 between the population proportions. In

the present context a confidence interval for p1−p2 may include only negative numbers, only

positive numbers, or a mixture of negative and positive numbers, since we are estimating

a difference. The 95% confidence interval estimate of p1 − p2 is formed by adding and

subtracting the appropriate margin of error to an estimate of p1 − p2. The estimate is

p̂1 − p̂2 and the margin of error M.E.(p̂1 − p̂2) used to form the 95% confidence interval is

M.E.(p̂1 − p̂2) = 1.96

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.
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The 95% confidence interval is the interval from (p̂1 − p̂2) −M.E.(p̂1 − p̂2) to (p̂1 − p̂2) +

M.E.(p̂1 − p̂2). Notice that the margin of error of p̂1 − p̂2 is a constant multiple (the

multiplier is 1.96) of the estimated standard error of p̂1 − p̂2,

Ŝ.E.(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

We also discussed formal hypothesis tests to compare two competing, complementary

hypotheses (the null hypothesis H0 and the research or alternative hypothesis H1) about

p1 − p2. Recall that a hypothesis test begins by tentatively assuming that H0 is true and

examining the evidence, which is quantified by the appropriate P–value, against H0 and

in favor of H1. Since the P–value quantifies evidence against H0 and in favor of H1, a

small P–value constitutes evidence in favor of H1. Guidelines for interpreting a P–value

are given on page 99.

If there is sufficient a priori information to specify a directional hypothesis of the

form H1 : p1 − p2 > 0 or H1 : p1 − p2 < 0, then we can perform a hypothesis test to

address the respective questions “Is there sufficient evidence to conclude that p1 > p2

(p1 − p2 > 0)?” or “Is there sufficient evidence to conclude that p1 < p2 (p1 − p2 < 0)?”

The null hypotheses for these research hypotheses are their negations H0 : p1 ≤ p2 and

H0 : p1 ≥ p2, respectively. The hypothesis test proceeds by tentatively assuming that

the null hypothesis H0 is true and checking to see if there is sufficient evidence (a small

enough P–value) to reject this tentative assumption in favor of the research hypothesis

H1. The P–values for these directional hypothesis tests are based on the observed value

of the Z–statistic

Zcalc =
p̂1 − p̂2

Ŝ.E.(p̂1 − p̂2)
,

where, in this testing context, the estimated standard error is

Ŝ.E.(p̂1 − p̂2) =

√
p̂(1− p̂)

(
1

n1

+
1

n2

)
,

with p̂ denoting the proportion of successes in the combined sample of all n1 + n2 units.

For H1 : p1 > p2 large values of p̂1− p̂2, relative to zero, favor H1 over H0 and the P–value

is the probability that Z ≥ Zcalc. For H1 : p1 < p2 we look for small values of p̂1 − p̂2,

relative to zero, and the P–value is the probability that Z ≤ Zcalc.

For situations where there is not enough a priori information to specify a directional

hypothesis we considered a hypothesis test for the null hypothesis H0 : p1 = p2 versus the

alternative hypothesis H1 : p1 6= p2. Again we tentatively assume that H0 is true and

check to see if there is sufficient evidence (a small enough P–value) to reject this tentative
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assumption in favor ofH1. In this situation the hypothesis test addresses the question “Are

the data consistent with p1 = p2 or is there sufficient evidence to conclude that p1 6= p2?”

For this non–directional hypothesis test we take the absolute value when computing the

observed value of the Z–statistic

Zcalc =
|p̂1 − p̂2|

Ŝ.E.(p̂1 − p̂2)
,

since values of p̂1 − p̂2 which are far away from zero in either direction support p1 6= p2
over p1 = p2. Thus the P–value for this hypothesis test is the probability that |Z| ≥ Zcalc.

For all of these hypothesis tests, the P–value is computed under the assumption that

H0 is true. The P–value is the probability of observing a value of p̂1 − p̂2 that is as

extreme or more extreme, relative to zero, than the value we actually observed, under the

assumption that H0 is true (in particular p̂1 = p̂2). In this statement the definition of

extreme (large, small, or far from in either direction) depends on the form of H1.

Dependent estimates

For the dependent estimates case we first considered the situation when the data con-

sist of a single simple random sample of success/failure pairs (or equivalently success/failure

pairs corresponding to paired sequences of Bernoulli trials). We then considered the situ-

ation when the data consist of a simple random sample selected with replacement from a

population of units with three or more possible categorical values. The details are given

in Section 6.4.

6.6 Exercises

Provide a complete analysis for each of the following examples. Be sure to: define relevant

population proportions p1 and p2; setup and perform a relevant hypothesis test; and, find

a confidence interval for p1 − p2. Provide a complete summary of your findings in the

context of the example.

1. Childers and Ferrell (1979) (Journal of Marketing Research, 16, 429–431) conducted a

study to investigate the effects of the format of a survey on the response rate for mailed

questionnaires. In this context the response rate is the probability that a recipient will

return the completed questionnaire. They created two forms of a questionnaire one with

questions on both sides of a single sheet of paper and one with questions on one side of

each of two sheets of paper. Before reading the remainder of this example answer the

following question. Which of these two formats do you believe would result in a higher

response rate and why do you believe this? Childers and Ferrell randomly divided a

sample of 440 members of the American Marketing Association into two groups of 220.



138 6.6 Exercises

Of the 220 people who were sent the one sheet version of the questionnaire, 79 returned

the questionnaire. Of the 220 people sent the two sheet version of the questionnaire, 66

returned the questionnaire.

2. This example is based on a study of D.M. Barnes (1988), Science, 241, 1029–1030,

as described in Moore (1995). This study was conducted to compare two antidepressants

as treatments for cocaine addiction. In particular, the researchers wanted to compare the

effects of the antidepressant desipramine with the effects of lithium (a standard treatment

for cocaine addiction). A group of 48 chronic cocaine users was randomly divided into

two groups of 24. One group was treated with desipramine and the other was treated

with lithium. The subjects were tracked for three years and the number of subjects who

relapsed into cocaine use during this period was recorded. Ten of the 24 people in the

desipramine group relapsed into cocaine use and 18 of the 24 people in the lithium group

relapsed.
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Chapter 7

Inference for a Mean or Median

7.1 Introduction

There are many situations when we might wish to make inferences about the location

of the “center” of the population distribution of a quantitative variable. We will consider

methods for making inferences about a population mean or a population median, which are

the two most commonly used measures of the center of the distribution of a quantitative

variable, in this chapter.

In Chapter 5 we considered inferences about the distribution of a dichotomous vari-

able. Since the distribution of a dichotomous variable is completely determined by the

corresponding population success proportion, we found that the sampling distribution of

the sample proportion p̂ was determined by the sampling method. In general, the dis-

tribution of a quantitative variable is not completely determined by a single parameter.

Therefore, before we can make inferences about the distribution of a quantitative variable

we need to make some assumptions about the distribution of the variable.

A probability model for the distribution of a discrete variableX is a theoretical relative

frequency distribution which specifies the probabilities (theoretical relative frequencies)

with which each of the possible values of X will occur. In contrast to a relative frequency

distribution, which indicates the relative frequencies with which the possible values of X

occur in a sample, a probability model or probability distribution specifies the probabilities

with which the possible values of X will occur when we observe a single value of X. That

is, if we imagine choosing a single value of X at random from all of the possible values of X,

then the probability model specifies the probability with which each possible value will be

observed. We can represent a discrete probability distribution graphically via a probability

histogram (theoretical relative frequency histogram) which is simply a histogram based on

the probabilities specified by the probability model.

A probability model for the distribution of a continuous variable X can be represented

by a density curve. A density curve is a nonnegative curve for which the area under the

curve (over the x–axis) is one. We can think of the density curve as a smooth version of

a probability histogram with the rectangles of the histogram replaced by a smooth curve

indicating where the tops of the rectangles would be. With a continuous variable X it

does not make sense to talk about the probability that X would take on a particular

value, after all if we defined positive probabilities for the infinite collection (continuum) of

possible values of X these probabilities could not add up to one. It does, however, make

sense to talk about the probability that X will take on a value in a specified interval or

range of values. Given two constants a < b the probability that X takes on a value in the



140 7.2a Introduction

interval from a to b, denoted by P (a ≤ X ≤ b), is equal to the area under the density

curve over the interval from a to b on the x–axis. Areas of this sort based on the density

curve give the probabilities which a single value of X, chosen at random from the infinite

population of possible values of X, will satisfy.

Given a probability model for the distribution of a continuous variable X, i.e., given

a density curve for the distribution of the continuous variable X, we can define population

parameters which characterize relevant aspects of the distribution. For example, we can

define the population mean µ as the balance point of the unit mass bounded by the density

curve and the number line. We can also think of the population mean as the weighted

average of the infinite collection of possible values of X with weights determined by the

density curve. We can similarly define the population median M as the point on the

number line where a vertical line would divide the area under the density curve into two

equal areas (each of size one–half).

7.2 Inference for a population mean

7.2a Introduction

In this section we will consider inference for the mean µ of the population distribution

of a continuous variable X. The basic problem we will consider is that of using a random

sample of values of the continuous variable X to estimate the corresponding population

mean or to test a hypothesis about this population mean.

Before we go further it is instructive to consider some situations where inference about

a population mean could be used and the way in which we might interpret a population

mean.

In some applications the population mean represents an actual physical constant. Let

µ denote the true value of the physical constant (such as the speed of light) which we wish

to estimate. Suppose that an experiment has been devised to produce a measurement X of

the physical constant µ. A probability model for the distribution of X provides a model for

the behavior of an observed value of X by specifying probabilities which X must satisfy.

Thus, the probability model provides an explanation of the variability in X as an estimate

of µ. It would be unreasonable to expect an observed value of X to be exactly equal to

µ; however, if the experiment is carefully planned and executed it would be reasonable to

expect the average value of X based on a long series of replications of the experiment to

be equal to µ. If this is the case, the population mean of the probability model for X will

be equal to the physical constant µ and the standard deviation σ of the probability model

will serve as a useful quantification of the variability of the measurement process.

When interest centers on an actual, physical population of units the population mean

is the average value of the variable of interest corresponding to all of the units in the
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population. Imagine a large population of units, e.g., a population of humans or animals.

Let the continuous variable X denote a characteristic of a unit, e.g., X might be some

measurement of the size of a unit. For concreteness, let X denote the height of an adult

human male and consider the population of all adult human males in the United Kingdom.

A probability model for the distribution of X provides a model for the behavior of an

observed value of the height X of an adult male selected at random from this population.

In this situation a probability model explains the variability among the heights of the adult

males in this population. Let µ denote the population mean height of all adult males in the

United Kingdom, i.e., let µ be the average height we would get if we averaged the heights

of all the adult males in this population. In this context the population mean height is

obviously not the “true height” of each of the adult males; however, we can think of the

height X of a particular adult male as being equal to the population mean height µ plus

or minus an adjustment for this particular male which is due to hereditary, environmental,

and other factors. The standard deviation σ of the probability model serves to quantify

the variability among this population of heights.

In many applications interest centers on the population mean difference between two

paired values. For example, consider a population of individuals with high cholesterol

levels and a drug designed to reduce cholesterol levels. Let X1 denote the cholesterol level

of an individual before taking the drug, let X2 denote this same individual’s cholesterol

level after being treated with the drug, and let D = X1−X2 denote the difference between

the two cholesterol levels (the decrease in cholesterol level). A probability model for the

distribution of D provides a model for the behavior of an observed value of the difference D

for an individual selected at random from this population. In this situation a probability

model explains the variability among the differences in cholesterol level due to treatment

with the drug for the individuals in this population. The corresponding population mean

difference µ is the average difference (decrease) in cholesterol level that we would observe if

all of the individuals in this population were treated with this drug. The standard deviation

σ of the probability model serves to quantify the variability among the differences for the

individuals in this population.

We can envision a probability model for the distribution of a quantitative variable X

in terms of a box model. If X has a finite number of possible values, then a probability

model specifies the probabilities with which these possible values will occur. If the balls

in a box are labeled with the possible values of X and the proportion of balls with each

label (value of X) in the box is equal to the probability for that value specified by the

probability model, then, according to the probability model, observing a value of X is

equivalent to selecting a single ball at random from this box and observing the label on

the ball. For a continuous variable X observing the value of X is like selecting a ball at

random from a box containing an infinite collection of suitably labeled balls.
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Given a probability model for the distribution of X, a collection of n values of X is

said to form a random sample of size n if it satisfies the two properties given below.

1. Each value of the variable X that we observe can be viewed as a single value

chosen at random from a (usually infinite) population of values which are distributed

according to the specified probability model for the distribution of X.

2. The observed values of X are independent. That is, knowing the value of one or

more of the observed values of X has no effect on the probabilities associated with

other values of X.

In other words, in terms of the box model for the probability distribution of X a random

sample of n values of X can be viewed as a collection of n labels corresponding to a simple

random sample selected with replacement from a box of suitably labeled balls.

Given a random sample of values of X it seems obvious that the sample mean X is an

appropriate estimate of the corresponding population mean µ. The sampling distribution

of X, which describes the sample to sample variability in X, serves as the starting point

for our study of the behavior of the sample mean X as an estimator of the population

mean µ. The exact form of the sampling distribution of X depends on the form of the

distribution of X. However, the two important properties of the sampling distribution of

the sample mean given below are valid regardless of the exact form of the distribution of

X.

Let X denote the sample mean of a random sample of size n from a population

(distribution) with population mean µ and population standard deviation σ. The sampling

distribution of the sample mean X has the following characteristics.

1. The mean of the sampling distribution of X is the corresponding population mean

µ. This indicates that the sample meanX is unbiased as an estimator of the population

mean µ. Recall that saying that a statistic is unbiased means that, even though the

statistic will overestimate the parameter for some samples and will underestimate the

parameter in other samples, it will do so in such a way that, in the long run, the

values of the statistic will average to give the correct value of the parameter.

2. The population standard error of the sample mean X (the standard deviation of

the sampling distribution of X) is S.E.(X) = σ/
√
n. That is, the standard deviation

of the sampling distribution of X is equal to the standard deviation of the distribution

of X divided by the square root of the sample size. Notice that this implies that the

sample mean is less variable than a single observation as an estimator of µ; and that

if µ and σ are held constant, then the variability in X as an estimator of µ decreases

as the sample size increases reflecting the fact that a larger sample provides more

information than a smaller sample.
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Since the form of the sampling distribution of X depends on the form of the distribu-

tion of X, we will need to make some assumptions about the distribution of X before we

can proceed with our discussion of inference for the population mean µ. These assumptions

correspond to the choice of a probability model (density curve) to represent the distribu-

tion of X. There is an infinite collection of probability models to choose from but we will

restrict our attention to a single probability model, the normal probability model, which

is appropriate for many situations when the distribution of X is symmetric and mound

shaped. This does not imply that all, or even most, distributions of continuous variables

are normal distributions. Some of the reasons that we will use the normal distribution as

a probability model are: (1) the theory needed for inference has been worked out for the

normal model; (2) there are many situations where a normal distribution provides a rea-

sonable model for the distribution of a quantitative variable; (3) even though the inferential

methods we discuss are based on the assumption that the distribution of the variable is

exactly a normal distribution, it is known that these inferential methods actually perform

reasonably well provided the true distribution of the variable is “reasonably similar to a

normal distribution”; and, (4) it is often possible to transform or redefine a variable so

that its distribution is reasonably modeled by a normal distribution.

7.2b The normal distribution

The normal distribution with mean µ and standard deviation σ can be characterized by

its density curve. The density curve for the normal distribution with mean µ and standard

deviation σ is the familiar bell shaped curve. The standard normal density curve, which

has mean µ = 0 and standard deviation σ = 1, is shown in Figure 1.

Figure 1. The standard normal density curve.
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The normal distribution with mean µ and its density curve are symmetric around µ, i.e.,

if we draw a vertical line through µ, then the two sides of the density curve are mirror

images of each other. Therefore the mean of a normal distribution µ is also the median of

the normal distribution. The mean µ locates the normal distribution on the number line so
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that if we hold σ constant and change the mean µ, the normal distribution is simply shifted

along the number line until it is centered at the new mean. In other words, holding σ fixed

and changing µ simply relocates the density curve on the number line; it has no effect on

the shape of the curve. Figure 2 provides the density curves for normal distributions with

respective means µ = 0 and µ = 2 and common standard deviation σ = 1.

Figure 2. Normal distributions with common standard deviation one and
means of zero and two.
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The standard deviation σ indicates the amount of variability in the normal distribu-

tion. If we hold µ fixed and increase the value of σ, then the normal density curve becomes

flatter, while retaining its bell–shape, indicating that there is more variability in the distri-

bution. Similarly, if we hold µ fixed and decrease the value of σ, then the normal density

curve becomes more peaked around the mean µ, while retaining its bell–shape, indicating

that there is less variability in the distribution. Normal distributions with mean µ = 0

and respective standard deviations σ = .5, σ = 1, and σ = 2 are plotted in Figure 3.

Figure 3. Normal distributions with common mean zero and standard
deviations one–half, one, and two.
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Example. Heights of adult males. The 8585 heights (in inches) of adult males

born in the United Kingdom (including the whole of Ireland) which are summarized in
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Table 8 of Section 3.3 provide a good illustration of the fact that normal distributions

often provide very good models for populations of physical measurements, such as heights

or weights, of individuals. Figure 4 provides a histogram for this height distribution and

the density curve for a normal distribution chosen to model these data. You can see that

the normal distribution provides a very reasonable model for the heights of adult males

born in the United Kingdom.

Figure 4. Histogram and normal density curve for the UK height example.
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Computer programs and many calculators can be used to compute normal probabilities

or equivalently to compute areas under the normal density curve. These probabilities can

also be calculated using tables of standard normal distribution probabilities such as Table

1. Recall that the standard normal distribution is the normal distribution with mean µ = 0

and standard deviation σ = 1. The relationship between the standard normal variable Z

and the normal variable X, which has mean µ and standard deviation σ, is

Z =
X − µ

σ
or equivalently X = µ+ Zσ.

This relationship implies that a probability statement about the normal variable X can

be re–expressed as a probability statement about the standard normal variable Z by re–

expressing the statement in terms of standard deviation units from the mean. Given

two constants a < b, observing a value of X between a and b (observing a ≤ X ≤ b)

is equivalent to observing a value of Z = (X − µ)/σ between (a − µ)/σ and (b − µ)/σ

(observing (a − µ)/σ ≤ (X − µ)/σ ≤ (b − µ)/σ). Furthermore, Z = (X − µ)/σ behaves

in accordance with the standard normal distribution so that the probability of observing

a value of X between a and b, denoted by P (a ≤ X ≤ b), is equal to the probability that

the standard normal variable Z takes on a value between (a− µ)/σ and (b− µ)/σ, i.e.,
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P (a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
.

In terms of areas this probability equality says that the area under the normal density

curve with mean µ and standard deviation σ over the interval from a to b is equal to the

area under the standard normal density curve over the interval from (a−µ)/σ to (b−µ)/σ.
Similarly, given constants c < d, we have the analogous result that

P (c ≤ Z ≤ d) = P (µ+ cσ ≤ X ≤ µ+ dσ).

Table 1 provides cumulative standard normal probabilities of the form P (Z ≤ a) for

values of a (Z in the table) between 0 and 3.69. Computer programs usually produce

cumulative probabilities like these. To use these cumulative probabilities to compute a

probability of the form P (a ≤ Z ≤ b) note that

P (a ≤ Z ≤ b) = P (Z ≤ b)− P (Z ≤ a)

and note that the symmetry of the normal distribution implies that

P (Z ≤ −a) = P (Z ≥ a) = 1− P (Z ≤ a).

Calculators will usually provide probabilities of the form P (a ≤ Z ≤ b) directly.

Z

Probability

Table 1. Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

continued on next page
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Z

Probability

Table 1 (continuation). Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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7.2c Sampling from a normal population

Strictly speaking, the inferential methods based on the Student’s t distribution de-

scribed in Sections 7.2d and 7.2e are only appropriate when the data constitute a random

sample from a normal population. However, these methods are known to be generally

reasonable even when the underlying population is not exactly a normal population, pro-

vided the underlying population distribution is reasonably symmetric and the true density

curve has a more or less normal (bell–shaped) appearance. We cannot be sure that an

underlying population is normal; however, we can use descriptive methods to look for ev-

idence of possible nonnormality, provided the sample size is reasonably large. The most

easily detected and serious evidence of nonnormality you should look for is evidence of

extreme skewness or evidence of extreme outlying observations. If there is evidence of

extreme skewness or extreme outlying observations, then the inferential methods based on

the Student’s t distribution should not be used. An alternate approach to inference (for a

population median) which may be used when the Student’s t methods are inappropriate

is discussed in Section 7.3.

Figure 5. Stem and leaf histograms for eight random samples of size 10
from a standard normal distribution.

In these stem and leaf histograms the decimal point is between the stem and the leaves.

(A) (B) (C) (D)
-2 41 -2 4 -2 1 -2
-1 -1 3 -1 55 -1 20
-0 20 -0 51 -0 853 -0 6442
0 345569 0 33 0 28 0 145
1 1 112 1 14 1 4
2 2 0 2 2

(E) (F) (G) (H)
-2 62 -2 -2 -2
-1 -1 3 -1 -1 63
-0 42 -0 51 -0 721 -0 77654
0 66 0 11234 0 69 0 68
1 34 1 39 1 00357 1 2
2 24 2 2 2

Table 2. Five number summaries for the eight random samples
of size 10 from Figure 5.

(A) (B) (C) (D) (E) (F) (G) (H)
min -2.38 -2.38 -2.14 -1.21 -2.57 -1.29 -.65 -1.62
Q1 -.13 -.37 -1.29 -.58 -.38 -.08 .08 -.71

median .34 .30 -.43 -.28 .57 .14 .95 -.56
Q3 .54 1.14 .67 .32 1.40 .33 1.25 .36
max .89 2.01 1.35 1.44 2.40 1.93 1.66 1.21
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Using a sample to determine whether the underlying population is normal requires

some practice. Some indication of the sorts of samples which may arise when the under-

lying population is normal is provided by the stem and leaf histograms and five number

summaries given in Figures 5 and 6 and Tables 2 and 3 for several computer generated

random samples from a standard normal distribution. The eight random samples of size

10 of Figure 5 and Table 2 indicate what may happen when a small sample is taken from

a population which is normal. Based on these examples it is clear that we should not

necessarily view slight skewness (as in A, B, D, F, G, and H) or mild outliers (as in A

and E) as evidence of nonnormality. The eight random samples of size 50 of Figure 6 and

Table 3 indicate that with a reasonably large sample we can expect to see a reasonably

symmetric distribution; but, we may see a few mild outliers as in A, C, and F.

Figure 6. Stem and leaf histograms for eight random samples of size 50
from a standard normal distribution.

In these stem and leaf histograms the decimal point is between the stem and the leaves.

(A) (B) (C) (D)
-3 -3 -3 2 -3
-2 -2 -2 -2 86
-2 -2 10 -2 21 -2 10
-1 85 -1 6 -1 66 -1 998
-1 4332110 -1 3100 -1 4322110 -1 4443222
-0 9876665 -0 8877655 -0 97655 -0 9876655
-0 4442211110 -0 42221000 -0 443221111 -0 4421111
0 113344 0 011222333 0 03344 0 011122334
0 555667778 0 55556689 0 566677789 0 566789
1 0134 1 01223 1 011224 1 022
1 5778 1 579 1 55 1 558
2 2 01 2 00 2 1
2 7 2 7 2 2

(E) (F) (G) (H)
-2 -2 5 -2 -2
-2 -2 -2 0 -2
-1 -1 -1 7666 -1 9666
-1 4320 -1 333111 -1 222110 -1 33220
-0 9875555555 -0 98876655 -0 98766555 -0 87666
-0 32 -0 443333211 -0 4443221 -0 433322211000
0 01223333444 0 0233 0 122223 0 222233334
0 556678889999 0 566666777789 0 6678899 0 5578889
1 0002344 1 022444 1 011 1 11244
1 5567 1 6 1 555699 1 56
2 2 124 2 14 2 4
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Table 3. Five number summaries for the eight random samples
of size 50 from Figure 6.

(A) (B) (C) (D) (E) (F) (G) (H)
min -1.77 -2.13 -3.20 -2.84 -1.39 -2.47 -1.98 -1.90
Q1 -.64 -.55 -.91 -1.23 -.48 -.56 -.78 -.59

median -.06 .11 -.09 -.11 .36 .10 -.13 -.02
Q3 .67 .78 .72 .54 .92 .71 .87 .67
max 2.75 2.70 1.97 2.10 1.74 2.37 2.44 2.37

Normal probability plots. If you have access to a suitable calculator or computer

program, you can construct a normal probability plot as an aid for assessing whether your

data are consistent with a sample from a normal distribution. A normal probability plot

provides a graphical comparison of the observed sample values with idealized sample values

which we might expect to observe if the sample came from a normal distribution. The

idealized sample values used in a normal probability plot are known as normal scores.

Ideally, we would expect a random sample of size n from a normal distribution to partition

the region under the normal density curve into n + 1 regions of equal area, with each of

these areas being 1/(n+ 1). The n normal scores, which constitute our idealized random

sample, can thus be formed by determining the n values which would partition the area

under the normal density curve into n + 1 regions each of area 1/(n + 1) as suggested

above. Once these normal scores are obtained we can plot the ordered normal scores

versus the ordered observed data values and examine this normal probability plot looking

for evidence of systematic disagreement between the actual sample values and the expected

normal scores. If the sample really was a sample from a normal distribution, then we would

expect the normal probability plot to approximate a straight line. Therefore, a normal

probability plot which differs greatly in appearance from a straight line provides evidence

that the sample may not come from a normal distribution.

Figures 7 and 8 provide normal probability plots (normal score versus observed value)

for the computer generated random samples from a standard normal distribution of Fig-

ures 5 and 6. Some representative examples of normal probability plots for actual data

are provided in Figures 9, 10, and 11. (In some of these plots and subsequent normal

probability plots the points have been subjected to small random shifts to better indicate

points which are coincident or very close together.)

The normal probability plot in Figure 9 is for the height of adult males in the United

Kingdom example of Section 7.2b. We noted that the histogram for the distribution of the

height of adult males in the United Kingdom given in Figure 4 of this chapter is very well

approximated by a normal distribution. The straight line nature of the normal probability

plot of Figure 9 indicates that it is quite reasonable to model these heights as forming a

random sample from a normal distribution. The normal probability plot in Figure 10 is

for the cholesterol levels of the rural Guatemalans from the example in Section 3.1.
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Figure 7. Normal probability plots for the for eight random samples

of size 10 (from a standard normal distribution) of Figure 5.
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The stem and leaf histogram of Figure 1 in Section 3.1 is reasonably symmetric and the

fact that the normal probability plot in Figure 10 is reasonably linear indicates that it is

reasonable to model the cholesterol levels of these rural Guatemalans as forming a sample

from a normal distribution. The normal probability plot in Figure 11 is for the rainfall

amounts for the 26 days when the cloud was unseeded in the cloud seeding example of
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Section 4.3. The curvature in this normal probability plot indicates that it is not reasonable

to model these rainfall amounts as forming a random sample from a normal distribution.

The stem and leaf histogram for this example given in Figure 12 shows that this type of

curvature in a normal probability plot corresponds to skewness to the right.

Figure 8. Normal probability plots for the for eight random samples

of size 50 (from a standard normal distribution) of Figure 6.
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Figure 9. Normal probability plot for the UK height example.
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Figure 10. Normal probability plot for rural cholesterol levels.
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Figure 11. Normal probability plot for unseeded rainfall.
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Figure 12. Stem and leaf histogram for unseeded rainfall.
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7.2d Estimating a normal population mean

The sample mean X provides a single number estimate of the population mean µ. We

can think of X as our “best guess” of the value of µ. As noted above we know that X is

unbiased as an estimator of µ; therefore, on the average in the long run (under repeated

sampling) we know that X provides a good estimate of the unknown mean µ. Since this

unbiasedness does not guarantee that the observed value of X, based on a single sample,

will be close to the true, unknown value of µ, it would be useful to have a confidence

interval estimate of µ.

Recall that when the sample mean corresponds to a random sample from a population

distribution with population mean µ and population standard deviation σ the sampling

distribution of X has mean µ and standard deviation S.E.(X) = σ/
√
n (the population

standard error of X). When the underlying population distribution is normal we can say

more about the form of this sampling distribution. If the random sample from which

the sample mean X is computed is a random sample from a normal population with

population mean µ and population standard deviation σ, then the sampling distribution

of X is a normal distribution with population mean µ and population standard deviation

S.E.(X) = σ/
√
n. Thus, under these assumptions, the quantity

Z =
X − µ

S.E.(X)
=

X − µ

σ/
√
n

behaves in accordance with the standard normal distribution.
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We know that a standard normal variable Z will take on a value between −1.96 and
1.96 with probability .95 (P (−1.96 ≤ Z ≤ 1.96) = .95). This implies that

P

(
−1.96 ≤ X − µ

S.E.(X)
≤ 1.96

)
= .95

which is equivalent to

P
(
X − 1.96S.E.(X) ≤ µ ≤ X + 1.96S.E.(X)

)
= .95.

This probability statement says that 95% of the time we will observe a value of X such

that the population mean µ will be between X − 1.96S.E.(X) and X + 1.96S.E.(X). Un-
fortunately, we cannot use this interval as a confidence interval for µ, since the population

standard error S.E.(X) = σ/
√
n depends on the unknown population standard deviation

σ and thus is not computable. We can avoid this difficulty by replacing the unknown

population standard error σ/
√
n by the sample standard error Ŝ.E.(X) = S/

√
n, where

S is the sample standard deviation, and basing our confidence interval estimate on the

quantity

T =
X − µ

Ŝ.E.(X)
=

X − µ

S/
√
n
.

If the sample mean X and the sample standard deviation S are computed from a

random sample of size n from a normal population with population mean µ and popu-

lation standard deviation σ, then the quantity T defined above follows the Student’s t

distribution with n− 1 degrees of freedom. The Student’s t distribution with n− 1
degrees of freedom is symmetric about zero and has a density curve very similar to that of

the standard normal distribution. The main difference between these two distributions is

that the Student’s t distribution has “heavier” tails than the standard normal distribution.

That is, the tails of the Student’s t density curve approach the x–axis more slowly than

do the tails of the standard normal density curve. As the sample size (and the degrees

of freedom) increases the Student’s t distribution becomes more similar to the standard

normal distribution. In fact, the standard normal distribution is the limiting version of

the Student’s t distribution in the sense that the Student’s t density curve approaches

the standard normal density curve when the degrees of freedom increases without bound.

The relationship between Student’s t distributions and the standard normal distribution

is indicated by the plots in Figure 13.
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Figure 13. Student’s t distributions with 1 and 3 degrees of freedom and
standard normal distribution.
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Given a constant k such that P (−k ≤ T ≤ k) = .95, where T denotes a Students t

variable with n− 1 degrees of freedom, we have

P

(
−k ≤ X − µ

Ŝ.E.(X)
≤ k

)
= .95

which is equivalent to

P
(
X − kŜ.E.(X) ≤ µ ≤ X + kŜ.E.(X)

)
= .95.

The quantity

M.E.(X) = kŜ.E.(X) =
kS√
n

is the 95% margin of error of X. The preceding probability statement says that 95% of

the time we will observe values ofX and S such that the population mean µ will be between

X −M.E.(X) and X +M.E.(X). Thus, the interval from X −M.E.(X) to X +M.E.(X)
is a 95% confidence interval estimate for µ. To compute this confidence interval we need

to determine the value of the appropriate margin of error multiplier k. This multiplier

depends on the size of the sample so that there is a different multiplier for each sample

size. The symmetry of the Student’s t distribution and the definition of k imply that k is

the 97.5 percentile of the Student’s t distribution with n− 1 degrees of freedom. The 95%
margin of error multipliers (k’s) based on the Student’s t distribution, for several choices

of the degrees of freedom (d.f.), are given in Table 4.

This confidence interval estimate may be reported using a statement such as: We are

95% confident that the population mean µ is between X −M.E.(X) and X + M.E.(X).

Notice that it is the sample mean X and the margin of error M.E.(X) that vary from

sample to sample. The population mean µ is a fixed, unknown parameter that does not
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vary. Therefore, the 95% confidence level applies to the method used to generate the

confidence interval estimate. That is, the method (obtain a simple random sample and

compute the numbers X−M.E.(X) and X+M.E.(X) forming the limits of the confidence
interval) is such that 95% of the time it will yield a pair of confidence interval limits which

bracket the population mean µ.

97.5%

k

Table 4. 97.5 percentiles of the Student’s t distribution.

d.f. k d.f. k d.f. k d.f. k
1 12.706 14 2.145 27 2.052 40 2.021
2 4.303 15 2.131 28 2.048 45 2.014
3 3.182 16 2.120 29 2.045 50 2.008
4 2.776 17 2.110 30 2.042 55 2.004
5 2.571 18 2.101 31 2.040 60 2.000
6 2.447 19 2.093 32 2.037 65 1.997
7 2.365 20 2.086 33 2.034 70 1.994
8 2.306 21 2.080 34 2.032 75 1.992
9 2.262 22 2.074 35 2.030 80 1.989
10 2.228 23 2.069 36 2.028 85 1.988
11 2.201 24 2.064 37 2.026 90 1.986
12 2.179 25 2.060 38 2.024 95 1.985
13 2.160 26 2.056 39 2.023 100 1.982

Example. Newcomb’s measurements of the speed of light. In 1882 Simon

Newcomb conducted an investigation to measure the speed of light. The essence of New-

comb’s experiment was to determine the time it took for light to travel from Fort Myer

on the west bank of the Potomac river to a fixed mirror at the foot of the Washington

monument 3721 meters away and back. (More details about this and similar examples can

be found in Stigler (1977), Do robust estimators work with real data? (with discussion),

Annals of Statistics, 5, 1055–1098.) Data from 64 replications of this experiment are pro-

vided in Table 5. For ease of handling the times in Table 5 are simplified. The values

given in Table 5 are times expressed as billionths of a second in excess of 24.8 millionths

of a second, i.e., if a time value from Table 5 is multiplied by 10−3 and added to 24.8,

the result is the time which Newcomb observed measured in millionths of a second. For

example, the first observation in Table 5 is 28 which corresponds to an observed time of

24.828 millionths of a second.
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Table 5. Newcomb’s time data.

28 22 36 26 28 28 26 24 32 30 27 24 33 21 36 32
31 25 24 25 28 36 27 32 34 30 25 26 26 25 23 21
30 33 29 27 29 28 22 26 27 16 31 29 36 32 28 40
19 37 23 32 29 24 25 27 24 16 29 20 28 27 39 23

Figure 14. Stem and leaf histogram for Newcomb’s time data.

In this stem and leaf histogram the stem represents tens of billionths of
a second and the leaf represents billionths of a second.

stem leaf
1 66
1 9
2 011
2 22333
2 4444455555
2 66666777777
2 888888899999
3 00011
3 2222233
3 4
3 66667
3 9
4 0

Figure 15. Normal probability plot for Newcomb’s time data.
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Table 6. Summary statistics for Newcomb’s time data.

minimum 16.0 Q1− minimum 8.5
Q1 24.5 median −Q1 3.0

median 27.5 Q3− median 3.5
Q3 31.0 maximum −Q3 9.0

maximum 40.0

mean 27.7500 range 24.0
standard deviation 5.0834 IQ range 6.5

Summary statistics for these times are given in Table 6, a stem and leaf histogram

is provided in Figure 14, and a normal probability plot is given in Figure 15. Based

on the summary statistics, the stem and leaf histogram, and the normal probability plot

it seems reasonable to assume that these data form a random sample from a normal

population. More specifically, it seems reasonable to assume that these 64 measurements

are independent realizations of a normally distributed variable with population mean µ.

Actually, the assumption of independence is somewhat questionable, since repetitions of

the experiment conducted at nearly the same point in time might exhibit some dependence.

We will hope that any such dependence is minor and treat these observations as if they

were independent. The population mean µ can be thought of as the “true” time it would

take light to make the “trip” as indicated for this experiment if this time could be measured

very precisely. We can also view the population mean µ as the long run average of the

times which would be obtained if this experiment was repeated over and over. We must

keep in mind the fact that Newcomb’s method of measurement may introduce a systematic

bias which would make the “true” time µ differ from the actual time it would take for light

to travel a distance of 7442 = 2× 3721 meters.
The sample mean for these n = 64 observations is 27.7500, the sample standard

deviation is 5.0834, the standard error of the sample mean is 5.0834/
√
64 = .6354, and

the multiplier for the 95% margin of error, based on the Student’s t distribution with

n− 1 = 63 degrees of freedom, is k = 1.9983. Thus the 95% margin of error of the sample
mean is (1.9983)(.6354) = 1.2697 and the limits for the 95% confidence interval estimate of

µ are 27.7500− 1.2697 = 26.4803 and 27.7500 + 1.2697 = 29.0197. Therefore, we are 95%
confident that the population mean time for Newcomb’s experiment is between 26.4803

and 29.0197 billionths of a second. If we re-express this in terms of the time required for

light to travel through the experimental set-up, we find that we are 95% confident that

the population mean time measured in this way is between 24.8264803 and 24.8290197

millionths of a second.

For the preceding analysis we have removed two “outliers” from Newcomb’s data.

The two unusual values are -44 and -2, which correspond to measured times of 24.756 and
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24.798 millionths of a second. If these values are added to the stem and leaf histogram of

Figure 14, they are clearly inconsistent with the other 64 data values. It seems reasonable to

conjecture that something must have gone wrong with the experiment when these unusually

small values were obtained. Newcomb chose to omit the observation of -44 and retain the

observation of -2. If we consider the 65 observations including the -2, we find that the

sample mean is reduced to 27.2923, the sample standard deviation is increased to 6.2493,

and the standard error of the mean becomes .7752. Notice that, as we would expect, the

presence of this outlier reduces the sample mean (moves the mean toward the outlier)

and increases the sample standard deviation (increases the variability in the data). With

n = 65 observations the multiplier for the 95% margin of error, based on the Student’s t

distribution with n − 1 = 64 degrees of freedom, is k = 1.9977, which gives a margin of
error of (1.9977)(.7752) = 1.5486. Hence, when the unusually small value -2 is included we

are 95% confident that the population mean time for Newcomb’s experiment is between

25.7437 and 28.8409 billionths of a second. Re-expressing this in terms of the time required

for light to travel through the experimental set-up, we find that we are 95% confident that

the population mean time measured in this way is between 24.8257437 and 24.8288409

millionths of a second. Including the outlier, -2, has the effect of shifting the confidence

interval to the left and making it longer.

Example. Heights of husbands and wives. The data used in this example are

part of data set 231 in Hand, Daly, Lunn, McConway, and Ostrowski (1994), A Handbook

of Small Data Sets, Chapman and Hall, London. The original source is Marsh (1988),

Exploring Data, Cambridge, UK. A random sample of n = 169 married couples was selected

from the 1980 OPCS study of the heights and weights of the adult population of Great

Britain. The data consist of paired heights (in mm) for these husbands and wives. A few

of these paired heights are given in Table 7 and all of the differences (husband’s height

minus wife’s height) are given in Table 8.

Table 7. Husband and wife height data (partial).

couple husband’s wife’s difference
height height

1 1786 1590 196
2 1754 1660 94
3 1755 1590 165
4 1725 1550 175
5 1796 1550 246
. . . . . . . . . . . .
169 1641 1570 71
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Table 8. Husband and wife height differences.

-96 -65 -46 -37 -30 -30 -21 -12 0 0
1 9 13 14 15 19 34 35 35 36
39 40 50 55 56 59 60 60 65 65
66 68 70 70 71 71 73 74 75 75
79 79 81 83 84 84 84 85 85 88
90 94 94 95 96 100 103 103 105 110
110 113 113 114 115 118 119 120 120 123
123 123 123 125 125 125 125 125 128 128
128 129 130 130 130 133 134 135 135 135
135 139 140 141 141 144 144 145 145 145
145 150 151 155 155 155 159 159 160 160
160 160 161 161 164 165 165 165 166 169
170 174 175 175 178 180 181 183 183 188
189 190 190 191 193 194 195 195 195 196
196 196 204 205 209 210 215 219 225 228
228 229 233 235 236 239 241 243 244 246
250 255 258 259 271 276 281 295 303

Table 9. Summary statistics for height differences.

minimum -96 Q1− minimum 177
Q1 81 median −Q1 49

median 130 Q3− median 51
Q3 181 maximum −Q3 122

maximum 303

mean 129.8225 range 399.0
standard deviation 76.0211 IQ range 100.0

Figure 16. Stem and leaf histogram for height differences.

In this stem and leaf histogram the stem represents hundreds and the leaf tens (mm).

stem leaf
-0 96
-0 4333210
0 0001111333334
0 555566666677777777778888888899999
1 0000111111112222222222222223333333333444444444
1 55555556666666666667777788888899999999999
2 000111222233334444
2 55557789
3 0
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Figure 17. Normal probability plot for height differences.

-100 0 100 200 300
height difference

-3

-2

-1

0

1

2

3
no

rm
al

 s
co

re

Summary statistics for these differences are given in Table 9, a stem and leaf histogram

is provided in Figure 16, and a normal probability plot is given in Figure 17. Based on

the summary statistics, the stem and leaf histogram, and the normal probability plot it

seems reasonable to assume that these differences form a random sample from a normal

population of differences. The population mean difference µD is the average difference in

height corresponding to the population of all married couples in Great Britain in 1980.

(Technically, we should restrict this mean to those married couples included in the 1980

COPS study from which the sample was taken.)

The sample mean for these n = 169 differences is 129.8225 mm, the sample standard

deviation is 76.0211 mm, the standard error of the sample mean is 76.0211/
√
169 = 5.8478,

and the multiplier for the 95% margin of error, based on the Student’s t distribution with

n−1 = 168 degrees of freedom, is k = 1.9742. Thus the 95% margin of error of the sample
mean is (1.9742)(5.8478) = 11.5447 and the limits for the 95% confidence interval estimate

of µD are 129.8225 − 11.5447 = 118.2778 and 129.8225 + 11.5447 = 141.3672. Therefore,
we are 95% confident that for the population of all married couples in Great Britain in

1980, on average, the husband’s height exceeds the wife’s height by at least 118.2778 mm

and perhaps as much as 141.3672 mm.

Remark regarding directional confidence bounds. The use of one of the confidence

limits of a 90% confidence interval as a 95% confidence bound discussed in Section 5.4 can

also be used in the present context. That is, we can find an upper or lower 95% confidence

bound for µ by selecting the appropriate confidence limit from a 90% confidence interval

estimate of µ.
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7.2e Tests of hypotheses about a normal population mean

The hypothesis testing procedures discussed in this section are based on the fact that,

when µ = µ0, the Student’s t test statistic

Tcalc =
X − µ0

Ŝ.E.(X)
=

X − µ0

S/
√
n
,

follows the Student’s t distribution with n − 1 degrees of freedom. Recall that, techni-
cally, this result requires that the sample from which the sample mean X and the sample

standard deviation S are computed forms a random sample from a normal distribution

with population mean µ. However, these methods are known to be generally reasonable

even when the underlying population is not exactly a normal population, provided the

underlying population distribution is reasonably symmetric and the true density curve has

a more or less normal (bell–shaped) appearance. An alternate approach to inference (for

a population median) which may be used when the Student’s t methods are inappropriate

is discussed in Section 7.3.

Recall that a hypothesis (statistical hypothesis) is a conjecture about the nature of

the population. When we considered hypotheses about dichotomous populations we noted

that the population was completely determined by the population success proportion p. In

the present context of sampling from a normal population two parameters, the mean and

the standard deviation, must be specified to completely determine the normal population.

A hypothesis about the value of the population mean µ of a normal distribution specifies

where the center of this normal distribution, µ, is located on the number line but places

no restriction on the population standard deviation.

Even though the logic behind a hypothesis test for a population mean µ is the same

as the logic behind a hypothesis test for a population proportion p, we will introduce

hypothesis testing for a mean in the context of a simple hypothetical example.

Example. Strength of bricks. Consider a brick manufacturer that has produced

a large batch of bricks and wants to determine whether these bricks are suitable for a

particular construction project. The specifications for this project require bricks with a

mean compressive strength that exceeds 3200 psi. In order to assess the suitability of

this batch of bricks the manufacturer will obtain a simple random sample of bricks from

this batch and measure their compressive strength. In this example a single brick is a

unit, the entire large batch of bricks is the population, and a suitable variable X is the

compressive strength of an individual brick (in psi). We will assume that the distribution

of X is reasonably modeled by a normal distribution with population mean µ and popu-

lation standard deviation σ. In this example the population mean µ represents the mean
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compressive strength for all of the bricks in this large batch and the population standard

deviation quantifies the variability from brick to brick in (measured) compressive strength.

The manufacturer does not want to use these bricks for this construction project

unless there is sufficient evidence to claim that the population mean compressive strength

for this batch exceeds 3200 psi. Thus, the question of interest here is: “Is there sufficient

evidence to justify using this batch of bricks for this project?” In terms of the population

mean µ the research hypothesis is H1 : µ > 3200 (the mean compressive strength for this

batch of bricks exceeds 3200 psi); and the null hypothesis is H0 : µ ≤ 3200 (the mean
compressive strength for this batch of bricks does not exceed 3200 psi). In other words,

the manufacturer will tentatively assume that these bricks are not suitable for this project

and will check to see if there is sufficient evidence against this tentative assumption to

justify the conclusion that these bricks are suitable for the project.

A test of the null hypothesis H0 : µ ≤ 3200 versus the research hypothesis H1 : µ >

3200 begins by tentatively assuming that the mean compressive strength for this batch of

bricks is no larger than 3200 psi. Under this tentative assumption it would be surprising

to observe a sample mean compressive strength X that was much larger than 3200. Thus

the test should reject H0 : µ ≤ 3200 in favor of H1 : µ > 3200 if the observed value of X is

sufficiently large relative to 3200. In order to determine whether X is large relative to 3200

we need an estimate of the sample to sample variability in X. The sample standard error

of the sample mean Ŝ.E.(X) = S/
√
n, where S denotes the sample standard deviation,

provides a suitable measure of the sample to sample variability in X. Our conclusion will

hinge on deciding whether the observed value of the Student’s t test statistic

Tcalc =
X − 3200
Ŝ.E.(X)

=
X − 3200
S/
√
n

is far enough above zero to make µ > 3200 more tenable than µ ≤ 3200. We will base
this decision on the probability of observing a value of T as large or larger than the

actual calculated value Tcalc of T , under the assumption that µ ≤ 3200. This probability
(computed assuming that µ = 3200) is the P–value of the test. We will use the fact that,

when µ = 3200, the Student’s t statistic T follows the Student’s t distribution with n− 1
degrees of freedom to calculate the P–value.

First suppose that a simple random sample of n = 100 bricks is selected from the

large batch. Further suppose that the sample mean compressive strength of these 100

bricks is X = 3481 psi and the sample standard deviation is S = 1118.38. In this case we

know that the mean compressive strength of the bricks in the sample X = 3481 exceeds

3200 and we need to decide whether this suggests that the mean compressive strength

of all of the bricks in the batch µ exceeds 3200. In this case the sample standard error

of X is Ŝ.E.(X) = 1118.38/
√
100 = 111.838. Thus X exceeds 3200 by 281 psi which is
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281/111.838 = 2.5126 standard error units, i.e., Tcalc = 2.5126. In this case the P–value

.0068 is the probability of observing a calculated T value as large or larger than 2.5126

when µ ≤ 3200. That is, if µ ≤ 3200 and we perform this experiment with n = 100,

then we would expect to see a value of X that is 2.5126 standard error units above the

hypothesized value 3200 (2.5126 times Ŝ.E.(X) psi above 3200) about 0.68% of the time.

Therefore, observing values of X and S in a sample of size n = 100 which yield a value of

Tcalc as large or larger than 2.5126 would be very surprising if the true mean compressive

strength for the batch µ was not larger than 3200 and we have sufficient evidence to reject

the null hypothesis H0 : µ ≤ 3200 in favor of the research hypothesis H1 : µ > 3200.

In the case we would conclude that there is sufficient evidence to contend that the mean

compressive strength for this batch of bricks exceeds 3200 psi, i.e., these bricks are suitable

for the construction project.

Now suppose that a simple random sample of n = 100 bricks is selected from the large

batch and the sample mean compressive strength of these 100 bricks is X = 3481 psi as

before. However, suppose that in this case the sample standard deviation is S = 2329.3. As

before we know that the mean compressive strength of the bricks in the sample X = 3481

exceeds 3200 and we need to decide whether this suggests that the mean compressive

strength of all of the bricks in the batch µ exceeds 3200. In this case the sample standard

error of X is Ŝ.E.(X) = 2329.3/
√
100 = 232.93. Thus X exceeds 3200 by 281 psi which

is 281/232.93 = 1.2064 standard error units, i.e., Tcalc = 1.2064. In this case the P–value

.1153 is the probability of observing a calculated T value as large or larger than 1.2064

when µ ≤ 3200. That is, if µ ≤ 3200 and we perform this experiment with n = 100, then we
would expect to see a value of X that is 1.2064 standard error units above the hypothesized

value 3200 (1.2064 times Ŝ.E.(X) psi above 3200) about 11.53% of the time. Therefore,

observing values of X and S in a sample of size n = 100 which yield a value of Tcalc as large

or larger than 1.2064 would not be very surprising if the true mean compressive strength

for the batch µ was not larger than 3200 and we do not have sufficient evidence to reject

the null hypothesis H0 : µ ≤ 3200 in favor of the research hypothesis H1 : µ > 3200. In

the case we would conclude that there is not sufficient evidence to contend that the mean

compressive strength for this batch of bricks exceeds 3200 psi, i.e., these bricks are not

suitable for the construction project.

The research hypothesis in the brick example is a directional hypothesis of the form

H1 : µ > µ0, where µ0 = 3200. We will now discuss the details of a hypothesis test

for a directional research hypothesis of this form. For the test procedure to be valid the

specified value µ0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.
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Let µ0 denote the hypothesized value which we wish to compare with µ. The research

hypothesis states that µ is greater than µ0; in symbols we will indicate this research

hypothesis by writing

H1 : µ > µ0.

The null hypothesis is the negation of H1 : µ > µ0 which states that µ is not greater than

µ0; in symbols we will indicate this null hypothesis by writing

H0 : µ ≤ µ0.

The research hypothesis H1 : µ > µ0 specifies that the normal distribution is one of the

normal distributions for which the population mean µ is greater than µ0. The null hypoth-

esis H0 : µ ≤ µ0 specifies that the normal distribution is one of the normal distributions

for which the population mean µ is at most µ0. The population standard deviation σ is

not restricted by either hypothesis. Assuming that the population standard deviation is

the same regardless of which hypothesis is true, this competing pair of hypotheses provides

a decomposition of all possible normal distributions with this σ into the collection of nor-

mal distributions where µ > µ0 and the research hypothesis is true and the collection of

normal distributions where µ ≤ µ0 and the null hypothesis is true. Our goal is to use the

data to decide which of these two collections of normal distributions contains the normal

distribution we are actually sampling from.

Since a hypothesis test begins by tentatively assuming that the null hypothesis is

true, we need to decide what constitutes evidence against the null hypothesis H0 : µ ≤ µ0

and in favor of the research hypothesis H1 : µ > µ0. We will assume that the unknown

population standard deviation σ is fixed regardless of the value of µ. The difference X−µ0

between the sample mean X and the hypothesized value µ0, expressed in standard error

units, will be used to assess the strength of the evidence in favor of the research hypothesis.

Generally, we would expect to observe larger values of X more often when the research

hypothesis H1 : µ > µ0 is true than when the null hypothesis H0 : µ ≤ µ0 is true. In

particular, we can view the observation of a value of X that is sufficiently large relative

to µ0 as constituting evidence against the null hypothesis H0 : µ ≤ µ0 and in favor of the

research hypothesis H1 : µ > µ0. To decide whether the observed value of X is “sufficiently

large relative to µ0” we need to take the variability in the data into account. We can do

this by basing our decision on the corresponding Student’s t test statistic,

Tcalc =
X − µ0

Ŝ.E.(X)
=

X − µ0

S/
√
n
,

instead of X alone. Notice that values of Tcalc which are large relative to zero correspond

to values of X which are large relative to µ0. Deciding whether the observed value of Tcalc
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is sufficiently large relative to zero to allow rejection of H0 is based on the corresponding

P–value, which is defined below.

The P–value for testing the null hypothesis H0 : µ ≤ µ0 versus the research hypothesis

H1 : µ > µ0 is the probability of observing a value of a Student’s t variable T as large or

larger than the calculated value Tcalc that we actually do observe, i.e., P–value = P (T ≥
Tcalc), where T denotes a Student’s t variable with n−1 degrees of freedom. This P–value
is computed under the assumption that the research hypothesis H1 : µ > µ0 is false and

the null hypothesis H0 : µ ≤ µ0 is true. Because the null hypothesis only specifies that

µ ≤ µ0, we need to choose a particular value of µ (that is no larger than µ0) in order to

compute the P–value. It is most appropriate to use µ = µ0 for this computation. Using

µ = µ0, which defines the boundary between µ ≤ µ0, where the null hypothesis is true, and

µ > µ0, where the research hypothesis is true, provides some protection against incorrectly

rejecting H0 : µ ≤ µ0.

The steps for performing a hypothesis test for

H0 : µ ≤ µ0 versus H1 : µ > µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≥ Tcalc),

where T denotes a Student’s t variable with n − 1 degrees of freedom and Tcalc =

(X − µ0)/Ŝ.E.(X) as described above. This P–value is the area to the right of Tcalc

under the density curve for the Student’s t distribution with n− 1 degrees of freedom
as indicated in Figure 18.

Figure 18. P–value for H0 : µ ≤ µ0 versus H1 : µ > µ0.

0 Tcalc

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ > µ0 over H0 : µ ≤ µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is greater than µ0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ > µ0 over H0 : µ ≤ µ0. That
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is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ is greater than µ0.

The procedure for testing the null hypothesis H0 : µ ≤ µ0 versus the research hypoth-

esis H1 : µ > µ0 given above is readily modified for testing the null hypothesis H0 : µ ≥ µ0

versus the research hypothesis H1 : µ < µ0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population mean µ is less than the particular,

hypothesized value µ0. For these hypotheses values of the sample mean X that are suffi-

ciently small relative to µ0 provide evidence in favor of the research hypothesis H1 : µ < µ0

and against the null hypothesis H0 : µ ≥ µ0. Therefore, the appropriate P–value is the

probability of observing a value of a Student’s t variable T as small or smaller than the

value actually observed. As before, the P–value is computed under the assumption that

µ = µ0. The calculated t statistic Tcalc is defined as before; however, in this situation

the P–value is the area under the density curve of the Student’s t distribution with n− 1
degrees of freedom to the left of Tcalc, since values of X that are small relative to µ0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : µ ≥ µ0 versus H1 : µ < µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≤ Tcalc),

where T denotes a Student’s t variable with n − 1 degrees of freedom and Tcalc =

(X − µ0)/Ŝ.E.(X) as described above. This P–value is the area to the left of Tcalc

under the density curve for the Student’s t distribution with n− 1 degrees of freedom
as indicated in Figure 19.

Figure 19. P–value for H0 : µ ≥ µ0 versus H1 : µ < µ0.

Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ < µ0 over H0 : µ ≥ µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is less than µ0.
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2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ < µ0 over H0 : µ ≥ µ0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ is less than µ0.

Example. Brain changes in response to experience. A study by Rosenzweig,

Bennett, and Diamond, described in an article in Scientific American (1964), was con-

ducted to examine the effects of psychological environment on the anatomy of the brain.

The units for this study came from a strain of genetically pure rats. A pair of rats was

selected at random from each of 12 litters of rats; one of these rats was placed in group

A and the other in group B. Each animal in group A lived with eleven others in a large

cage, furnished with playthings which were changed daily. Each animal in group B lived

in isolation, with no toys. Both groups of rats were provided with as much food and drink

as they desired. After a month, the rats were killed and dissected. One variable which

was measured was the weight (in milligrams) of the cortex of the rat. The cortex is the

“thinking” part of the brain. The question we wish to address here is whether there is

evidence in favor of the contention that the cortex of a rat raised in the more stimulating

environment of group A will tend to be larger than the cortex of a rat raised in the less

stimulating environment of group B.

The researchers conducted this experiment five times. Data from one of these exper-

iments are given in Table 10. There are sets of three values for each of twelve pairs of

littermates in this table: the weight of the cortex of the rat in group A, the weight of the

cortex of the rat in group B, and the difference between these two weights (A weight minus

B weight); all of these values are measured in milligrams.

Table 10. Rat cortex weight data.

pair group A group B difference pair group A group B difference

1 690 668 22 7 720 665 55
2 701 667 34 8 718 689 29
3 685 647 38 9 718 642 76
4 751 693 58 10 696 673 23
5 647 635 12 11 658 675 -17
6 647 644 3 12 680 641 39

Summary statistics for the differences in cortex weights (A weight minus B weight)

are given in Table 11, a stem and leaf histogram is provided in Figure 20, and a normal

probability plot is given in Figure 21. Based on the summary statistics and the stem

and leaf histogram there is some evidence that this distribution is slightly skewed to the

left; however, the normal probability plot is reasonably linear and it seems reasonable to
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assume that these data form a random sample from a normal population. More specifically,

it seems reasonable to assume that these 12 differences are independent realizations of a

normally distributed variable with population mean µD. We can think of this population

mean difference µD as the average difference that would be obtained if this experiment

was conducted using all possible littermate pairs from this strain of genetically pure rats.

Table 11. Summary statistics for the rat cortex weight differences.

minimum -17.0 Q1− minimum 34.0
Q1 17.0 median −Q1 14.5

median 31.5 Q3− median 15.5
Q3 47.0 maximum −Q3 29.0

maximum 76.0

mean 31.0000 range 93
standard deviation 25.3162 IQ range 30

Figure 20. Stem and leaf histogram for the rat
cortex weight difference data.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (milligrams)

stem leaf
-1 7
-0
0 3
1 2
2 239
3 489
4
5 58
6
7 6

For this example the research hypothesis can be formalized as H1 : µD > 0. This

research hypothesis specifies that the population mean difference, µD, between the cortex

weight of a stimulated rat (a rat raised in a stimulating environment like that of group A)

and the cortex weight of a unstimulated rat (a rat raised in a non–stimulating environment

like that of group B) exceeds zero, i.e., for this population of pairs of rats, on average, the

cortex weight of a stimulated rat would be higher than the cortex weight of an unstimulated

rat. The observed value of the Student’s t statistic is Tcalc = 4.2418 with 11 degrees of

freedom, which gives a P–value of .0007. Notice that this P–value is the probability that

a Student’s t variable with 11 degrees of freedom will be at least as large as Tcalc = 4.2418
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when µD = 0. Since this P–value is quite small, there is very strong evidence that the

population mean difference µD is greater than zero. Hence, the data do support the

contention that for this population of pairs of rats, on average, the cortex weight of a

stimulated rat would be higher than the cortex weight of an unstimulated rat.

Figure 21. Normal probability plot for weight differences.
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To get a feel for the size of this population mean difference we can compute a 95%

confidence interval estimate for µD. The sample mean difference is D = 31, the sample

standard error of the mean is Ŝ.E.(D) = 7.3082, and the multiplier for the 95% margin of

error, based on the Student’s t distribution with 11 degrees of freedom, is k = 2.201. Thus

the 95% margin of error for D is (2.201)(7.3082) = 16.0853, and we are 95% confident that

the population mean difference µD is between 14.9147 and 47.0853 milligrams. In other

words, we are 95% confident that for this population of pairs of rats, on average, the cortex

weight of the stimulated rat would exceed the cortex weight of the unstimulated rat by at

least 14.9147 mg but by no more than 47.0853 mg.

The hypothesis tests we have discuss thus far are only appropriate when we have

enough a priori information, i.e., information that does not depend on the data to be

used for the hypothesis test, to postulate that the population mean µ is on one side of

a particular value µ0. That is, we have only considered situations where the research

hypothesis is directional. There are situations when we will not have enough a priori

information to allow us to choose the appropriate directional research hypothesis. Instead,

we might only conjecture that the population mean µ is different from some particular

value µ0. In a situation like this our research hypothesis specifies that the population

mean µ is different from µ0, i.e., H1 : µ 6= µ0.

To decide between the null hypothesis H0 : µ = µ0 and the research hypothesis

H1 : µ 6= µ0, we need to decide whether the sample mean X supports the null hypothesis
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by being “close to µ0”, or supports the research hypothesis by being “far away from µ0”.

In this situation the P–value is the probability that the sample mean X would be as far

or farther away from µ0 in either direction as is the value that we actually observe. In

other words, the P–value is the probability that the standardized distance from X to µ0

( the standardized absolute value of the difference between X and µ0) is as large or larger

than the actual observed value of this standardized distance. As before, the P–value is

computed under the assumption that the null hypothesis is true and µ = µ0. In this

situation the calculated t statistic Tcalc is the absolute value of the t statistic that would

be used for testing a directional hypothesis. That is, the calculated t statistic is

Tcalc =

∣∣∣∣∣
X − µ0

Ŝ.E.(X)

∣∣∣∣∣ .

In terms of this t statistic the P–value is the probability that the absolute value of a

Students’s t variable with n − 1 degrees of freedom T would take on a value as large or

larger that Tcalc, assuming that µ = µ0. This probability is the sum of the area under the

appropriate Student’s t density curve to the left of −Tcalc and the area under this Student’s

t density curve to the right of Tcalc. We need to add these two areas (probabilities) since

we are finding the probability that the sample mean X would be as far or farther away

from µ0 in either direction as is the value that we actually observe, when µ = µ0.

The steps for performing a hypothesis test for

H0 : µ = µ0 versus H1 : µ 6= µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|T | ≥ Tcalc) =

P (T ≤ −Tcalc) + P (T ≥ Tcalc), where T denotes a Student’s t variable with n − 1
degrees of freedom and Tcalc = |X −µ0|/Ŝ.E.(X) as described above. This P–value is
the sum of the area to the left of −Tcalc and the area to the right of Tcalc, where each

area is that under the density curve for the Student’s t distribution with n−1 degrees
of freedom over the appropriate region on the x–axis as indicated in Figure 22.

Figure 22. P–value for H0 : µ = µ0 versus H1 : µ 6= µ0.

Tcalc-Tcalc 0
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2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ 6= µ0 over H0 : µ = µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is not equal to µ0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ 6= µ0 over H0 : µ = µ0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ differs from µ0.

Example. Newcomb’s measurements of the speed of light (revisited). The

parameter we were estimating in our analysis of Newcomb’s measurements of the speed of

light was the population mean time µ for light to travel a distance of 7442 meters. Notice

that the population mean time µ is actually defined by the process of measurement being

used. That is, we can think of µ as the long run average time that we would observe if

we replicated Newcomb’s experiment a large times. We might wonder how this population

mean time µ relates to the “true time” it would take for light to travel a distance of

7442 meters. We don’t know exactly what this “true time” is, but we can use a generally

accepted, modern measurement of the speed of light to obtain a hypothesized “true time.”

Stigler (op. cit.) used the modern estimate of the speed of light in a vacuum of 299,792.5

km/sec adjusted to give the speed of light in air and converted to a time as measured by

Newcomb to obtain a hypothesized “true time” of 33.02. Therefore, our present goal is to

determine how the population mean time µ relates to the “true time” µ0 = 33.02.

We do not have sufficient a priori information to specify a directional hypothesis;

therefore, we will test the null hypothesis H0 : µ = 33.02 versus the research hypothesis

H1 : µ 6= 33.02 to determine whether the population mean time µ is equal to or different
from the hypothesized “true value” of 33.02. For Newcomb’s n = 64 measurements the

sample mean is X = 27.75, the sample standard error of the mean is Ŝ.E.(X) = .6354, and

the calculated t statistic is

Tcalc =

∣∣∣∣
27.75− 33.02

.6354

∣∣∣∣ = 8.2940.

The P–value is less than .0001 indicating that observing a sample mean as far away from

the hypothesized “true value” 33.02 (in either direction) as Newcomb did is extremely

unlikely if in fact µ = 33.02. We can conclude that the population mean µ corresponding

to Newcomb’s experiment is almost certainly not equal to the hypothesized value of 33.02.

The confidence interval, (26.4803, 29.0197), we computed above suggests that the mean µ

that Newcomb was estimating is less than the hypothesized value 33.02.
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7.3 Inference for a population median

The inferential methods for a population mean discussed above require at least ap-

proximate normality of the population distribution of the variable of interest. In this

section we will consider methods for making inferences about a population median which

do not require the assumption of a particular form for the population distribution of the

variable of interest. That is, the inferential methods considered in this section are appli-

cable for any population distribution for a continuous variable regardless of the shape of

the corresponding density curve.

We will begin by discussing a method for testing a hypothesis about a population

median. The essence of this method is to re–express the hypothesis about the population

median as a hypothesis about a related population proportion and to then use inferential

methods for a population proportion to test the hypothesis about the population median.

For a continuous variable X we can think of the population medianM as the point on

the number line which divides the area under the corresponding population density curve

into two equal areas (each of area one–half). The population median M is analogous to

the sample median which divides the histogram into two equal areas. Notice that if we

observe a single value of X, then the probability that we will observe a value larger than

the population median M is 1/2, i.e., P (X > M) = 1/2, and similarly, the probability

that we will observe a value smaller than M is 1/2, i.e., P (X < M) = 1/2.

Let M denote the population median of the distribution of the continuous variable X

and consider a hypothesis relating the population median M to a particular, fixed value

M0. We can dichotomize the population of values of X by thinking of the event “observe

X > M0” as a success and the event “observe X < M0” as a failure. The population

success proportion p corresponding to this dichotomization is p = P (X > M0), i.e., p is

the probability that a single value of X chosen from the infinite population of values of

X will be larger than the hypothesized value M0. The corresponding population failure

proportion is 1− p = P (X < M0).

The three possible relationships between the population median M and the partic-

ular value M0 are readily re–expressed in terms of the corresponding population suc-

cess probability p = P (X > M0). If the population median M exceeds the partic-

ular value M0, then, since the area or probability to the right of the population me-

dian M is 1/2 and since M0 is to the left of M on the number line, we must have

p = P (X > M0) > 1/2 = P (X > M). Hence we see that M > M0 is equivalent to

p > 1/2. Similarly, if M is less than M0, then M0 is to the right of M on the number line

and we must have p = P (X > M0) < 1/2 = P (X > M); thus M < M0 is equivalent to

p < 1/2. Finally, if M = M0, then we must have p = P (X > M0) = 1/2 = P (X > M);

thus M = M0 is equivalent to p = 1/2. These relationships allow us to re–express a
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hypothesis relating the population median M to the particular value M0 as a hypothesis

about the corresponding population success probability p = P (X > M0).

For ease of reference the three standard pairs of null and research hypotheses about

M are summarized below (recall that p = P (X > M0))

1. H0 :M ≤M0 versus H1 :M > M0 corresponds to H0 : p ≤ .5 versus H1 : p > .5.

2. H0 :M ≥M0 versus H1 :M < M0 corresponds to H0 : p ≥ .5 versus H1 : p < .5.

3. H0 :M =M0 versus H1 :M 6=M0 corresponds to H0 : p = .5 versus H1 : p 6= .5.

The dichotomy described above, where X > M0 constitutes a success and X < M0

constitutes a failure, does not allow for the possibility that the continuous variable X

is exactly equal to M0. This is allowable, theoretically, when we are talking about the

population distribution of X; however, when we examine the data we may find that one or

more of the observations are equal to the hypothesized value M0. The easiest solution to

this potential difficulty is to remove any observations which are exactly equal to M0 and

adjust the sample size accordingly before we perform a hypothesis test. In other words,

a hypothesis test for comparing the population median M to the hypothesized value M0

is based on the observed proportion p̂ of successes (values of X which are greater than

M0) relative to n, where n is the number of observations which are not equal to M0. An

alternative to discarding values exactly equal to M0 is to classify half of these values as

successes and half as failures and use the original sample size for n.

Example. Darwin’s plant height comparison. Charles Darwin conducted an

experiment to determine whether cross–fertilized plants tend to be more vigorous than self–

fertilized plants. (The plants used in Darwin’s study were young corn (Zea mays) plants.)

(Darwin (1876), The Effect of Cross– and Self–fertilization in the Vegetable Kingdom,

second edition, John Murray, London) Darwin selected several plants and fertilized several

flowers on each plant; a number of flowers were cross–fertilized with pollen taken from

distant plants and a number of flowers were self–fertilized with their own pollen. Seeds

gathered from these flowers were allowed to ripen and were then placed in wet sand to

germinate. Fifteen seedlings from cross–fertilized seeds were selected and fifteen seedlings

from self–fertilized seeds were selected. These seedlings were paired (one cross–fertilized

and one self–fertilized) and the two seedlings in each pair were planted on opposite sides of

the same pot. After a fixed period of time the height of each plant (in inches) was recorded.

The raw data and the associated differences are provided in Table 12. The distribution of
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the differences is summarized in Table 13 and Figure 23 and a normal probability plot is

given in Figure 24.

Table 12. Plant height data.

plant height

pair cross–fertilized self–fertilized difference

1 23.500 17.375 6.125
2 12.000 20.375 -8.375
3 21.000 20.000 1.000
4 22.000 20.000 2.000
5 19.125 18.375 0.750
6 21.500 18.625 2.875
7 22.125 18.625 3.500
8 20.375 15.250 5.125
9 18.250 16.500 1.750
10 21.625 18.000 3.625
11 23.250 16.250 7.000
12 21.000 18.000 3.000
13 22.125 12.750 9.375
14 23.000 15.500 7.500
15 12.000 18.000 -6.000

If it is true that cross–fertilized plants tend to be more vigorous than self–fertilized

plants, then we would expect a cross–fertilized plant to be taller than a self–fertilized plant

of the same age. Therefore, we can formalize this theory as the research hypothesis that

the population median of the difference between the height of a cross–fertilized plant and

the height of a self–fertilized plant grown in the same pot MD is greater than zero, i.e.,

H1 :MD > 0. We can think of the population as consisting of all of the pairs of seedlings

(one cross–fertilized and one self–fertilized) which could have been used in this experiment;

and, we can think of the population median differenceMD as the median of the differences

between the heights of these pairs of seedlings (height of the cross–fertilized plant minus

height of the self–fertilized plant). Notice that this research hypothesis specifies that, for

this population of potential pairs of plants, the cross-fertilized plant would be taller than

the self–fertilized plant more than half of the time.

Table 13. Summary statistics for the plant height differences.

minimum -8.375 Q1− minimum 9.375
Q1 1.000 median −Q1 4.000

median 3.000 Q3− median 3.125
Q3 6.125 maximum −Q3 3.250

maximum 9.375
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Figure 23. Stem and leaf histogram for the plant
height difference data (rounded).

In this stem and leaf histogram the stem represents tens
of inches and the leaf represents inches.

stem leaf
-0 8
-0 6
-0
-0
-0
0 01
0 2233
0 445
0 67
0 89

Figure 24. Normal probability plot for height differences.
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The normality assumption is questionable in this example since the stem and leaf

histogram and the normal probability plot show some evidence of extreme skewness to the

left in this sample of differences.

Since all but two of the 15 plant height differences are positive, there appears to be

strong evidence that the population median height difference is positive. For these data

there are no zero differences so we use the actual sample size n = 15 to perform our test

of H0 :MD ≤ 0 versus H1 :MD > 0 (H0 : p ≤ .5 versus H1 : p > .5, where p = P (D > 0)

denotes the proportion of this population of pairs of plants for which the cross–fertilized

plant would be taller than the self–fertilized plant). Thirteen of the differences are positive

(successes) which gives p̂ = 13/15 = .8667. The standard error of p̂, assuming that p = .5,
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is S.E.(p̂) = .1291, the calculated Z–statistic is Zcalc = 2.8402, and the P–value is .0023.

Therefore, there is very strong evidence that the population median height difference MD

is greater than zero which means that there is very strong evidence in support of the

contention that, for this population of pairs of plants, the cross-fertilized plant would be

taller than the self–fertilized plant more than half of the time.

We can construct a 95% confidence interval estimate for the population median M by

finding the interval of values of M0 for which a test at the 5% level of significance does

not lead to the rejection of H0 : M = M0. Recall that H0 : M = M0 and H1 : M 6= M0

are equivalent to H0 : p = .5 and H1 : p 6= .5, where p = P (X > M0). A test at the 5%

level of significance will fail to reject the null hypothesis H0 :M =M0 if

|p̂− .5| ≤ 1.96/(2
√
n),

where p̂ is the observed proportion of values of X which are greater than M0. The lower

and upper limiting values of p̂ in this expression, denoted by p̂L and p̂U , are

p̂L = .5− 1.96/(2
√
n) and p̂U = .5 + 1.96/(2

√
n).

The corresponding limits on the value of M0, denoted by ML and MU , are the p̂L100

percentile and the p̂U100 percentile of the observed values of X, respectively. We will

adopt the rounding convention described below to avoid the need for averaging observed

values of X when computing ML and MU . First convert p̂L and p̂U from proportions to

counts by multiplying each by the sample size n. If the count np̂L is not a whole number,

round it down to the next whole number. If the count np̂U is not a whole number, round it

up to the next whole number. Finally, find the observed values of X which occur at these

locations in an ordered listing of the observed values. As is true when counting to find a

sample median or quartile be sure to list any repeated values as many times as they occur.

The resulting values for ML and MU form the endpoints of our 95% confidence interval

estimate for the population median M .

The procedure for calculating the 95% confidence interval estimate for a population

median M is summarized below.

1. Arrange the data (observations) in increasing order from smallest (obs. no. 1) to largest

(obs. no. n). Be sure to include all n values in this list, including repeats if there are

any.

2. Compute the quantity np̂L and round it down to the nearest whole number if it is not a

whole number. The observation at the location indicated by the rounded–down value

in the ordered listing of the data is ML.
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3. Compute the quantity np̂U and round it up to the nearest whole number if it is not a

whole number. The observation at the location indicated by the rounded–up value in

the ordered listing of the data is MU .

4. Conclude that we are 95% confident that the population median M is between ML and

MU .

Example. Darwin’s plant height comparison (revisited). For this example

we have 1.96/(2
√
15) = .2530, p̂L = .5 − .2530 = .2470, and p̂U = .5 + .2530 = .7530,

giving np̂L = 3.705 which we round down to 3 and np̂U = 11.295 which we round up to

12. Observation number 3 is .75 and observation number 12 is 6.125. Therefore, we are

95% confident that the population median height difference for this population of pairs of

plants is between .75 inches and 6.125 inches.

7.4 Summary

The majority of this chapter is devoted to inference for the population mean µ of the

distribution of a continuous variable X. We began by discussing probability models for

the distribution of a continuous variable (density curves) and then introduced the normal

distribution which serves as the basis for our inferences about µ (based on the Student’s t

distribution).

Given data which form a random sample of size n from a population with population

mean µ and population standard deviation σ, the sampling distribution of the sample

mean X has mean µ and the population standard error of X is S.E.(X) = σ/n. Thus the

sample mean X is unbiased as an estimator of the population mean µ and the variability

in the sample mean X as an estimator of the population mean µ can be quantified by

this standard error. If we also assume that the population distribution of X is a normal

distribution, i.e., if we assume that the data form a random sample of size n from a

normal distribution with population mean µ and population standard deviation σ, then

the sampling distribution of X is the normal distribution with population mean µ (the

same as that of X) and standard deviation S.E.(X).

Given data which form a random sample of size n from a normal distribution with

population mean µ and population standard deviation σ and with sample mean X and

sample standard deviation SX = S, the quantity

T =
X − µ

S/
√
n

follows the Student’s t distribution with n − 1 degrees of freedom. Therefore, if the as-
sumption that the population distribution of X is normal is reasonable, then we can use

the Student’s t distribution to make inferences about the population mean µ. It is im-

portant to remember the normality assumption needed for the Student’s t distribution
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and to verify that this assumption is reasonable by examining the data for violations of

this assumption. The Student’s t methods work reasonably well provided the normality

assumption is not totally unreasonable.

The interval from X − kS/
√
n to X + kS/

√
n, where k denotes the 97.5 percentile of

the Student’s t distribution with n− 1 degrees of freedom, is a 95% confidence interval for
µ. We can test a hypothesis relating µ to a specified value µ0 by using the Student’s t test

statistic

Tcalc =
X − µ0

S/
√
n

to find the appropriate P–value. The P–value for H1 : µ > µ0 is the probability P (T ≥
Tcalc); the P–value for H1 : µ < µ0 is the probability P (T ≤ Tcalc); and, the P–value for

H1 : µ 6= µ0 is the probability P (|T | ≥ |Tcalc|), where T denotes a Student’s t variable
with n−1 degrees of freedom, i.e., these P–values are areas under the density curve of the
Student’s t distribution with n− 1 degrees of freedom.

The Student’s t inferential methods for a population mean are based on the assumption

that the underlying population distribution is reasonably modeled by a normal distribution.

When this normality assumption is not tenable we need to consider a method of inference

which is applicable under weaker assumptions. One approach to inference about the center

of a distribution based on the population median is discussed in Section 7.4. This approach

to inference about the population median does not require the assumption of a specific form

for the underlying population distribution.

7.5 Exercises

Provide a complete analysis for the following example. Be sure to: define a relevant popu-

lation mean µ; setup and perform a relevant hypothesis test; and, find a confidence interval

for µ. Be sure to include comments regarding the validity of the normality assumption for

this example. Provide a complete summary of your findings in the context of the example.

1. An article by Rosner, Willett, and Spiegelman in Statistics in Medicine (1989) describes

a study conducted to assess the make up of the diets of a population of women. The data

used here are as reported in Ott and Longnecker (2002). A sample of n = 168 women

was obtained and each of these women completed a food frequency questionnaire. The

completed questionnaires were then used to determine the percentage of calories from fat

in each woman’s diet. The values of the variable X, the percentage of calories from fat in

a woman’s diet, are summarized in the stem and leaf histogram in Figure 25. For display

purposes the data have been rounded to the nearest 1 percent. The actual data are given

in Table 14. In 2002 the Food and Nutrition Board, a unit of the Institute of Medicine

iom.edu, recommended that adults should restrict the percentage of calories from fat in

their diet to the range from 20% to 35%.
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If you wish to analyze these data without entering all n = 168 values in your computer

or calculator you may use the facts that: the sample mean for these data is 36.91899 and

the sample standard deviation is 6.72820.

Figure 25. Stem and leaf histogram for percentage of calories from fat.

In this stem and leaf histogram the stem represents tens and the leaf represents
ones. For example, the smallest value is 16% and the largest is 58%.

stem leaf
1
1 6
2 014
2 55666677888999999
3 000001111111222222222333333334444444444
3 5555555555555666666666666777777888888888888999999999
4 0000000001111111111222222222334444444
4 555666667888
5 00134
5 68

Table 14. Percentage of calories from fat data.

15.92 20.22 20.80 24.06 24.98 25.07 25.53 26.16 26.18 26.27
26.79 27.29 27.54 28.16 28.35 28.76 29.07 29.34 29.34 29.45
29.46 29.55 29.72 29.94 29.99 30.50 30.61 30.71 30.96 30.99
31.02 31.10 31.27 31.61 31.71 31.75 31.97 32.24 32.26 32.28
32.43 32.73 32.86 32.96 33.08 33.11 33.13 33.23 33.32 33.51
33.71 33.72 33.86 33.87 33.95 34.11 34.17 34.25 34.31 34.51
34.86 34.87 34.87 34.89 35.09 35.18 35.18 35.20 35.29 35.32
35.49 35.50 35.56 35.67 35.69 35.71 35.74 35.77 36.07 36.07
36.30 36.32 36.32 36.37 36.58 37.04 37.10 37.14 37.34 37.39
37.47 37.56 37.85 37.88 37.89 38.02 38.04 38.10 38.19 38.21
38.36 38.41 38.45 38.58 38.81 38.88 38.89 38.97 39.13 39.22
39.25 39.40 39.80 39.84 39.95 40.05 40.12 40.25 40.29 40.46
40.48 40.69 41.12 41.15 41.22 41.29 41.30 41.32 41.41 41.42
41.44 41.53 41.64 41.69 41.78 41.89 42.12 42.17 42.20 42.37
42.60 42.98 43.57 43.74 43.79 44.27 44.28 44.33 44.39 44.66
45.06 45.28 45.51 45.82 45.83 46.22 46.38 46.97 47.63 47.83
48.29 49.65 49.86 50.72 53.08 54.05 55.54 57.85
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2. Cox and Snell (1981), Applied Statistics, Chapman and Hall, discuss a study conducted

to examine changes in blood pressure due to the drug captopril. The original source is

MacGregor, Markandu, Roulston, and Jones (1979), Essential hypertension: effect of an

oral inhibitor of angiotension–converting enzyme, British Medical Journal, 2 1106–1109.

The data given in Table 15 are the blood pressures (in mm Hg) for 15 patients with

moderate essential hypertension. The data consist of supine systolic and diastolic blood

pressures measured immediately before and two hours after taking 25 mg of the drug

captopril. Relevant differences are also provided.

Table 15. Blood pressure data.

patient systolic diastolic

before after difference before after difference

1 210 201 9 130 125 5
2 169 165 4 122 121 1
3 187 166 21 124 121 3
4 160 157 3 104 106 -2
5 167 147 20 112 101 11
6 176 145 31 101 85 16
7 185 168 17 121 98 23
8 206 180 26 124 105 19
9 173 147 26 115 103 12
10 146 136 10 102 98 4
11 174 151 23 98 90 8
12 201 168 33 119 98 21
13 198 179 19 106 110 -4
14 148 129 19 107 103 4
15 154 131 23 100 82 18
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Chapter 8

Comparing Two Means

8.1 Introduction

In Chapter 7 we considered inferential methods for the location of the center of the

population distribution of a single continuous variable. We will now consider extensions of

these methods to provide inferential methods for comparing the locations of the population

distributions of two continuous variables. More specifically, we will consider methods for

making inferences about the difference µ1 − µ2 between two population means µ1 and µ2.

First consider a situation where the only difference between the population distribu-

tions of two continuous variables, X1 and X2, is their location on the number line. In

other words, suppose that the density curve for X2 is identical to the density curve for

X1 except for its location on the number line. We will refer to this assumption about the

population distributions of X1 and X2 as the shift assumption, since this assumption

implies that the density curve for X2 can be obtained by shifting the density curve for X1

to the right or to the left along the number line. Under this shift assumption the differ-

ence, µ1 − µ2, between the two population means completely characterizes the difference

between the two population distributions. Notice that under this shift assumption, if there

is a positive constant d for which µ1−µ2 = d (i.e., µ1 = µ2+d), indicating that the density

curve for X1 is located d units to the right of the density curve for X2, then the difference

M1 −M2 between the population medians, M1 and M2, is also d (i.e., M1 −M2 = d and

M1 = M2 + d). Therefore, under this shift assumption, a comparison of the locations of

the two distributions based on the difference between the population means is equivalent

to a comparison based on the population medians in the sense that the differences between

each of these pairs of parameters is the same.

When the shift assumption is not valid, i.e., when the two population distributions

differ in aspects other than a simple shift in location, we must decide which parameter, say

the population mean or the population median, is appropriate as a quantification of the

location of each distribution and to quantify the difference between the locations of the two

distributions. In other words, in the general situation when the shift assumption is not valid

the difference between the population means and the difference between the population

medians will be different and neither of these differences will completely describe the

difference between the two distributions. For example, if the distribution of X1 is skewed

right and the distribution of X2 is skewed left, it is possible for the population means to

be equal while the population medians are different. Hence, when the shift assumption

is not valid we must be careful about how we interpret an inference about the difference
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between any two particular location parameters, such as the population means, since the

distributions differ in aspects other than a simple shift in location.

We will restrict our attention to methods which are appropriate when the data com-

prise two independent random samples; one random sample (the X1 values) from a popula-

tion with population mean µ1; and, one random sample (the X2 values) from a population

with population mean µ2. The assumption that these random samples are independent

basically means that the method used to select the random sample from the first popula-

tion is not influenced by the method used to select the random sample from the second

population, and vice versa.

8.2 Comparing the means of two normal populations

In this section we will assume that the population distribution of X1 is a normal distri-

bution with population mean µ1 and population standard deviation σ1 and the population

distribution of X2 is a normal distribution with population mean µ2 and population stan-

dard deviation σ2. We will discuss methods for making inferences comparing the locations

of these normal distributions as quantified by the difference, µ1 − µ2, between the two

population means. As stated in the introduction, we will assume that the data comprise

two independent random samples. Let n1 denote the size of the random sample (of X1

values) from the normal population with population mean µ1 and let n2 denote the size of

the random sample (of X2 values) from the normal population with population mean µ2.

The sample mean X1 is the obvious estimate of the corresponding population mean µ1

and the sample mean X2 is the obvious estimate of the corresponding population mean µ2.

Similarly, the difference, X1−X2, between these two sample means is the obvious estimate

of the corresponding difference, µ1 − µ2, between the population means. To describe the

behavior of X1 − X2 as an estimator of µ1 − µ2 we need to know some properties of its

sampling distribution.

Some properties of the sampling distribution of X1 −X2.

Let X1 denote the sample mean of a random sample of size n1 from a distribution

with population mean µ1 and population standard deviation σ1 and let X2 denote the

sample mean of a random sample of size n2 from a distribution with population mean

µ2 and population standard deviation σ2. Assume that these two random samples are

independent. The sampling distribution of the difference, X1 − X2, between these two

sample means has the following properties. The first two properties are valid in general

and do not depend on the assumption of normal distributions.

1. The mean of the sampling distribution of X1−X2 is the difference, µ1−µ2, between

the corresponding population means. Therefore, just as the sample means X1 and
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X2 are unbiased as estimators of µ1 and µ2, respectively, the sample mean difference

X1 −X2 is unbiased as an estimator of the population mean difference µ1 − µ2.

2. The population standard error of X1−X2 (the standard deviation of the sampling

distribution of X1 −X2) is

S.E.(X1 −X2) =

√
σ2

1

n1

+
σ2

2

n2

.

This expression indicates how the variability of X1−X2 depends on the sample sizes

and population standard deviations. Notice that the population variance var(X1−X2)

(the square of S.E.(X1 −X2)) is equal to the sum of the population variance of X1

and the population variance of X2. This property is a consequence of our assumption

that the random samples are independent; and, this expression for the standard error

of the difference between two sample means is not appropriate if the random samples

are not independent.

3. If the random samples from which the sample means X1 and X2 are computed are

random samples from normal distributions with population means and population

standard deviations as given above, then in addition to the two properties above, the

sampling distribution of X1 −X2 is a normal distribution with population mean

µ1 − µ2 and population standard deviation S.E.(X1 −X2).

The choice of the appropriate inferential methods for comparing the two normal popu-

lation means µ1 and µ2 depends on the relationship between the two unknown, population

standard deviations σ1 and σ2. In particular, the choice of the appropriate estimate of the

population standard error of X1 − X2 depends on whether the two population standard

deviations σ1 and σ2 are equal.

Strictly speaking, the inferential methods based on the Student’s t distribution de-

scribed below are only appropriate when the data constitute independent random samples

from normal populations. However, these methods are known to be generally reasonable

even when the underlying populations are not exactly normal populations, provided the

underlying population distributions are reasonably symmetric and the true density curves

have a more or less normal (bell–shaped) appearance. We can use descriptive methods to

look for evidence of possible nonnormality, provided the sample sizes are reasonably large.

As in the one mean situation of Chapter 7, the most easily detected and serious evidence

of nonnormality you should look for is evidence of extreme skewness or evidence of ex-

treme outlying observations. If there is evidence of extreme skewness or extreme outlying

observations, then inferential methods based on the Student’s t distribution should not be
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used. An alternate approach to inference, based on ranks, which may be used when the

Student’s t methods are inappropriate is discussed in Section 8.3.

8.2a Inference when the two population standard deviations are equal

A normal distribution is completely determined by its mean and standard deviation;

therefore, in the present context of comparing two normal populations the shift assumption

is equivalent to the assumption that the two population standard deviations σ1 and σ2 are

equal. In other words, if we assume that σ1 = σ2, then the only difference between the two

normal populations we are comparing is that the normal density curve for X1 is centered

at µ1 and the normal density curve for X2 is centered at µ2.

When the two population standard deviations are equal we can simplify the expression

for the population standard error of X1 −X2. If we let σ = σ1 = σ2 denote the common

value of the two population standard deviations, then the population standard error of

X1 −X2 is

S.E.(X1 −X2) =

√
σ2

(
1

n1

+
1

n2

)
= σ

√
1

n1

+
1

n2

.

An appropriate estimator of the common standard deviation σ is the pooled sam-

ple standard deviation which we will denote by Sp. Recall that the sample standard

deviation SX for a single sample of n values of the variable X is the square root of the

“average” of the squared deviations of the observed values of X from the sample mean X,

SX =

√∑
(X −X)2

n− 1
.

In the present context, the n1 values of X1 have sample mean X1 and the n2 values of

X2 have sample mean X2; therefore, the sum of squared deviations in the formula for SX

is replaced by the sum of two such sums of squared deviations, one for each sample. The

divisor n− 1 in the formula for SX is replaced by the total number of observations n1+n2

decreased by 2, i.e., the one sample divisor n − 1 is replaced by the two sample divisor

n1 + n2 − 2. The resulting formula for the pooled sample standard deviation is

Sp =

√∑
(X1 −X1)2 +

∑
(X2 −X2)2

n1 + n2 − 2
.

This pooled sample standard deviation can also be expressed in terms of the two sample

standard deviations S1 and S2 as shown below

Sp =

√
(n1 − 1)S2

1
+ (n2 − 1)S2

2

n1 + n2 − 2
.
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Strictly speaking, the inferential methods described in this subsection are only valid

when the two population standard deviations σ1 and σ2 are equal. However, in practice

these methods still perform reasonably well provided the two population standard devia-

tions σ1 and σ2 are reasonably close to being equal and the two sample sizes n1 and n2

are reasonably similar. (This assumption is more critical when the sample sizes are very

dissimilar.) A common rule of thumb for assessing the assumption of equal standard devi-

ations says that the assumption of a common population standard deviation is reasonable

if the ratio of the sample standard deviations is between 1/2 and 2.

When σ1 = σ2, the appropriate sample standard error of X1 −X2, based on the

pooled sample standard deviation Sp, is

Ŝ.E.(X1 −X2) = Sp

√
1

n1

+
1

n2

,

and the corresponding 95% margin of error of X1 −X2 is

M.E.(X1 −X2) = kŜ.E.(X1 −X2) = kSp

√
1

n1

+
1

n2

,

where k is the 97.5 percentile of the Student’s t distribution with n1 + n2 − 2 degrees of

freedom. Thus the interval from (X1−X2)−M.E.(X1−X2) to (X1−X2)+M.E.(X1−X2)

is a 95% confidence interval for µ1 − µ2.

Example. Energy consumption. The data used in this example are part of data

set 93 in Hand, Daly, Lunn, McConway, and Ostrowski (1994), A Handbook of Small

Data Sets, Chapman and Hall, London. The original source is two reports issued in 1983

and 1984 by the Open University. A large–scale experiment on energy consumption was

conducted in the early 1980’s in the Pennyland district of Milton Keynes. A housing

development of about 180 houses was built. About half of the houses had a standard level

of roof and wall insulation. The others had extra roof and wall insulation (these houses

also had double glazing and under–floor insulation). In addition to the differences in level

of insulation, many of the houses were designed with passive solar heating features, e.g.,

southern orientation with most of the windows on the south side. The other houses had a

more traditional design. Energy consumption was monitored over several years. Table 1

provides the annual gas consumption (in 1000 kWh) for two independent random samples

of houses. One random sample was selected from all of the houses with standard insulation

(regardless of design type) and the other was selected from all of the houses with extra

insulation (regardless of design type). Summary statistics are given in Table 2, stem and

leaf histograms are given in Figure 1, and normal probability plots are provided in Figures

2 and 3.
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Table 1. Gas consumption data (1000 kWh) (both designs).

standard insulation extra insulation

11.4 13.9 13.9 14.0 15.3 18.0 8.3 11.7 12.7 13.0 13.4 13.6 13.7
18.0 18.1 18.9 19.0 19.0 21.7 13.7 13.8 14.6 15.3 15.6 16.0 18.8

Table 2. Descriptive statistics for gas consumption (both designs).

standard extra

minimum: 11.40 8.3
Q1: 13.95 13.0
median: 18.00 13.7
Q3: 18.95 15.3
maximum: 21.70 18.8
Q1 - minimum: 2.55 4.7
median - Q1: 4.05 .7
Q3 - median: .95 2.4
maximum - Q3: 2.75 3.5
mean: 16.7667 13.8714
standard deviation: 2.9959 2.3636
range: 10.3 10.5
IQ range: 5 2.3
sample size: 12 14

Figure 1. Stem and leaf histograms for gas consumption (both designs).

In these stem and leaf histograms the stem represents ones and the leaf
represents tenths. (1000 kWh)

standard extra

8 3
9
10

11 4 11 7
12 12 7
13 99 13 046778
14 0 14 6
15 3 15 36
16 16 0
17 17
18 0019 18 8
19 00
20
21 7
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Figure 2. Normal probability plot for gas consumption for houses

with standard insulation (both designs).
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Figure 3. Normal probability plot for gas consumption for houses

with extra insulation (both designs).
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The summary statistics show some evidence of slight skewness to the left in the dis-

tribution for houses with standard insulation. Both stem and leaf histograms appear to

be unimodal and reasonably symmetric with mild outliers on both sides. Both normal

probability plots are reasonably linear. Thus it seems reasonable to model these data

as independent random samples from normal distributions. Furthermore, the two sample

standard deviations, 2.9959 and 2.3636, are quite similar; therefore, we can also reasonably

assume that the two population standard deviations are equal.

Letting X1 denote the annual gas consumption for a house with standard insulation

and X2 denote annual gas consumption for a house with extra insulation, we find that the

difference in the sample means is X1 −X2 = 16.7667 − 13.8714 = 3.8953 (3,895.3 kWh)
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suggesting that, among these 180 houses, the mean annual gas consumption for a house

with standard insulation µ1 is approximately 3.8953 thousand kW hours higher than the

mean annual gas consumption for a house with extra insulation µ2. The pooled sample

standard deviation Sp = 2.6720, the standard error Ŝ.E.(X1 − X2) = 1.0512, and the

margin of error multiplier k = 2.064 for the Student’s t distribution with n1+ n2− 2 = 24

degrees of freedom yield the 95% confidence interval (.7258, 5.0648) for µ1 − µ2. Thus

we are 95% confident that, among these 180 houses, the population mean annual gas

consumption for a house with standard insulation is at least 725.8 kW hours and as much

as 5,064.8 kW hours higher than the mean annual gas consumption for a house with extra

insulation. Note that, technically, this inference is restricted to these 180 houses but we

might conjecture that a similar difference would occur for similar houses (with standard

and extra insulation) in this same area.

Remark regarding directional confidence bounds. We can find an upper or lower

95% confidence bound for µ1−µ2 by selecting the appropriate confidence limit from a 90%

confidence interval estimate of µ1 − µ2.

When σ1 = σ2, we can use the two sample Student’s t test statistic

T =
X1 −X2

Ŝ.E.(X1 −X2)
=

X1 −X2

Sp

√
1

n1
+ 1

n2

,

based on the standard error computed using the pooled estimate of the common standard

deviation, to test hypotheses relating µ1 to µ2.

First consider a situation where we want to determine whether there is sufficient

evidence to conclude that the population mean µ1 exceeds the population mean µ2. Our

research hypothesis is the contention that the population mean µ1 exceeds the population

mean µ2, i.e., H1 : µ1 > µ2. The corresponding null hypothesis is H0 : µ1 ≤ µ2. Values of

X1 −X2 which are large relative to zero provide evidence in favor of H1 : µ1 > µ2, since

this hypothesis is equivalent to H1 : µ1 − µ2 > 0, and against H0 : µ1 ≤ µ2. Since large

values of X1−X2 yield large values of the Student’s t statistic, we will reject H0 : µ1 ≤ µ2

in favor of H1 : µ1 > µ2 if the calculated Student’s t statistic is sufficiently large. This

decision will hinge on the size of the P–value, which is the probability, computed under

the assumption that µ1 = µ2, that X1 −X2 is as large or larger than the value actually

observed and is equal to the probability that a Student’s t variable with n1+n2−2 degrees

of freedom is as large or larger than the calculated t value Tcalc. Notice that this P–value

is the area to the right of Tcalc under the density curve of the Student’s t distribution with

n1+n2− 2 degrees of freedom, since values of X1−X2 that are sufficiently far above zero

provide evidence in favor of the research hypothesis.
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The steps for performing a hypothesis test for

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≥ Tcalc),

where T denotes a Student’s t variable with n1 + n2 − 2 degrees of freedom and

Tcalc = (X1−X2)/Ŝ.E.(X1−X2) as described above. This P–value is the area to the

right of Tcalc under the density curve for the Student’s t distribution with n1+n2− 2

degrees of freedom as shown in Figure 4.

Figure 4. P–value for H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2.

0 Tcalc

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 > µ2 over H0 : µ1 ≤ µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 is greater than the second population mean µ2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 > µ2 over H0 : µ1 ≤ µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the first population mean µ1 is greater than the second population mean

µ2.

The procedure for testing the null hypothesis H0 : µ1 ≤ µ2 versus the research hy-

pothesis H1 : µ1 > µ2 given above is readily modified for testing the null hypothesis

H0 : µ1 ≥ µ2 versus the research hypothesis H1 : µ1 < µ2. The essential modification

is to change the direction of the inequality in the definition of the P–value. Consider a

situation where the research hypothesis specifies that the population mean µ1 is less than

the population mean µ2. Values of X1−X2 that are sufficiently far from 0 in the negative

direction provide evidence in favor of the research hypothesis H1 : µ1 < µ2 and against

the null hypothesis H0 : µ1 ≥ µ2. Therefore, the appropriate P–value is the probability

of observing a value of X1 −X2 as small or smaller than the value actually observed. As

before, the P–value is computed under the assumption that µ1 = µ2. The calculated t

statistic Tcalc is defined as before; however, in this situation the P–value is the area to the
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left of Tcalc under the density curve of the Student’s t distribution with n1+n2−2 degrees

of freedom, since values of X1 −X2 that are sufficiently far below zero provide evidence

in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≤ Tcalc),

where T denotes a Student’s t variable with n1 + n2 − 2 degrees of freedom and

Tcalc = (X1 −X2)/Ŝ.E.(X1 −X2) as before. This P–value is the area to the left of

Tcalc under the density curve for the Student’s t distribution with n1+n2− 2 degrees

of freedom as shown in Figure 5.

Figure 5. P–value for H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2.

Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 < µ2 over H0 : µ1 ≥ µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 is less than the second population mean µ2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 < µ2 over H0 : µ1 ≥ µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the first population mean µ1 is less than the second population mean

µ2.

Example. Energy consumption (revisited). We will now consider the reduction

in energy consumption due to extra insulation when the population is restricted to the

houses among the 180 houses which have passive solar designs. Table 3 provides the annual

gas consumption (in 1000 kWh) for two independent random samples of houses. One

random sample was selected from all of the passive solar houses with standard insulation

and the other was selected from all of the passive solar houses with extra insulation.

Summary statistics are given in Table 4, stem and leaf histograms are given in Figure 6,

and normal probability plots are provided in Figures 7 and 8.
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Table 3. Gas consumption data (1000 kWh) (passive solar).

standard insulation extra insulation

12.3 13.3 13.7 13.8 14.9 15.6 15.9 16.3 10.5 11.3 11.4 12.6 13.0 14.5
16.5 17.2 17.5 17.6 17.8 17.9 18.0 19.9 15.2 15.7 15.7 17.6 19.0

Table 4. Descriptive statistics for gas consumption (passive solar).

standard extra

minimum: 12.30 10.5
Q1: 14.35 11.4
median: 16.40 14.5
Q3: 17.70 15.7
maximum: 19.90 19.0
Q1 - minimum: 2.05 .9
median - Q1: 2.05 3.1
Q3 - median: 1.30 1.2
maximum - Q3: 2.20 3.3
mean: 16.1375 14.2273
standard deviation: 2.0791 2.7225
range: 7.6 8.5
IQ range: 3.35 4.3
sample size: 16 11

Figure 6. Stem and leaf histograms for gas consumption (passive solar).

In these stem and leaf histograms the stem represents ones and the leaf
represents tenths. (1000 kWh)

standard extra

10 5
11 34

12 3 12 6
13 378 13 0
14 9 14 5
15 69 15 277
16 35 16
17 25689 17 6
18 0 18
19 9 19 0
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Figure 7. Normal probability plot for gas consumption for houses

with standard insulation (passive solar).

12 14 16 18 20
gas consumption

-2

-1

0

1

2
no

rm
al

 s
co

re

Figure 8. Normal probability plot for gas consumption for houses

with extra insulation (passive solar).
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In this case both stem and leaf histograms appear to be unimodal and reasonably sym-

metric. The summary statistics support these claims and both normal probability plots

are reasonably linear. Thus it seems reasonable to model these data as independent ran-

dom samples from normal distributions. The two sample standard deviations, 2.0791 and

2.7225, are quite similar; therefore, we can also reasonably assume that the two population

standard deviations are equal.

Let X1 denote the annual gas consumption for a passive solar house with standard

insulation and let X2 denote annual gas consumption for a passive solar house with extra

insulation. Similarly, let µ1 and µ2 denote the respective population means for all of

the passive solar houses among the 180 houses with standard and extra insulation. The
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obvious research hypothesis H1 : µ1 > µ2 states that among the passive solar houses

in this development, on average, the annual gas consumption is lower for a house with

extra insulation than it is for a house with standard insulation. For these data the pooled

sample standard deviation is Sp = 2.3576, the standard error is Ŝ.E.(X1−X2) = .9234, the

observed value of the Student’s t statistic is Tcalc = 2.07 with 25 degrees of freedom, and

the corresponding P–value is .0245. This P–value is reasonably small indicating that there

is reasonably strong evidence that µ1 is greater than µ2. Therefore, there is reasonably

strong evidence that for this population of passive solar houses, on average, the annual

gas consumption for a passive solar house with extra insulation is lower than the annual

gas consumption for a passive solar house with standard insulation. We can form a 95%

confidence interval for µ1−µ2 to get a feel for the practical importance of this result. Using

the margin of error multiplier k = 2.060 for the Student’s t distribution with 25 degrees of

freedom yields the 95% confidence interval (.0084, 3.8120) for µ1 − µ2. Thus we are 95%

confident that, among this population of passive solar houses, the population mean annual

gas consumption for a house with standard insulation is between 8.4 kW hours and 3,812

kW hours higher than the mean annual gas consumption for a house with extra insulation.

Notice that this confidence interval estimate indicates that the difference between these

means might be as small as 8.4 kW hours which is not much of a difference. Of course,

the confidence interval estimate also allows that the difference in these means might be as

large as 3,812 kW hours which is more impressive. In this case, technically, our inferences

are restricted to all of the passive solar houses among these 180 houses.

Example. Paspalum grass. This example is taken from Seber (1984), Multivariate

Observations, Wiley, New York. (The data were provided by Peter Buchanan.) Paspalum

grass is a weed which grows in pastures used for grazing farm animals. Scientists at

the Mount Albert Research Centre in Auckland conducted a laboratory experiment to

determine whether inoculation of paspalum with a fungal infection might be effective

in reducing the growth of this weed. The experimenters randomly assigned 48 pots of

paspalum to the 8 combinations of treatment (inoculated, not inoculated) and temperature

(14, 18, 22, 26 degrees C). For our purposes we will restrict our attention to the 24 pots of

plants grown under moderate temperatures (18 or 22 degrees) and we will not distinguish

between the two temperatures. Thus we have two samples of size 12. The experimenters

measured several characteristics of the paspalum. The response variable we will consider

is the fresh weight of the roots (in grams) of the paspalum in a pot. (In this example a

pot of paspalum is a unit; the number of plants per pot is not specified.) Table 5 provides

the fresh root weights for the 12 pots assigned to each treatment. Summary statistics are

given in Table 6, stem and leaf histograms are given in Figure 9, and normal probability

plots are provided in Figures 10 and 11.



196 8.2a Inference when the two population standard deviations are equal

Table 5. Paspalum root weight (grams).

inoculated not inoculated

3.9 4.3 4.9 5.2 6.5 7.6 6.2 8.7 11.0 12.2 12.3 13.1
9.6 10.0 10.1 12.3 13.6 19.7 13.6 14.5 15.4 16.4 16.7 21.8

Table 6. Descriptive statistics for paspalum root weight.

inoculated not inoculated

minimum: 3.90 6.20
Q1: 5.05 11.60
median: 8.60 13.35
Q3: 11.20 15.90
maximum: 19.70 21.80
Q1 - minimum: 1.15 5.40
median - Q1: 3.55 1.75
Q3 - median: 2.60 2.55
maximum - Q3: 8.50 5.90
mean: 8.9750 13.4917
standard deviation: 4.6384 4.0230
range: 15.8 15.6
IQ range: 6.15 4.3
sample size: 12 12

Figure 9. Stem and leaf histograms for paspalum root weight.

In these stem and leaf histograms the stem represents tens and the leaf
represents ones. The data are rounded. (grams)

inoculated not inoculated

0 3
0 445
0 67 0 6
0 9 0 8
1 00 1 1
1 23 1 2233
1 1 45
1 1 66
1 9 1

2 1
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Figure 10. Normal probability plot for root weight (inoculated).
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Figure 11. Normal probability plot for root weight (not inoculated).
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Let X1 denote the fresh root weight for a pot of paspalum inoculated with the fungus

and let X2 denote the fresh root weight for a pot of paspalum not inoculated with the

fungus. We can think of the corresponding population means µ1 and µ2 as the mean fresh

root weights we would observe if all 48 of the pots of paspalum had been inoculated (µ1)

or not inoculated (µ2). We want to determine whether there is sufficient evidence to claim

that inoculation with this fungus retards the growth of paspalum in the sense of reducing

fresh root weight. In terms of the population means the research hypothesis H1 : µ1 < µ2

states that, for this collection of 48 pots of paspalum, on average, the fresh root weight

would be smaller if the paspalum was inoculated with the fungus than it would be if the

paspalum was not inoculated.

Both of the stem and leaf histograms are unimodal and both show some evidence of

slight skewness to the right. Each sample contains a mild outlier (19.7 for the inoculated
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sample and 21.8 for the not inoculated sample). The summary statistics indicate that it is

these outliers which give the impression of skewness to the right. The normal probability

plots are reasonably linear suggesting that skewness is not a problem. Thus it seems

reasonable to model these data as independent random samples from normal distributions.

The two sample standard deviations, 4.6384 and 4.0230, are quite similar; therefore, we

can also reasonably assume that the two population standard deviations are equal.

For these data the pooled sample standard deviation is Sp = 4.3416, the standard error

is Ŝ.E.(X1 −X2) = 1.7725, the observed value of the Student’s t statistic is Tcalc = −2.55

with 22 degrees of freedom, and the corresponding P–value is .0092. This P–value is very

small indicating that there is very strong evidence that µ1 is less than µ2. Therefore, there

is very strong evidence that for this collection of 48 pots of paspalum, on average, the

fresh root weight would be smaller if the paspalum was inoculated with the fungus than

it would be if the paspalum was not inoculated.

Using the margin of error multiplier k = 2.074 for the Student’s t distribution with 22

degrees of freedom yields the 95% confidence interval (−8.193,−.8410) for µ1 − µ2. Thus

we are 95% confident that, for this collection of 48 pots of paspalum, the mean fresh root

weight we would observe if all 48 of the pots of paspalum had been inoculated is between

.8410 grams and 8.1930 grams smaller than the mean fresh root weight we would observe

if none of the 48 of the pots of paspalum had been inoculated.

The directional hypothesis tests we discussed above are readily modified for testing a

nondirectional hypothesis. To decide between the null hypothesis H0 : µ1 = µ2 and the

research hypothesis H1 : µ1 6= µ2, we need to decide whether X1 −X2 supports the null

hypothesis by being “close to 0”, or supports the research hypothesis by being “far away

from 0”. In this situation the P–value is the probability that X1 −X2 would be as far or

farther away from 0 in either direction as is the value that we actually observe. In other

words, the P–value is the probability that the distance |X1−X2| between the two sample

means (the absolute value of the difference between X1 and X2) is as large or larger than

the actual observed value of this distance. As before, the P–value is computed under the

assumption that the null hypothesis is true and µ1 = µ2. In this situation the calculated

t statistic Tcalc is the absolute value of the t statistic that would be used for testing a

directional hypothesis. That is, the calculated t statistic is

Tcalc =
|X1 −X2|

Ŝ.E.(X1 −X2)
.

In terms of this t statistic the P–value is the probability that the absolute value of a

Students’s t variable with n1 + n2 − 2 degrees of freedom would take on a value as large

or larger than Tcalc, computed assuming that µ1 = µ2. This probability is the sum of the
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area under the appropriate Student’s t density curve to the left of −Tcalc and the area

under this Student’s t density curve to the right of Tcalc. We need to add these two areas

(probabilities) since we are finding the probability that X1−X2 would be as far or farther

away from 0 in either direction as is the value that we actually observe, when µ1 = µ2.

The steps for performing a hypothesis test for

H0 : µ1 = µ2 versus H1 : µ1 6= µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|T | ≥ Tcalc) =

P (T ≤ −Tcalc)+P (T ≥ Tcalc), where T denotes a Student’s t variable with n1+n2−2

degrees of freedom and

Tcalc =
|X1 −X2|

Ŝ.E.(X1 −X2)
.

Notice that this calculated t value is the absolute value of the calculated t value we

would use for a directional hypothesis. This P–value is the area, under the density

curve for the Student’s t distribution with n1 + n2 − 2 degrees of freedom, to the left

of −Tcalc plus the area to the right of Tcalc as shown in Figure 12.

Figure 12. P–value for H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

Tcalc-Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 6= µ2 over H0 : µ1 = µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 and the second population mean µ2 are different.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 6= µ2 over H0 : µ1 = µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the population means µ1 and µ2 are different.

Example. Fecundity of fruitflies. Sokal, R.R. and Rohlf, F.J. (1969) Biometry,

W.H. Freeman, p.232, discuss a study conducted to compare the fecundity of three genetic

lines of Drosophila melanogaster. The data in Table 7 consist of per diem fecundities

(number of eggs laid per female per day for the first 14 days of life) for 25 females of three
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lines of Drosophila melanogaster. Two of these genetic lines were selected for resistance

(RS) and susceptibility (SS) to DDT, the third line is a nonselected control (NS). These

data can be used to address two questions which were of interest to the investigator. We

can use the data for the two selected lines (RS and SS) to determine if there is evidence

that the mean fecundity differs for these selected lines. We can then use the data for the

control line (NS) to compare the mean fecundity of the control line with that of the two

selected lines. For the time being we will use two–sample Student’s t tests to address these

questions. We consider an alternate approach to this problem in Chapter 12.

Table 7. Fruitfly fecundity data.

resistant susceptible nonselected
RS SS NS

12.8 22.4 38.4 23.1 35.4 22.6
21.6 27.5 32.9 29.4 27.4 40.4
14.8 20.3 48.5 16.0 19.3 34.4
23.1 38.7 20.9 20.1 41.8 30.4
34.6 26.4 11.6 23.3 20.3 14.9
19.7 23.7 22.3 22.9 37.6 51.8
22.6 26.1 30.2 22.5 36.9 33.8
29.6 29.5 33.4 15.1 37.3 37.9
16.4 38.6 26.7 31.0 28.2 29.5
20.3 44.4 39.0 16.9 23.4 42.4
29.3 23.2 12.8 16.1 33.7 36.6
14.9 23.6 14.6 10.8 29.2 47.4
27.3 12.2 41.7

Figure 13. Stem and leaf histograms for fruitfly fecundity.

In these stem and leaf histograms the stem represents tens
and the leaf represents ones. The data are rounded.

resistant (RS) susceptible (SS) nonselected (NS)

1 3 1 1223 1
1 556 1 55667 1 59
2 0002233344 2 0122333 2 033
2 66789 2 79 2 789
3 00 3 0133 3 00444
3 599 3 89 3 577788
4 4 4 4 0222
4 4 8 4 7
5 5 5 2
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Let XRS denote the fecundity for an RS female, XSS the fecundity for an SS female,

and XNS the fecundity for an NS female; and let µRS , µSS , and µNS denote the corre-

sponding population means. The first question, concerning the relationship between the

population mean fecundities µRS and µSS , can be addressed via a test of H0 : µRS = µSS

versus H1 : µRS 6= µSS . Our approach to the second question will depend on our con-

clusion for the first. If we decide that there is no difference between the two selected line

population mean fecundities (µRS = µSS), then we can combine the data for these two

lines and, viewing this as a random sample from a population of selected lines with pop-

ulation mean µS , we can test for a difference between the population mean for selected

lines and the population mean for the nonselected line by testing H0 : µS = µNS versus

H1 : µS 6= µNS . On the other hand, if we decide that there is a difference between the

population mean fecundities for the two selected lines, then we will need to perform two

tests; one for comparing µRS to µNS and another for comparing µSS to µNS .

Table 8. Descriptive statistics for fruitfly fecundity.

resistant susceptible nonselected
(RS) (SS) (NS)

minimum: 12.8 10.8 14.9
Q1: 20.3 16.0 28.2
median: 23.6 22.5 34.4
Q3: 29.3 30.2 37.9
maximum: 44.4 48.5 51.8
Q1 - minimum: 7.5 5.2 13.3
median - Q1: 3.3 6.5 6.2
Q3 - median: 5.7 7.7 3.5
maximum - Q3: 15.1 18.3 13.9
mean: 25.2560 23.6280 33.3720
standard deviation: 7.7724 9.7685 8.9420
range: 31.6 37.7 36.9
IQ range: 9.0 14.2 9.7
sample size: 25 25 25

The stem and leaf histograms in Figure 13 and the information in Table 8 indicate that

the fecundity distributions for the two selected lines (RS and SS) are unimodal with some

evidence of skewness to the right; and the fecundity distribution for the nonselected line

(NS) is unimodal and reasonably symmetric with slight evidence of skewness to the left in

the middle of the distribution. The normal probability plots in Figures 14, 15, and 16 are

reasonably linear. Thus it seems reasonable to treat these samples as forming independent

random samples from normal populations. The three sample standard deviations are

reasonably similar allowing us to also assume a common population standard deviation.
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Figure 14. Normal probability plot fruitfly data (resistant line).
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Figure 15. Normal probability plot fruitfly data (susceptible line).
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Figure 16. Normal probability plot fruitfly data (nonselected line).
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Therefore, we will model the three population distributions as normal distributions with

respective population means µRS , µSS and µNS and with common population standard

deviation. If we decide to combine the samples from the two selected lines, we will model
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the corresponding population distribution as a normal distribution with population mean

µS and the same common population standard deviation as before.

The difference between the sample mean fecundities for the two selected lines XRS −

XSS = 1.628 is small relative to the corresponding standard error Ŝ.E.(XRS − XSS) =

2.4967 suggesting that there is little evidence of a difference between the population means

µRS and µSS . The observed value of the Student’s t statistic for testing H0 : µRS = µSS

versus H1 : µRS 6= µSS is Tcalc = .65 with 48 degrees of freedom, and the correspond-

ing P–value is .5175. This large P–value allows us to conclude that the two population

mean fecundities µRS and µSS are equal. In light of this conclusion we will now com-

bine the samples for the selected lines as described above and test H0 : µS = µNS versus

H1 : µS 6= µNS . Recall that µS denotes the population mean fecundity for the popula-

tion of fruitflies obtained by combining the populations for the two selected lines. The

difference between the sample mean fecundities for the combined population of selected

lines and the nonselected line is XS − XNS = −8.93 with an associated standard error

of Ŝ.E.(XS − XNS) = 2.163. The observed value of the Student’s t statistic for testing

H0 : µS = µNS versus H1 : µS 6= µNS is Tcalc = −4.13 with 73 degrees of freedom and

a corresponding P–value which is less than .0001. This P–value is quite small indicating

that there is very strong evidence that the population mean fecundity for the selected lines

µS is different from the population mean fecundity µNS for the nonselected line. The

data clearly support the conclusion that the population mean fecundity is higher for the

nonselected line, however, technically speaking, we cannot make this conclusion based on

the preceding hypothesis test, since we did not have a priori reason to justify a directional

hypothesis. We can however form a confidence interval for µNS − µS and use it to justify

this conclusion. In this example, we are 95% confident that µNS − µS is between 4.6192

and 13.241. More precisely we are 95% confident that the population mean fecundity

(mean number of eggs laid per day for the first 14 days of life) µNS for the nonselected line

exceeds the population mean fecundity µS for the selected lines by at least 4.6192 eggs per

day and perhaps as much as 13.241 eggs per day. Thus it appears that the population of

fruitflies which are either resistant to or susceptible to DDT has lower fecundity on average

than the population of fruitflies which are neither resistant nor susceptible to DDT.

Remark regarding the comparison of the difference of two means to a nonzero

constant. In some situations we may have enough a priori information to specify

a known constant d with the goal of comparing the difference µ1 − µ2 to this

particular constant. For example, we might hypothesize that the first population mean

µ1 exceeds the second population mean µ2 by more than d = 2 units, i.e., H1 : µ1−µ2 > 2

or H1 : µ1 > µ2 + 2. To test such a hypothesis we simply replace the difference X1 −X2

by the quantity X1 −X2 − d in the formula for T and proceed as before. Many computer

programs provide an option for testing such a hypothesis.
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8.2b Inference when the two population standard deviations are not equal

In this subsection we will describe an alternate method of inference which can be

used when the population standard deviations σ1 and σ2 are not equal. Notice that when

σ1 6= σ2 the two normal populations are not identical when their population means, µ1

and µ2, are equal. Therefore, a statement regarding the difference between two popula-

tion means does not tell the whole story about the relationship between the corresponding

normal populations when the population standard deviations are not equal. This does not

indicate that there is anything wrong with comparing population means when the corre-

sponding population standard deviations are unequal. However, it does indicate that the

interpretation of a particular difference between two population means is somewhat differ-

ent when the population standard deviations are different than it is when the population

standard deviations are equal.

When the population standard deviations σ1 and σ2 are different, the appropriate

estimator of the standard error of X1−X2 is based on the two sample standard deviations

S1 and S2 rather than the pooled sample standard deviation. That is, when σ1 6= σ2 the

appropriate sample standard error of X1 −X2 is

Ŝ.E.(X1 −X2) =

√
S2

1

n1

+
S2

2

n2

,

where S1 is the sample standard error for the sample from the first population (the X1

values) and S2 is the sample standard error for the sample from the second population

(the X2 values).

Inference about the relationship between two normal population means when σ1 6= σ2

is based on an approximation to the sampling distribution of the quantity

T ∗ =
X1 −X2√

S2

1

n1
+

S2

2

n2

.

Because the details of this approximation are fairly complicated, you really need an ap-

propriate calculator or computer program to implement this method.

Using this method the 95% margin of error of X1 −X2 is

M.E.(X1 −X2) = k

√
S2

1

n1

+
S2

2

n2

,

where k is the 97.5 percentile of a Student’s t distribution with ν degrees of freedom. The

relevant degrees of freedom ν is computed using a complex formula which may yield a

value that is not a whole number. An approximate 95% confidence interval for µ1 − µ2
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based on this approach is given by the values between (X1 −X2) −M.E.(X1 −X2) and

(X1 − X2) + M.E.(X1 − X2), where the margin of error is as given above. A suitable

calculator or computer program will provide the calculated value of this margin of error

or the actual 95% confidence interval values.

To test a hypothesis relating µ1 to µ2 using this method we simply replace the Stu-

dent’s t statistic T by the approximate Student’s t statistic T ∗ and compute the P–value

using the appropriate degrees of freedom ν. A suitable calculator or computer program

will provide the calculated value of the approximate t statistic T ∗

calc and the associated

P–value.

One way to determine whether the assumption of a common population standard de-

viation is reasonable is to compare the results of the confidence intervals and P–values

computed assuming equal standard deviations and not assuming equal standard devia-

tions. If the two methods yield essentially the same conclusions, then the assumption of

equal standard deviations is reasonable and the methods based on the pooled estimate of

the standard error are appropriate; otherwise, the methods which do not use the pooled

estimate of the standard error should be used.

8.3 Inference based on ranks

The inferential methods for comparing two population means discussed above require

at least approximate normality of the population distributions of the variables of interest.

In this section we will consider methods for making inferences about two population means

which do not require the assumption of a particular form for the population distributions

of the variables of interest. The methodology we are about to discuss is based on the

location shift assumption described in the introduction.

As before we will assume that the data comprise two independent random samples;

a random sample of size n1 from a population of values of a continuous variable X1 with

population mean µ1 and a random sample of size n2 from a population of values of a contin-

uous variable X2 with population mean µ2. We will also assume that the shift assumption

holds meaning that the only difference between these two population distributions is a pos-

sible difference in location, i.e., we will assume that the population distributions (density

curves) of X1 and X2 are identical except for a possible difference between the population

means µ1 and µ2. We will make no further assumptions about the exact form of this

common density curve.

We can look for evidence of a location shift by examining the locations of the n1

observed values of X1 relative to the locations of the n2 observed values of X2. If there

is no location shift, then, by assumption, the population distributions of X1 and X2 are

identical (and consequently µ1 = µ2) and we would expect the n1 observed values of X1

to be randomly dispersed among the n2 observed values of X2. On the other hand, if the
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density curve for X1 is located to the right of the density curve for X2 (the distribution

of X1 is shifted to the right of the distribution of X2 and consequently µ1 > µ2), then we

would expect the observed values of X1 to tend to be large relative to the observed values

of X2. Similarly, if the density curve for X1 is located to the left of the density curve for

X2 (the distribution of X1 is shifted to the left of the distribution of X2 and consequently

µ1 < µ2), then we would expect the observed values of X1 to tend to be small relative to

the observed values of X2.

We can quantify the locations of the n1 observed values of X1 relative to the locations

of the n2 observed values of X2 by assigning ranks to these N = n1 + n2 observations.

We first combine the n1 observed values of X1 with the n2 observed values of X2, keeping

track of which observations form the X1 sample and which form the X2 sample. We then

order these N = n1 + n2 observations from smallest to largest and assign them ranks; the

smallest observation having rank 1, the next rank 2, and so on with the largest observation

having rank N = n1 + n2. Finally, we separate these ranks into the group of n1 ranks of

the X1 sample and the group of n2 ranks of the X2 sample.

Let R1 and R2 denote the respective sample means of the ranks of the X1 sample and

theX2 sample. Restating the remarks from above in terms of the ranks yields the following.

If µ1 = µ2, then we would expect the X1 ranks to look like a simple random sample of

size n1 selected without replacement from the set of all possible ranks {1, 2, . . . , N} with

the remaining n2 ranks constituting the X2 ranks; and, we would expect R1 and R2 to be

similar. If µ1 > µ2, then as a group we would expect the X1 ranks to be large relative to

the X2 ranks and we would expect R1 to be large relative to R2. If µ1 < µ2, then as a

group we would expect the X1 ranks to be small relative to the X2 ranks and we would

expect R1 to be small relative to R2. These facts suggest that we can perform a test of

a hypothesis relating µ1 to µ2 on the basis of the ranks of the two samples instead of the

actual data. In particular, we can base a hypothesis test on a suitably standardized version

of the difference, R1 − R2, between the means of the two sets of ranks. For example, we

would view a sufficiently large positive value of R1−R2 as evidence in favor of the research

hypothesis that µ1 > µ2.

It is possible to determine the exact sampling distribution of R1−R2; however, using

this exact sampling distribution to compute the relevant P–value requires a computer

program or an extensive set of tables. The hypothesis test we are about to describe is known

as the rank–sum test, the Wilcoxon rank–sum test, and the two–sample Mann–Whitney

test. If you have a access to a computer statistics package, check for the availability of

this procedure under one of these names. If a computer program is not available, a simple

alternative is to use the two sets of ranks (the n1 ranks of the X1 sample and the n2 ranks

of the X2 sample) as input for a two–sample Student’s t test as described in Section 8.2a
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and below. That is, we can use a suitable calculator or computer program to compute the

relevant P–value corresponding to the calculated t statistic

Tcalc =
R1 −R2

Ŝ.E.(R1 −R2)

for a test of a directional hypothesis and the absolute value of this quantity for a test of

a nondirectional hypothesis, where Ŝ.E.(R1 − R2) is computed using the pooled sample

standard deviation Sp, based on the ranks, with n1+n2−2 degrees of freedom. This two–

sample t test based on the ranks provides a large sample size (both n1 and n2 reasonably

large) approximation to the test based on the exact sampling distribution of R1 −R2.

Example. This example is provided to clarify the method of ranking and the compu-

tations described above. Two artificial samples of sizes n1 = 13 and n2 = 13 are provided.

From the stem and leaf histograms given in Figure 17 we see that the shift assumption is

reasonable for these data.

Figure 17. Stem and leaf histograms for the hypothetical data.

In these stem and leaf histograms the stem represents tens
and the leaf represents ones.

X1 data X2 data

1 01679
2 1578 2 02469
3 16 3 2478
4 2 4 14
5 1 5 2

6 1

The ordered data values and corresponding ranks are shown in Table 9. The sample

means of these ranks are R1 = 10.4615 and R2 = 16.5385, the pooled estimated standard

deviation is Sp = 7.1369, and the estimated standard error of R1 − R2 is 2.7993. The

calculated t statistic, for a directional hypothesis, is Tcalc = −2.1708 with 24 degrees of

freedom. The P–value for H1 : µ1 6= µ2 is .0400, the P–value for H1 : µ1 < µ2 is .0200,

and the P–value for H1 : µ1 > µ2 is .9800.

The Minitab and S–Plus computer programs, which use the exact sampling distribu-

tion or a slightly different large sample approximation to this sampling distribution, give

P–values for H1 : µ1 6= µ2 of .0455 and .0441, respectively, and P–values for H1 : µ1 < µ2

of .0228 and .0220, respectively. Therefore, at least for this example, it seems that the

method we have proposed (using the two–sample Student’s t test based on the ranks) and

these alternative methods give essentially the same P–values.
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Table 9. The ordered data and corresponding ranks.

X1 X2 R1 R2 X1 X2 R1 R2

10 1 29 14
11 2 31 15
16 3 32 16
17 4 34 17
19 5 36 18

20 6 37 19
21 7 38 20

22 8 41 21
24 9 42 22

25 10 44 23
26 11 51 24

27 12 52 25
28 13 61 26

In the preceding discussion we implicitly assumed that the combined data consisted of

N = n1 + n2 distinct values. In practice some observed values may occur more than once

in the combined data listing. When there are repetitions or “ties” in the data it is not clear

how we should assign the ranks to these tied values. The usual approach is to assign the

average of the relevant ranks to all of the observations which are tied at a particular value.

An example with hypothetical data is provided below to demonstrate the assignment of

ranks when there are ties.

Table 10. The ordered data and corresponding ranks.

X1 X2 tie R1 R2

5 1
6 2

9 3
10 * 5
10 * 5

10 * 5
11 7

12 8
13 9

14 * 10.5
14 * 10.5

17 12
18 13
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Example. For the hypothetical data in Table 10 with n1 = 7, n2 = 6, there are three

observations tied at 10, and there are two observations tied at 14. The ranks corresponding

to the three 10’s are 4, 5, and 6 which average to 5, thus, we assign each of these observation

a rank of 5. Similarly, the ranks corresponding to the two 14’s are 10 and 11, thus, we

assign each of these observations a rank of 10.5.

Example. Cowbird parasitization of flycatchers. Brown–headed cowbirds

search for and lay their eggs in nests built by the willow flycatcher. It is theorized that

those flycatchers that recognize but do not vocally react to cowbird calls are more apt to

defend their nests and less likely to be found and parasitized by the cowbirds. A study

published in The Condor, May, 1995, yielded the data regarding 13 active flycatcher nests

given in Table 11. Each active flycatcher nest was classified as parasitized (if at least one

cowbird egg was present) or not parasitized. Tapes of cowbird songs were played while the

flycatcher pairs were sitting in the nest prior to incubation. The vocalization rate (mea-

sured as the number of calls per minute) of each flycatcher pair was recorded. According

to the theory mentioned above we would expect the vocalization rate to be higher for the

parasitized group.

Table 11. Cowbird vocalization data.

parasitized not parasitized

2.00 1.25 8.50 1.10 1.00 1.00 0 3.25
1.25 3.75 5.50 1.00 .25

The stem and leaf histograms in Figure 18 both appear to be skewed right and each

distribution possesses at least one unusually large value. Therefore, the assumption that

the underlying population distributions are normal is not reasonable. However, the as-

sumption that the underlying population distributions differ only in a shift of location is

reasonable. As in Table 12, let X1 denote the vocalization rate for a parasitized flycatcher

pair and let X2 denote the vocalization rate for a non–parasitized flycatcher pair. Fur-

thermore, let µ1 denote the population mean vocalization rate for the population of all

parasitized flycatcher pairs and let µ2 denote the population mean vocalization rate for the

population of all non–parasitized flycatcher pairs. We can formalize the theory from above

as the research hypothesis H1 : µ1 > µ2 indicating that the population mean vocalization

rate for the population of all parasitized flycatcher pairs, µ1, is greater than the population

mean vocalization rate for the population of all non–parasitized flycatcher pairs, µ2.
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Figure 18. Stem and leaf histograms for the cowbird data.

In these stem and leaf histograms the stem represents ones
and the two digit leaf represents hundredths.

parasitized not parasitized
“X1” data “X2” data

0 0 00.25
1 10.25.25 1 00.00.00
2 00 2
3 75 3 25
4
5 50
6
7
8 50

Table 12. Ordered cowbird data and corresponding ranks.

X1 X2 tie R1 R2

0 1
.25 2
1 * 4
1 * 4
1 * 4

1.10 6
1.25 # 7.5
1.25 # 7.5
2 9

3.25 10
3.75 11
5.5 12
8.5 13

Using the X1 ranks and the X2 ranks as the input for a Student’s t test yields the

calculated t statistic Tcalc = 3.3056 and the P–value .0035. Since this P–value is very small

there is strong evidence that the population mean vocalization rate for the population of

all parasitized flycatcher pairs, µ1, is greater than the population mean vocalization rate

for the population of all non–parasitized flycatcher pairs, µ2.

In a situation where we wish to compare the difference µ1−µ2 to a particular, a priori

constant value d we first note that a hypothesis relating µ1 − µ2 to d can be re–expressed
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as a hypothesis relating µ1−d to µ2. For example, the three standard research hypotheses

have the equivalent forms listed below

H1 : µ1 − µ2 > d is equivalent to H1 : µ1 − d > µ2;

H1 : µ1 − µ2 < d is equivalent to H1 : µ1 − d < µ2; and

H1 : µ1 − µ2 6= d is equivalent to H1 : µ1 − d 6= µ2.

If we shift the random sample of n1 values of X1 (with corresponding population mean

µ1) by subtracting the constant d from each X1 value, we can view the resulting n1 values

of X∗

1 = X1− d as forming a random sample of size n1 from a population with population

mean µ1∗ = µ1 − d. Therefore, testing a hypothesis relating µ1 − µ2 to d based on the X1

sample and the X2 sample is equivalent to testing the corresponding hypothesis relating

µ∗1 = µ1 − d to µ2 based on the X
∗

1 sample and the X2 sample.

We can construct a 95% confidence interval for µ1−µ2 by finding the interval of values

for the difference d for which a test at the 5% level of significance does not lead to the

rejection of the hypothesis H0 : µ1 − µ2 = d (equivalently H0 : µ1 − d = µ2). Actually

finding this interval of values for d is complicated by the fact that the rank based test

statistic does not explicitly depend on the actual data values. We need to determine the

smallest and largest values (say d1 and d2, either of which may be negative) for which the

test does not reject H0 : µ1 − µ2 = d. A simple, but computationally intensive, method

of finding this interval of values is based on the n1n2 (n1 times n2) differences between

all possible pairings of the values of X1 and X2. By ordering the n1n2 differences from

smallest to largest it is possible to determine the smallest value of d, say d1, and the largest

value of d, say d2, which do not lead us to reject H0 : µ1 − µ2 = d. This determination

is based on a large sample size normal approximation to the sampling distribution of R1

which states that, when both n1 and n2 are reasonably large, the quantity

Z =
n1[R1 − (N + 1)/2]√

n1n2(N + 1)/12

behaves in approximate accordance with the standard normal distribution. This procedure

is outlined in the steps given below.

1. Compute the quantity k obtained by rounding

n1n2

2
− 1.96

√
n1n2(N + 1)

12

to the nearest integer.
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2. Compute all n1n2 differences X1−X2 and order these from smallest to largest including

any repeats which occur.

3. The lower limit d1 for the confidence interval is the difference located at the position k

places in from the beginning of the ordered listing (counting up). The upper limit d2

is the difference located at the position k places in from the end of the ordered listing

(counting down).

4. We then conclude that we are 95% confident that the difference µ1 − µ2 is between d1

and d2.

Example. Cowbird parasitization of flycatchers (revisited). We will now

construct a 95% confidence interval for the difference µ1 − µ2 giving us an estimate of the

amount by which the population mean vocalization rate for the population of all parasitized

flycatcher pairs, µ1, exceeds the population mean vocalization rate for the population of

all non–parasitized flycatcher pairs, µ2.

Table 13. The 42 differences X1 −X2 for the cowbird data.

X2

0 .25 1 1 1 3.25

1.10 1.10 .85 .10 .10 .10 -2.15

1.25 1.25 1 .25 .25 .25 -2

1.25 1.25 1 .25 .25 .25 -2

X1
2 2 1.75 1 1 1 -1.25

3.75 3.75 3.5 2.75 2.75 2.75 .5

5.5 5.5 5.25 4.5 4.5 4.5 2.25

8.5 8.5 8.25 7.5 7.5 7.5 5.25

Table 14. The ordered differences X1 −X2.

-2.15 -2 -2 -1.25 .10 .10 .10 .25 .25 .25 .25
.25 .25 .50 .85 1 1 1 1 1 1.10 1.25
1.25 1.75 2 2.25 2.75 2.75 2.75 3.50 3.75 4.50 4.50
4.50 5.25 5.25 5.50 7.50 7.50 7.50 8.25 8.50

The quantity from step 1 in the confidence interval construction given above is 7.28,

which on rounding to the nearest integer gives k = 7. Counting up (in Table 14) we find

that the seventh difference is .1 and counting down we find that the seventh difference is

5.25. Therefore, we are 95% confident that the population mean vocalization rate for the
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population of all parasitized flycatcher pairs, µ1, exceeds the population mean vocalization

rate for the population of all non–parasitized flycatcher pairs, µ2 by at least .1 and at most

5.25 calls per minute.

8.4 Summary

This chapter is concerned with inference for the difference µ1−µ2 between two popula-

tion means. We began by discussing the shift assumption under which the two distributions

being compared are identical except for the values of the two population means µ1 and

µ2. Under this shift assumption an inference about the difference µ1 − µ2 completely

characterizes the difference between the two distributions. The majority of this chapter is

devoted to inference for the difference between the means of two normal distributions.

Given independent random samples, of size n1 and n2, the sampling distribution of

the difference X1 −X2 between the two sample means has population mean µ1 − µ2 and

the population standard error of X1−X2 is S.E.(X1−X2) =
√
(σ2

1
/n1) + (σ2

2
/n2). Thus

the difference X1−X2 is unbiased as an estimator of µ1−µ2 and the variability of X1−X2

as an estimator of µ1 − µ2 can be quantified using this standard error. If we also assume

that the two population distributions are normal distributions, i.e., if we assume that

the data form independent random samples from normal distributions, then the sampling

distribution of X1 − X2 is the normal distribution with population mean µ1 − µ2 and

population standard deviation S.E.(X1 −X2).

Given independent random samples from normal distributions with population means

µ1 and µ2 and with common population standard deviation σ, the quantity

T =
(X1 −X2)− (µ1 − µ2)

Sp

√
(1/n1) + (1/n2)

,

where Sp denotes the pooled sample standard deviation, follows the Student’s t distribution

with n1 + n2 − 2 degrees of freedom. Therefore, if the normality and common population

standard deviation assumptions are reasonable, then we can use the Student’s t distribution

with n1 + n2 − 2 degrees of freedom to make inferences about the difference µ1 − µ2.

Under the normality and common population standard deviation assumptions the

interval from (X1 − X2) − kSp

√
(1/n1) + (1/n2) to (X1 − X2) + kSp

√
(1/n1) + (1/n2),

where k denotes the 97.5 percentile of the Student’s t distribution with n1+n2−2 degrees

of freedom, is a 95% confidence interval for µ1 − µ2. We can test a hypothesis relating

µ1 − µ2 to zero by using the Student’s t test statistic

Tcalc =
X1 −X2

Sp

√
(1/n1) + (1/n2)
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to find the appropriate P–value. The P–value is determined as the appropriate area under

the density curve of the Student’s t distribution with n1 + n2 − 2 degrees of freedom.

If the normality assumption is reasonable but the assumption of a common population

standard deviation is not, then we can use the quantity

T ∗ =
(X1 −X2)− (µ1 − µ2)√
(S2

1
/n1) + (S2

2
/n2)

for inferences about µ1 − µ2. The details of this approach, which is based on a Student’s

t approximation to the distribution of T ∗, are outlined in Section 8.2b.

The Student’s t inferential methods for µ1 − µ2 are based on the assumption that

the underlying populations are reasonably modeled by normal distributions. When this

normality assumption is not tenable we need to consider a method of inference which

is applicable under weaker assumptions. If the shift assumption is reasonable, then we

can make inferences about µ1 − µ2 based on the ranks of the observations. A Student’s t

approximation to this rank based approach to inference about µ1−µ2 is discussed in Section

8.3. This rank based approach to inference does not require the normality assumption but

it does require independent samples and the shift assumption.
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Chapter 9

Descriptive Statistics for Bivariate Data

9.1 Introduction

We discussed univariate data description (methods used to explore the distribution

of the values of a single variable) in Chapters 2 and 3. In this chapter we will consider

bivariate data description. That is, we will discuss descriptive methods used to explore

the joint distribution of the pairs of values of a pair of variables. The joint distribution

of a pair of variables is the way in which the pairs of possible values of these variables are

distributed among the units in the group of interest. When we measure or observe pairs of

values for a pair of variables, we want to know how the two variables behave together (the

joint distribution of the two variables), as well as how each variable behaves individually

(the marginal distributions of each variable).

In this chapter we will restrict our attention to bivariate data description for two quan-

titative variables. We will make a distinction between two types of variables. A response

variable is a variable that measures the response of a unit to natural or experimental

stimuli. A response variable provides us with the measurement or observation that quan-

tifies a relevant characteristic of a unit. An explanatory variable is a variable that can

be used to explain, in whole or in part, how a unit responds to natural or experimental

stimuli. This terminology is clearest in the context of an experimental study. Consider an

experiment where a unit is subjected to a treatment (a specific combination of conditions)

and the response of the unit to the treatment is recorded. A variable that describes the

treatment conditions is called an explanatory variable, since it may be used to explain the

outcome of the experiment. A variable that measures the outcome of the experiment is

called a response variable, since it measures the response of the unit to the treatment. For

example, suppose that we are interested in the relationship between the gas mileage of our

car and the speed at which our car is driven. We could perform an experiment by selecting

a few speeds and then driving our car at these speeds and calculating the corresponding

mileages. In this example the speed at which the car is driven is the explanatory variable

and the resulting mileage is the response variable. There are also situations where both

of the variables of interest are response variables. For example, in the Stat 214 example

we might be interested in the relationship between the height and weight of a student;

the height of a student and the weight of a student are both response variables. In this

situation we might choose to use one of the response variables to explain or predict the

other, e.g., we could view the height of a student as an explanatory variable and use it to

explain or predict the weight of a student.
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9.2 Association and Correlation

The first step in exploring the relationship between two quantitative variables X

and Y is to create a graphical representation of the ordered pairs of values (X,Y ) which

constitute the data. A scatterplot is a graph of the n points with coordinates (X,Y )

corresponding to the n pairs of data values. When both of the variables are response

variables, the labeling of the variables and the ordering of the coordinates for graphing

purposes is essentially arbitrary. However, when one of the variables is a response variable

and the other is an explanatory variable, we need to adopt a convention regarding labeling

and ordering. We will label the response variable Y and the explanatory variable X and

we will use the usual coordinate system where the horizontal axis (the X–axis) indicates

the values of the explanatory variable X and the vertical axis (the Y –axis) indicates the

values of the response variable Y. With this standard labeling convention, the scatterplot

is also called a plot of Y versus X. Some of the scatterplots in this section employ jittering

(small random displacements of the coordinates of points) to more clearly indicate points

which are very close together.

Figure 1. Subcompact car highway mileage versus city mileage.
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A scatterplot of the highway EPA mileage of a subcompact car model versus its

city EPA mileage, for the n = 51 subcompact car models of the example in Section 3.1

(excluding the 5 unusual models), is given in Figure 1. There is an obvious trend or

pattern in the subcompact car mileage scatterplot of Figure 1. A subcompact car model

with a higher city mileage value tends to also have a higher highway mileage value. This

relationship is an example of positive association. We can also see that the trend in this

example is more linear than nonlinear. That is, the trend in the subcompact car mileage

scatterplot is more like points scattered about a straight line than points scattered about

a curved line.
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The two plots in Figure 2 illustrate positive linear association. Moving to the right in

the X direction we see that the points tend to move upward in the Y direction. That is,

as the value of X increases the value of Y tends to increase as well. This linear association

(linear trend) is stronger in plot A than it is in plot B. The quantity r provided with these

plots is a measure of linear association which will be explained later.

Figure 2. Examples of positive linear association
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The two plots in Figure 3 illustrate negative linear association. Moving to the right in

the X direction we see that the points tend to move downward in the Y direction. That is,

as the value of X increases the value of Y tends to decrease. Again, this linear association

(linear trend) is stronger in plot A than it is in plot B.

Figure 3. Examples of negative linear association.
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We might describe the points in a scatterplot as forming a point cloud. A useful

heuristic approach to the idea of linear association is provided by picturing an ellipse drawn

around the point cloud. By envisioning ellipses drawn around the points in the plots of

Figures 2 and 3, we can make the following observations. When there is positive linear

association, the long direction (major axis) of the ellipse slopes upward; and when there

is negative linear association, the long direction of the ellipse slopes downward. Moreover,
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the width of the ellipse in the direction perpendicular to the long direction (the minor

axis) indicates the strength of the linear association. That is, a narrower ellipse indicates

stronger linear association than does a wider ellipse. Please note that it is the width of

the ellipse and not the steepness of the long direction of the ellipse that indicates strength

of linear association.

It is difficult, even with a lot of experience, to determine precisely how strong the

linear association between two variables is from a scatterplot. Therefore we need to define

a numerical summary statistic that can be used to quantify linear association.

We first need to quantify the location of the center of the point cloud in the scatterplot.

We will use the two means X and Y to quantify the center (location) of the point cloud in

the X–Y plane. That is, the point with coordinates (X,Y ) will serve as our quantification

of the center of the point cloud (the center of the ellipse around the data).

To motivate the statistic that we will use to quantify linear association we need to

describe the notions of positive and negative linear association relative to the point (X,Y ).

If X and Y are positively linearly associated, then when X is less than its mean X the

corresponding value of Y will also tend to be less than its mean Y ; and, when X is greater

than its mean X the corresponding value of Y will also tend to be greater than its mean Y .

Therefore, when X and Y are positively linearly associated the product (X −X)(Y − Y )

will tend to be positive. On the other hand, if X and Y are negatively linearly associated,

then when X is less than its mean X the corresponding value of Y will tend to be greater

than its mean Y ; and when X is greater than its mean X the corresponding value of Y

will tend to be less than its mean Y . Therefore, when X and Y are negatively linearly

associated the product (X−X)(Y −Y ) will tend to be negative. This observation suggests

that an average of these products of deviations from the mean, (X−X)(Y −Y ), averaging

over all n such products, can be used to determine whether there is positive or negative

linear association.

If an average of the sort described above is to be useful for measuring the strength

of the linear association between X and Y , then we must standardize these deviations

from the mean. Therefore, the statistic that we will use to quantify the linear association

between X and Y is actually an “average” of the products of the standardized deviations

of the observations from their means (Z–scores). This “average” of n values is computed

by dividing a sum of n terms by n − 1, just as we divided by n − 1 in the definition

of the standard deviation. Linear association is also known as linear correlation or

simply correlation; and the statistic that we will use to quantify correlation is called

the correlation coefficient. The correlation coefficient (Pearson correlation coefficient),

denoted by the lower case letter r, is defined by the formula

r =
∑

(

X −X

SX

)(

Y − Y

SY

)

/(n− 1) .
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In words, the correlation coefficient r is the “average” of the products of the pairs of

standardized deviations (Z–scores) of the observed X and Y values from their means. This

formula for r is not meant to be used for computation. You should use a calculator or a

computer to calculate the correlation coefficient r.

The correlation coefficient is a unitless number that is always between -1 and 1. The

sign of r indicates the direction of the correlation between X and Y . A positive r indicates

positive correlation and a negative r indicates negative correlation. If r = 1, then the

variables X and Y are perfectly positively correlated in the sense that the points lie exactly

on a line with positive slope. If r = −1, then the variables X and Y are perfectly negatively

correlated in the sense that the points lie exactly on a line with negative slope. If r = 0,

then the variables are uncorrelated, i.e., there is no linear correlation between X and Y.

The magnitude of r indicates the strength of the correlation between X and Y. The

closer r is to one in absolute value the stronger is the correlation between X and Y. The

correlation coefficients for the plots in Figures 2 and 3 are provided below the plots. The

correlation coefficient for the highway and city mileage values for the 51 subcompact car

models plotted in Figure 1 is r = .9407 indicating that there is a strong positive correlation

between the city and highway mileage values of a subcompact car.

In many situations the relationship between two variables may involve nonlinear as-

sociation. The plots in Figure 4 illustrate two versions of nonlinear association. In both

plots, as the value of X increases the value of Y tends to increase at first and then to

decrease. In plot A of Figure 4 there is no linear association between X and Y (in this

plot the ellipse would either be a circle or the long direction of the ellipse would be exactly

vertical) and the correlation coefficient is zero. In plot B of Figure 4 there is a positive

linear component to the nonlinear association between X and Y (the ellipse would slope

upward) and the correlation coefficient is positive.

Figure 4. Examples of nonlinear association.
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Plot A of Figure 4 illustrates a situation where there is association between X and

Y but there is no correlation (no linear association). The plot of Figure 5 illustrates

a situation where there is no association at all between X and Y . When there is no

association, the points in the scatterplot appear to be randomly scattered about with

no evidence of a trend, linear or nonlinear, and the correlation coefficient is zero. The

correlation coefficient is also zero when the long direction of the ellipse around the point

cloud is horizontal or vertical.

Figure 5. An example of no association.
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Example. Weights and heights for the Stat 214 example. The scatterplot in

Figure 6 shows the relationship between the weights (in pounds) and heights (in inches)

of the n = 67 students in the Stat 214 example of Chapter 1.

Figure 6. Stat 214 weight and height example.
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This scatterplot of weight versus height shows positive linear association between these

variables. The correlation coefficient is r = .6375 which indicates a moderate positive
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correlation between the weight of a Stat 214 student and his or her height. This means

that there is some tendency for a student who is heavier than average to also be taller

than average; and similarly, for a student who is lighter than average to also be shorter

than average.

Example. Bee forewing vein length. This example is taken from Sokal and

Rohlf, Biometry, (1969). The data are from Phillips, Cornell Exp. Sta. Mem 121, (1929).

These data consist of right and left forewing vein lengths (in mm times 50) for a sample

of 500 worker bees. We would expect larger bees to tend to have larger wings on both

sides of the body, and wing vein lengths should reflect this positive association. Thus the

purpose of this example is to assess the evidence for this type of symmetry in worker bees.

The data are summarized in the form of a joint frequency distribution with appended

marginal frequency distributions in Table 1, and a plot of the data is provided in Figure

7. There is strong positive correlation between right and left forewing vein lengths for

these bees. The correlation coefficient r = .8372, which quantifies the strength of linear

association between these measurements, provides a measure of developmental homeostasis

(physiological stability) for worker bees.

Table 1. Bee forewing vein length data.

This table provides the joint and marginal frequency distributions of the
right and left forewing vein lengths (in mm times 50) for 500 worker bees.

left vein length

right vein length 74 75 76 77 78 79 80 81 82 83 84 85 86 87 row freq.

86 1 1
85 1 1 2 2 3 9
84 3 7 2 1 1 14
83 1 4 6 16 3 1 31
82 3 13 19 12 5 2 54
81 8 18 22 19 3 1 71
80 2 6 23 46 23 1 1 102
79 10 17 34 25 8 94
78 2 14 19 12 11 1 59
77 1 4 19 14 6 1 45
76 1 5 2 4 3 1 16
75 1 1 1 3
74 1 1

column freq. 1 7 9 50 59 88 115 77 42 33 10 4 4 1 500
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Figure 7. Bee forewing vein length example.
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When examining a scatterplot we may find one or more unusual pairs of data values.

That is, we may find that there is a point in the plot that is widely separated from the

majority of the points in the plot. If the relationship between the coordinates of the

unusual point agree with the overall linear pattern of the other points, then the unusual

point will have the effect of strengthening the linear association between X and Y . Such an

unusual point lengthens and narrows the ellipse and causes the magnitude of the correlation

coefficient to increase (|r| gets larger). If the relationship between the coordinates of the

unusual point does not agree with the overall linear pattern of the other points, then the

unusual point will have the effect of weakening the linear association between X and Y .

Such an unusual point makes the ellipse wider and causes the magnitude of the correlation

coefficient to decrease (|r| gets smaller).

Figure 8. Subcompact car highway mileage versus city mileage (all 56 models).
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The scatterplot of the highway EPA mileage of a subcompact car model versus its

city EPA mileage in Figure 8 includes the values for all n = 56 subcompact car models
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(including the 5 unusual models). Here we see that the points corresponding to the five

unusual car models are separated from the other points but agree with the overall linear

trend. In this example including these five unusual car models increases the correlation

coefficient from .9407 to .9596.

When the data include an unusual point it is a good idea to verify that the data were

recorded correctly, since an error might produce an unusual point. Assuming that no data

error exists, it might be a good idea to compute the correlation coefficient twice, once with

all of the data and once with the unusual point not included. If there is a substantial differ-

ence between these two correlation coefficients, then appropriate comments can be added

to your discussion of the problem. Another possible reason for an unusual point is the lack

of enough relevant data. That is, the separation between the unusual point and the others

may be due to the omission of data the inclusion of which would eliminate the separation.

Therefore, a substantial difference between the two correlation coefficients (computed with

and without the unusual point) might also warrant the collection of additional data for

further investigation.

Example. Age at first word and Gesell test scores. This example is concerned

with the relationship between the age at which a child begins to use words and the score

the child attains on a test of mental ability given at a later age. The data given in Table

2 are the age at which a child spoke its first word and the score that the child attained

on the Gesell adaptive test (the test was administered at a much later age). The data

used in this example are from Mickey, Dunn, and Clark, Comput. Biomed. Res., (1967) as

reported in Rousseeuw and Leroy, Robust Regression and Outlier Detection, (1987). There

are two response variables in this example: the age (in months) at which the child spoke

its first word and the child’s score on the Gesell adaptive test.

Table 2. Age at first word and Gesell score data.

child age at Gesell child age at Gesell
number first word score number first word score

1 15 95 12 9 96
2 26 71 13 10 83
3 10 83 14 11 84
4 9 91 15 11 102
5 15 102 16 10 100
6 20 87 17 12 105
7 18 93 18 42 57
8 11 100 19 17 121
9 8 104 20 11 86
10 20 94 21 10 100
11 7 113
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Figure 9. Plot of Gesell score versus age at first word.
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The scatterplot given in Figure 9 shows negative linear association between these two

variables. The correlation coefficient is r = −.6403 which indicates a moderate negative

correlation between the age at which the child spoke its first word and the score that the

child received on the Gesell adaptive test. This means that there is some tendency for a

child who speaks its first word earlier to score higher on the Gesell test than a child who

speaks its first word later.

An examination of the scatterplot for these data reveals that there are at least two

unusual points in this data set.

The point (17, 121), corresponding to child number 19, is unusual in the sense that

this point is separated from the other points and this pair of values does not agree with

the overall negative linear trend in the data. This child spoke its first word at the age of

17 months and scored 121 on the Gesell adaptive test. These values do not fit into the

overall pattern of the data for the other 20 children. Judging from the overall pattern we

would expect a child that spoke its first word at age 17 months to have a Gesell score in

the neighborhood of 90. Therefore, the score for this child appears to be unusually high.

One possible explanation for this is that there might have been an error in recording the

values for this child. This possibility was checked and it was determined that no error

had been made and these are the correct values for this child. There is no justification for

removing this child from the study; however, it is instructive to note that if we compute the

correlation coefficient for the other 20 children omitting child number 19 we get r = −.7561.

Thus we see that this single child (single pair of values) has a fairly large influence on the

magnitude of the correlation coefficient.

The point (42, 57), corresponding to child number 18, is unusual in the sense that

there is a large separation between this point and the other points in the scatterplot; but,

this pair of values does agree with the overall negative linear trend in the data. These

characteristics cause this pair of values to have a large influence on the linear trend in
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the data. This child spoke its first word at the age of 42 months and scored 57 on the

Gesell adaptive test. The age at first spoken word of 42 months is very large relative to

the ages at first spoken word for the other 20 children in this group. Because of the large

separation between this child’s age at first spoken word and the ages at first spoken word

for the other children in this group, the Gesell adaptive test score of this child will exert

a large influence on the overall pattern in the data. In this example the Gesell test score

for this child is such that it agrees with and strengthens the overall pattern in the data.

If we compute the correlation coefficient for the 20 other children omitting child number

18, we get r = −.3349. Therefore, without child number 18 there is a fairly small negative

correlation between the age at which a child spoke its first word and the score that the

child received on the Gesell adaptive test. As with child 19 we find that this single child

18 (single pair of values) has a fairly large influence on the magnitude of the correlation

coefficient.

The two unusual points discussed above demonstrate the two types of unusual points

we might find in a correlation problem. At this point we will examine the present example

in more detail. Notice that the point (26,71), corresponding to child number 2, is also

somewhat separated from the other points in the scatterplot. We see that there are two

children, child number 18 and child number 2, who spoke their first words later than the

majority of the children. If we omit these two children and recompute the correlation

coefficient for the 18 other children we get r = −.0340. This shows that the evidence

for a negative correlation between age at first word and Gesell test score is very highly

dependent on the presence of these two children. It would be a good idea to obtain some

more data so that we could determine whether these two children really are unusual or

whether we simply do not have much information about children who are late in speaking

their first word.

9.3 Regression

Regression analysis is used to study the dependence of a response variable on an

explanatory variable. It may be helpful to think of the explanatory variable X as a

measurement of an input to a system and the response variable Y as a measurement of the

output of the system. If there was an exact linear functional relationship between X and

Y , then the response variable Y (the output) could be expressed as a linear function of the

explanatory variable X (the input). That is, if there was an exact linear relationship, then

there would exist constants a and b such that, for a given value of the explanatory variable

X, the corresponding value of the response variable Y could be expressed as Y = a+ bX.

If this was the case, then the points in the scatterplot would lie on the line determined by

the equation Y = a+ bX.
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In practice, the linear relationship between X and Y will not be exact and the points

(corresponding to the observed values of X and Y ) in the scatterplot will not lie exactly on

a line. Therefore, assuming that there is a linear relationship between X and Y , we want

to determine a line (a linear equation relating X and Y ) which adequately summarizes the

linear relationship between X and Y. Another way to say this is that we want to determine

the line which best fits the data. Of course we first need to decide what we mean by saying

that a line fits best. Therefore, we will first define a measure of how well a line fits the

data.

The measure of the quality of the fit of a line to the data that we will use is based on the

vertical deviations of the observed values of the response variable Y from the corresponding

values on the proposed line. The motivation for basing the measure of quality of fit on

vertical deviations is that we are using the fixed values of the explanatory variable X to

explain the variability in the response variable Y and variation in Y is in the vertical

direction. If Y is the response variable value for a particular value of X and Ŷ (read this

as Y hat) is the value that we would have observed if the relationship was exactly linear,

then the deviation Y − Ŷ is the signed distance from the point we observed (X,Y ) to the

point (X, Ŷ ) on the line having the same X coordinate. The deviation Y − Ŷ is positive

when the point (X,Y ) is above the line and negative when the point (X,Y ) is below the

line. Notice that this deviation is the signed vertical distance from the line to the point

(X,Y ) along the vertical line through the point X on the X–axis.

If the line fits the data well, then we would expect the points in the scatterplot to be

close to the line. That is, we would expect the deviations Y − Ŷ to be small in magnitude.

We would also expect a line that fits well to pass through the “middle” of the point cloud.

That is, we would expect the signs of the deviations Y − Ŷ to vary between positive and

negative with no particular pattern.

The quantity that we will use to summarize the quality of fit of a line to the data is

the sum of the squared deviations of the observed Y values from the Ŷ values predicted

by the line. In symbols, this quantity is
∑

(Y − Ŷ )2. When comparing the fit of two lines

to the data we would conclude that the line for which this sum of squared deviations is

smaller provides a better fit to the data.

The least squares regression line is the line which yields the best fit in the sense of

minimizing the sum of squared deviations of the points from the line. That is, among all

possible lines, the least squares regression line is the line which yields the smallest possible

sum of squared deviations. It is a mathematical fact that the least squares regression line

is the line that passes through the point (X,Y ) and has slope b given by the formula

b =

∑

(X −X)(Y − Y )
∑

(X −X)2
.
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This formula for the slope of the least squares regression line is provided to show you that

there is such a formula and is not meant to be used for computation. You should use a

calculator or a computer to calculate the least squares regression line slope b.

If you refer back to the definition of the correlation coefficient, r, you will see that

the formula for r is symmetric in X and Y . That is, interchanging the labels assigned to

the two response variables has no effect on the value of r. On the other hand, the formula

for the slope of the least squares regression line is clearly not symmetric in X and Y. This

asymmetry reflects the fact that, in the regression context, the roles of the explanatory

variable X and the response variable Y are not interchangeable.

Let (X, Ŷ ) denote the coordinates of a point on the least squares regression line. The

definition of the least squares regression line given above and the definition of the slope of

a line imply that

b =
Ŷ − Y

X −X
.

Straightforward manipulation of this expression (first multiply both sides by (X−X), then

add Y to both sides) yields the equation

Ŷ = Y + b(X −X)

for the least squares regression line. This equation is called the mean and slope form

of the equation of the least squares regression line, since it depends on the mean

Y and the slope b. Simple regrouping of terms shows that the least squares regression line

equation can also be written as

Ŷ = a+ bX,

where a = Y − bX is the y–intercept. You can obtain the value of the y–intercept a of the

least squares regression line using a calculator or a computer. This equation is called the

intercept and slope form of the equation of the least squares regression line,

since it depends on the y–intercept a and the slope b. Of these two forms, the intercept

and slope form of the equation of the least squares regression line is more convenient for

most purposes.

The slope b of the least squares regression line is the (constant) rate of change of Ŷ

as a function of X, i.e., if we start at a particular point (X, Ŷ ) on the line and move one

unit to the right in the X direction, then Ŷ moves b units in the Y direction giving the

point (X + 1, Ŷ + b). If b is positive, the change in Ŷ is upward (Ŷ increases); and if b is

negative, the change in Ŷ is downward (Ŷ decreases).

Notice that, according to the least squares regression line, Y is the response variable

value that we would expect to see when X = X. That is, substituting X = X into the least

squares regression line equation gives Ŷ = Y . The intercept value, a, is the response value
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that we would expect to see, according to the least squares regression line, when X = 0.

That is, substituting X = 0 into the least squares regression line equation gives Ŷ = a.

Figure 10. Plot of EPA city mileage versus displacement, for the 35 cars
with displacements no larger than 2.5 liters.
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Example. Subcompact car city mileage and displacement. The displacement

(size) of a car engine will clearly have an effect on the gas mileage that the car will obtain.

The purpose of this example is to examine the dependence of the EPA city mileage of a

subcompact car model on its engine displacement. For this example we will restrict our

attention to the n = 35 subcompact car models with engine displacements that are no

larger than 2.5 liters. For ease of discussion, we will convert the engine displacements from

liters to hundreds of cubic centimeters. To convert the engine displacements of Table 4 of

Section 3.1 from liters to 100 cc units we simply multiply by ten, since one liter is 1000 cc.

The data for this example are also provided in Table 4 of this chapter.

From the scatterplot of city mileage versus engine displacement given in Figure 10 we

see that there is strong negative linear association between the city mileage of a subcompact

car and its engine displacement (the correlation coefficient is r = −.9112). Therefore, for

subcompact car models with engine displacements no greater than 2.5 liters it makes sense

to use a straight line to summarize and quantify the dependence of city mileage on engine

displacement.

Let X denote the engine displacement (in 100 cc’s) of a subcompact car model and let

Y denote its EPA city mileage (in mpg). Some relevant summary statistics are provided

in Table 3. The y–intercept is a = 49.1590 mpg and the slope is b = −1.2020 mpg/100cc;

therefore, the equation of the least squares regression line is Ŷ = 49.1590− 1.2020X.
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Table 3. Subcompact car EPA city mileage and engine displacement
summary statistics, for the 35 car models with displacements
no larger than 2.5 liters.

n = 35
X = 19.4571 r = -.9112
Y = 25.7714 slope, b = -1.2020

SX = 3.6730 y–intercept, a = 49.1590
SY = 4.8452 R2 = .8303

The slope -1.2020 is our estimate of the constant rate of change of Y , the subcompact

car’s city mileage, as a function of X, the car’s engine displacement. According to the

least squares regression line, for each 100 cc increase (each one unit increase on the 100

cc scale of measurement) in the engine displacement of a subcompact car, we expect to

see a decrease (since the slope is negative) of about 1.2020 mpg in the EPA city mileage

value. Recalling that the least squares regression line passes through the point (X,Y )

on substituting X into the equation we see that, according to the least squares regression

line, when a subcompact car has an engine displacement of 1945.71 cc its EPA city mileage

should be approximately 25.7714 mpg. The nearest engine displacement for which we have

data is 1900 cc and the two subcompact car models with a 1900 cc engine displacement

have actual EPA city mileages of 27 and 28 mpg; therefore, the least squares regression line

prediction for a 1900 cc engine is only slightly lower than these two observed values. The

y–intercept is not so easily interpreted. According to the least square regression line, when

a subcompact car model has an engine displacement of 0 cc its EPA city mileage should be

approximately 49.1590 mpg. Clearly this does not make sense, since an engine displacement

of 0 cc is nonsensical; but there is a simple explanation. The linear relationship assumed

when we fit the least squares regression line requires a constant rate of change in EPA

city mileage as a function of engine displacement. However, there is no reason to expect

this relationship to hold for all possible engine displacements. We might expect the rate of

change to be different for very small engines than it is for the displacement range for which

we have data (1000 cc to 2500 cc). Similarly, we might not expect the linear relationship

we determined for the present displacement range to be valid for cars with engines having

much larger displacements. Notice that if we use the least squares regression line to predict

the EPA city mileage of a car with a large enough engine displacement, then we will get a

(nonsensical) negative mileage value, since the least squares regression line will eventually

cross the X–axis.

The least squares regression line relationship can be used to determine the value of Y

that we would predict or expect to see for a given value of X. If X∗ denotes a particular
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value of X, then, according to the least squares regression line, we would expect or predict

that the corresponding value of Y would be

Ŷ (X∗) = a+ bX∗

(read Ŷ (X∗) as Y hat of X∗). The predicted value Ŷ (X∗) is obtained by substituting

X∗ into the equation of the least squares regression line. Notice that Ŷ (X∗) is the second

coordinate of the point (X∗, Ŷ (X∗)) where the vertical line X = X∗ through X∗ intersects

the least squares regression line.

When using the least squares regression line to predict values we need to be aware

of the danger of extrapolation. A prediction of a response value corresponding to a value

X of the explanatory variable outside of the observed range of X values is called an

extrapolation. Based on the data we have there is no way to tell whether the linear

relationship summarized in the least squares regression line is appropriate for X values

outside of the observed range of X values. Therefore, predictions of Y values based on the

least squares regression line should be restricted to X values that are within the observed

range of X values.

If we compute the predicted value Ŷ for an observed value of X (in this context Ŷ is

called a fitted value), then we can use this fitted value to decompose the observed value

Y as

Y = Ŷ + (Y − Ŷ ) .

In words, this says that the observed value Y is equal to the fitted value Ŷ plus the

residual value (Y − Ŷ ). Notice that the residual (Y − Ŷ ) is the signed distance from the

observed value Y (the point (X,Y )) to the fitted value Ŷ (the point (X, Ŷ )) along the

vertical line through X. The residual is positive if Y > Ŷ (the point is above the line) and

negative if Y < Ŷ (the point is below the line.) The residual would be zero if the observed

value Y (the point (X,Y )) was exactly on the least squares regression line, i.e., if Y = Ŷ .

The n residuals (Y − Ŷ ) corresponding to the n observed data values can be used

to assess the quality of fit of the least squares regression line to the data. If there was

an exact linear relationship between X and Y, then the points would lie exactly on the

least squares regression line and the residuals would all be zero. Therefore, when the least

squares regression line fits the data well, all of the n residuals should be reasonably small

in magnitude, i.e., all of the points should be reasonably close to the line. A residual that

is large in magnitude in one example may not be large in another example; therefore, it

is important to assess the size of the residuals relative to the amount of variability in the

observed Y values. If there is a systematic nonlinear pattern in the data, then we would

expect to see a systematic pattern of lack of fit of the least squares regression line to the

data points. Therefore, a systematic pattern in the residuals would provide evidence
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Table 4. Subcompact car city mileage and displacement
data, fitted, and residual values.

displacement city mileage fitted value residual

X Y Ŷ Y − Ŷ

10 39 37.1390 1.8610
13 36 33.5330 2.4670
13 36 33.5330 2.4670
15 33 31.1289 1.8711
16 30 29.9269 .0731
16 32 29.9269 2.0731
16 26 29.9269 -3.9269
16 30 29.9269 .0731
18 25 27.5229 -2.5229
18 25 27.5229 -2.5229
18 28 27.5229 .4771
18 28 27.5229 .4771
18 28 27.5229 .4771
18 23 27.5229 -4.5229
18 25 27.5229 -2.5229
19 27 26.3209 .6791
19 28 26.3209 1.6791
20 25 25.1189 -.1189
20 23 25.1189 -2.1189
20 22 25.1189 -3.1189
20 24 25.1189 -1.1189
20 24 25.1189 -1.1189
20 24 22.7149 1.2851
20 22 22.7149 -.7149
20 24 22.7149 1.2851
20 23 22.7149 .2851
20 23 22.7149 .2851
23 20 21.5129 -1.5129
23 20 21.5129 -1.5129
24 23 20.3109 2.6891
24 23 20.3109 2.6891
24 23 20.3109 2.6891
24 19 20.3109 -1.3109
25 20 19.1089 .8911
25 21 19.1089 1.8911

of systematic lack of fit of the least squares regression line to the data. Finally, if the

variability of the observed Y values depends on the corresponding values of X, e.g., the Y

values corresponding to small values of X might exhibit less variability than the Y values
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corresponding to large values of X, then the least squares regression line may fit better for

some intervals of X values than for other intervals of X values. This sort of behavior may

be detectable from the relationship between the residual values and the corresponding X

values.

The fitted and residual values for the subcompact car city mileage and displacement

example are given in Table 4. In this example, all of the residuals except two are less

than 3.2 in magnitude. The two large residual values are: −4.5229 corresponding to the

Toyota Celica model with a 1800 cc engine and a city mileage of 23 mpg, and −3.9269

corresponding to the Honda Civic DOHC/VTEC model with a 1600 cc engine and a

city mileage of 26 mpg. Because these two largest residuals are negative, we see that

the observed city mileage values for these two car models are substantially smaller than

we would expect them to be according to the least squares regression line. There is no

obvious pattern in the signs of the residuals in this example. Hence, we can conclude that

the least squares regression line provides a reasonable fit to the subcompact car mileage

and displacement data, and that the least squares regression line is suitable as a summary

and quantification of the dependence of the EPA city mileage of a subcompact car on its

engine displacement.

The least squares regression line uses the values of the explanatory variable X to

explain or account for the variability in the observed values of Y . Therefore, a measure

of the amount of the variability in the observed Y values that is explained, or accounted

for, by the least squares regression line can be used to quantify how well the least squares

regression line explains the relationship between the X and Y data values.

The sum of the squares of the residuals
∑

(Y − Ŷ )2 can be viewed as a measure of

the variability in the data, taking the values of the explanatory variable X and the least

squares regression line into account, since the fitted values depend on the X values and

the least squares regression line. The sum of the squares of the deviations of the observed

Y values from their mean
∑

(Y − Y )2 can be viewed as a measure of the variability in the

observed Y values, ignoring the corresponding X values. Therefore, the difference between

these two sums of squared deviations provides a measure of the amount of the variability

in the observed Y values that is explained, or accounted for, by the least squares regression

line. In symbols, the difference that we are referring to as a measure of the amount of the

variability in the observed Y values that is accounted for by the least squares regression

line is
∑

(Y − Y )2 −
∑

(Y − Ŷ )2.

The ratio of this difference to the sum of the squared deviations from the mean
∑

(Y −Y )2

is known as the coefficient of determination and is denoted by R2. The coefficient of
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determination is

R2 =

∑

(Y − Y )2 −
∑

(Y − Ŷ )2
∑

(Y − Y )2
.

Don’t worry about having to use this formula to compute R2. For the least square regres-

sion problem that we are considering the coefficient of determination R2 is equal to the

square of the correlation coefficient. The coefficient of determination R2 is the proportion

of the variability in the observed values of Y that is explained, or accounted for, by the

least squares regression line. R2 is a positive number between 0 and 1 and a value of R2

close to one indicates that the least squares regression line explains the data well.

For the subcompact car mileage and displacement example, the coefficient of determi-

nation is R2 = .8303. This means that, through the least squares regression line, the engine

displacement of a subcompact car accounts for 83.03% of the variability in the subcompact

car mileages. In other words, the least squares regression line based on engine displacement

alone is actually quite successful in explaining the city mileage of a subcompact car with

an engine displacement between 1 and 2.5 liters.

In addition to an examination of the residual values, we can visually assess the quality

of fit of the least squares regression line to the data by plotting the line on the scatterplot

of the data. A more formal graphical approach to assessing the quality of fit of the least

squares regression line to the data is through a residual plot. The residual plot is the

plot of the residuals (Y − Ŷ ) versus the observed X values. An ideal residual plot should

be such that all of the points are contained in a relatively narrow horizontal band centered

at zero; and such that there is no obvious nonlinear pattern inside the band. An example

of such an ideal residual plot is provided in Figure 11.

Figure 11. An ideal residual plot.
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The residual plots in Figures 12 and 13 illustrate the two problems with the fit of the

least squares regression line described earlier. The plot in Figure 12 exhibits evidence of

a nonlinear trend in the data. In this example the least squares regression line is too low

for small X values, it is too high for middle X values, and it is too low for large X values.

We can see evidence of this behavior in the residual plot, since the residuals are positive

for small X values, they are mostly negative for middle X values, and they are positive

for large X values. The fan shape of the plot in Figure 13 indicates that the variability

in the residuals depends on the value of X. In this example, the least squares regression

line fits the data better for smaller X values than it does for larger X values. That is,

the variability is smaller in the residuals corresponding to small X values than it is for the

residuals corresponding to large X values.

Figure 12. A residual plot indicating poor fit.
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Figure 13. A residual plot indicating nonconstant variability.
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When examining a residual plot you should look for obvious patterns that are sup-

ported by a reasonable number of points. Try not to let one or two slightly unusual

residuals convince you that there is an overall problem. You should also be aware that

an uneven distribution of X values (with more points in some X intervals than in other

X intervals) may suggest problems that would disappear with the addition of a few more

observations. Proper interpretation of residual plots requires practice and a sample size

that is large enough to provide reliable information.

The residual plot for the subcompact car city mileage and displacement example is

given in Figure 14. This figure also provides a scatterplot of the data and the fitted

line. For this example the least squares regression line seems to fit the data reasonably

well. However, there is a disturbing aspect of this residual plot. The first three residuals,

corresponding to car models with very small engines, are positive and, as a group, these

residuals are somewhat separated from the other residuals in this plot. From the scat-

terplot of Figure 10 we see that these three points are influential points, since the engine

displacements of these three car models are small relative to the majority of the engine

displacements. Before we discuss this point further, we need to discuss unusual points in

the regression context.

Figure 14. Plot with fitted line and residual plot, for the 35 cars
with displacements no larger than 2.5 liters.
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We have already discussed the effects of unusual points on the correlation coefficient.

In the regression context we will distinguish between two types of unusual points. An

observation or point is said to be a bivariate outlier when the point does not agree with

the overall linear trend in the data. A bivariate outlier may be detected visually in the

scatterplot or in some examples by the fact that the corresponding residual is rather large

relative to the other residuals. A scatterplot with a bivariate outlier is provided in Figure
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15. For the particular situation illustrated here, the effect of the bivariate outlier would

be to pull the least squares regression line upward and away from the other points in the

figure. This would result in an increase in the y–intercept but little change in the slope,

since this bivariate outlier is located near the middle of the observed X values.

Figure 15. A scatterplot with a bivariate outlier.
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Figure 16. Scatterplots with an influential point.

10 30 50x

5

20

y

10 30 50x

5

20

y

Plot B: .77+ .25x

10 30 50x

5

20

y

10 30 50x

5

20

y

Plot D: 1.73 + .19x

Plot A: .90 + .24x

Plot C: .02 + .30x

An observation or point is said to be an influential point when the X coordinate of

the point is widely separated from the X coordinates of the other points. An influential

point may or may not also be a bivariate outlier. The four plots in Figure 16 illustrate

the effects of an influential point on the least squares regression line slope (the equations

of the regression lines are provided with the plots). The basic data for these plots is given

in plot A. A single influential point is added to the data of plot A to yield the other three
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plots. The influential point is a bivariate outlier in plots C and D; but it is not a bivariate

outlier in plot B. Notice the dramatic effect that this single point has on the slope of the

regression line in plots C and D.

We will now return to our discussion of the subcompact car city mileage and displace-

ment example and the three car models with very small engines and somewhat unusual

residuals. From the listing in Table 4 we see that there are only three subcompact car

models with engine displacements that are less than 1.5 liters. From the plots of Figures 10

and 14 we see that the points corresponding to these car models are influential, since their

X values are somewhat separated from the other X values. These three points are not

bivariate outliers, since the relationship between the city mileage and engine displacement

values for these points agrees with the overall linear trend. It might be interesting to de-

termine how much of an effect these three car models have on the least squares regression

line. We are not suggesting that there is necessarily anything wrong with including the

three small displacement subcompact car models in the data set, the point here is that

there is not much information about small displacement cars and we would like to see just

how influential these three observations are. To this end, consider the subcompact car city

mileage and displacement data for the 32 car models with engine displacements between

1.5 and 2.5 liters. Summary statistics for these data are given in Table 5 and the data,

fitted, and residual values are given in Table 6.

Table 5. Subcompact car EPA city mileage and engine displacement
summary statistics, for the 32 car models with displacements
between 1.5 and 2.5 liters.

n = 32
X = 20.1563 r = -.8461
Y = 24.7188 slope, b = -1.0014

SX = 2.9524 y–intercept, a = 44.9030
SY = 3.4941 R2 = .7160

The slope of the least squares regression line based on all 35 subcompact car models is

−1.2020 mpg/100cc and the slope is−1.0014 mpg/100cc when the three small displacement

car models are excluded. As we would expect from the plot of city mileage versus engine

displacement, this indicates that the least squares regression line is steeper when the three

small displacement car models are included than it is when they are excluded. If we include

all 35 car models, then the least squares regression line indicates a decrease in the city

mileage of about 1.2020 mpg for each 100cc increase in engine displacement. However,

if we exclude the three small displacement car models, then the least squares regression

line indicates a decrease in the city mileage of only 1.0014 mpg for each 100 cc increase in

engine displacement.
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Table 6. Subcompact car city mileage and displacement data,
fitted, and residual values, for the 32 car models
with displacements between 1.5 and 2.5 liters.

displacement city mileage fitted value residual

X Y Ŷ Y − Ŷ

15 33 29.8822 3.1178
16 30 28.8808 1.1192
16 32 28.8808 3.1192
16 26 28.8808 -2.8808
16 30 28.8808 1.1192
18 25 26.8780 -1.8780
18 25 26.8780 -1.8780
18 28 26.8780 1.1220
18 28 26.8780 1.1220
18 28 26.8780 1.1220
18 23 26.8780 -3.8780
18 25 26.8780 -1.8780
19 27 25.8766 1.1234
19 28 25.8766 2.1234
20 25 24.8752 .1248
20 23 24.8752 -1.8752
20 22 24.8752 -2.8752
20 24 24.8752 -.8752
20 24 24.8752 -.8752
20 24 22.8724 1.1276
20 22 22.8724 -.8724
20 24 22.8724 1.1276
20 23 22.8724 .1276
20 23 22.8724 .1276
23 20 21.8711 -1.8711
23 20 21.8711 -1.8711
24 23 20.8697 2.1303
24 23 20.8697 2.1303
24 23 20.8697 2.1303
24 19 20.8697 -1.8697
25 20 19.8683 .1317
25 21 19.8683 1.1317

A comparison of the y–intercept values suggests that the effect of the three small dis-

placement car models on the vertical location of the least squares regression line is quite

large. The y–intercept of the least squares regression line based on all 35 subcompact
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car models is 49.1590 mpg and the y–intercept is 44.9030 mpg when the three small dis-

placement car models are excluded. The difference between these two y–intercepts is the

vertical distance between these two lines at the nonsensical displacement value of 0 cc,

i.e., the vertical locations of the two the least squares regression lines, at X = 0, differ by

4.2560 mpg. Since the slopes of these two lines are different, it would make more sense to

compare the vertical locations of these two lines at an X value that is within the observed

displacement range. Predicted city mileage values for three representative values of X are

given in Table 7. The representative X values are the smallest and largest values common

to the two cases and a middle value X = 20 that is close to both X means. From these

predicted values we see that excluding the three small displacement car models lowers the

least squares regression line somewhat in the middle and at the lower end of the observed

X range, but raises the line slightly at the upper end of the observed X range.

Table 7. Some representative predicted values.

predicted value
displacement including small excluding small

15 31.1289 29.8822
20 25.1189 24.8752
25 19.1089 19.8683

The residual plot of Figure 17 does not indicate any problems with the fit of the

least squares regression line when the three small displacement car models are excluded;

it does show some evidence of slightly more variability for car models with smaller engine

displacements. When the three small displacement car models are excluded there is only

one residual that exceeds 3.2 in magnitude. The Toyota Celica model with a 1800 cc engine

and a city mileage of 23 mpg has a residual of −3.8780.

The linear relationship between city mileage and displacement is somewhat weaker

when the three small displacement car models are excluded. This is evident from the fact

that the correlation coefficient is smaller in magnitude when these three car models are

excluded. We also find that the coefficient of determination R2 is smaller when these three

car models are excluded. Since R2 = .7160, we see that even without the three small

displacement car models the least squares regression line still accounts for 71.6% of the

variation in the subcompact car city mileage values.

Since relatively few subcompact car models have engine displacements below 1.5 liters

(only 9% of the subcompact car models with displacements no larger than 2.5 liters and

only 6% of all 51 subcompact car models), we might argue that the three small displace-

ment car models are unusual enough to justify their exclusion from our analysis of the

relationship between city mileage and displacement.
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Figure 17. Plot with fitted line and residual plot, for the 32 cars
with displacements above 1 liter but no larger than 2.5 liters.
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Our analysis of the relationship between subcompact car city mileage and engine dis-

placement was initially restricted to car models with displacements no larger than 2.5 liters.

You may have wondered why we imposed this restriction. It is instructive to reconsider

the relationship between city mileage and displacement when all 51 of the subcompact car

models are included. From the scatterplot of Figure 18, which is based on all 51 subcom-

pact car models, we see that the relationship between city mileage and engine displacement

is not linear when the car models with large engines are included.

Figure 18. Plot of EPA city mileage versus displacement,
for all 51 cars (excluding the 5 unusual cars).
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It clearly does not make sense to fit a straight line to these data. However, we will

do so to demonstrate what happens in such a situation. We would particularly like to see

how this nonlinearity affects the residual plot. The residual plot for this example is given

in Figure 19. There is an obvious pattern of systematic lack of fit of the least squares

regression line to the data in this residual plot. For small values of X the residuals are

positive and decrease as X gets larger. For middle values of X the residuals are negative

and they first decrease and then increase as X gets larger. Finally, for large values of X

the residuals are positive and they increase as X gets larger. This U–shaped pattern in

the residual plot indicates that the least squares regression line is too low for small and

large X values; and it is too high for middle X values.

In a situation like this one where there is nonlinear association we need to use more

complicated regression methods that allow us to fit a curved line instead of a straight

line. It is not particularly difficult to generalize the least squares approach to curved lines;

however, this is beyond the scope of this chapter.

Figure 19. Plot with fitted line and residual plot,
for all 51 cars (excluding the 5 unusual cars).

0 30 60
displ

11

22

33

city

0 30 60
displ

-4

2

8

residual



242 9.3 Regression



10.1 Inference for Regression 243

Chapter 10

Inference for Bivariate Data

10.1 Inference for Regression

In Chapter 9 we used the least squares regression line to summarize the linear re-

lationship between a response variable Y and an explanatory variable X. We will now

consider a more formal (inferential) approach to this problem based on a model for the

population distribution of Y . The model we will use is the simple linear regression model

which assumes that the population mean response (the population mean of Y ) is a linear

function of the explanatory variable X.

We will use a simple example to motivate the simple linear regression model and to

develop the associated methods of inference. Throughout this discussion we will provide

formulae and computations to clarify definitions. You will not need to perform most of

these computations, since they can be performed using a suitable calculator or computer

statistics program.

Example. Arsenic concentrations. Bencko and Symon (Env. Res. 1977) con-

sidered the effects of air pollution from a power plant burning coal with a high arsenic

content on the health of persons living near the plant. Groups of ten year old boys, each

group consisting of 20–27 boys, were selected from ten communities southwest (downwind)

of the plant. For each group the response variable Y = average concentration of arsenic

in the hair (in parts per million, ppm) was measured and the explanatory variable X =

distance of the community from the plant (in kilometers, km) was recorded. The data are

given in Table 1.

Table 1. Arsenic Data.

distance 2 4 8 10 12 15 21 23 30 36
arsenic conc. 3.19 3.26 1.82 1.02 1.85 2.05 1.34 0.79 0.66 0.30

First consider a model for the distribution of the response variable Y = arsenic con-

centration at a particular community located at a distance X = x kilometers downwind

from the plant. We will model the observed responses (Y ′s) using normal distributions.

More specifically, we will assume that the distribution of the arsenic concentration Y corre-

sponding to a community at a distance of X = x is a normal distribution with population

mean µ(x) and population variance σ2 (population standard deviation σ). The notation

µ(x) indicates that the population mean response depends on the distance X = x of the
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community from the plant. The population variance is assumed to be constant so that the

variance of Y is the same regardless of the distance X = x.

In the context of this example we would expect the distribution of the arsenic concen-

tration Y to depend on the distance X of the corresponding community from the power

plant. In general, we would expect to observe smaller values of Y for communities which

are farther away from the plant. The tendency to observe lower arsenic concentrations

at communities farther from the plant is supported by the plot of arsenic concentration

versus distance in Figure 1.

Figure 1. Plot of arsenic concentration versus distance.
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The simple linear regression model assumes that the population mean response µ(x)

is a linear function of the corresponding value X = x of the explanatory variable. The

population simple linear regression line can be parameterized in the intercept and

slope form

µ(x) = α+ βx,

where α is the population intercept and β is the population slope; or, letting x denote the

mean of the observed values of X, in the mean and slope form

µ(x) = µ+ β(x− x),

where µ = µ(x) denotes the population mean response corresponding toX = x. The simple

linear regression model assumes that there is a constant rate of change, β, in the population

mean response, µ(x), as a function of the explanatory variable x. In many applications

this assumption of a constant rate of change will not be appropriate for all possible values

of X; however, it may be reasonable if we restrict our attention to a suitable range of X
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values. A population regression line, drawn with negative slope, with the parameters α,

β, and µ indicated is provided in Figure 2.

Figure 2. A population regression line (drawn with negative slope).
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Based on the plot of Figure 1, the assumption of a constant rate of change in the

population mean arsenic concentration seems reasonable for distances between 2 and 36

km from the plant. However, we would not necessarily expect this constant rate of change

to hold for distances less than 2 km or greater than 36 km. In particular, as the distance

from the plant gets very large we would expect the population mean arsenic concentration

to decrease more slowly and to eventually stabilize at some background level. Therefore, in

this example and in general, we must be careful about making inferences which correspond

to extrapolations beyond the range of X values for which we have data.

The estimated or fitted regression line is the least squares regression line introduced

in Section 9.3. This fitted regression line passes through the point (x, Y ) and has slope b,

where

b =

∑
(x− x)(Y − Y )∑

(x− x)2
.

This fitted regression line, which can be expressed as

Ŷ (x) = a+ bx = Y + b(x− x),
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is now viewed as an estimate (the least squares estimate) of the population regression line

µ(x) = α+ βx = µ+ β(x− x)

defined above. The least squares estimates of the population slope β, the population mean

response µ = µ(x) (corresponding to X = x), and the population intercept α are the

estimated slope β̂ = b, the sample mean response µ̂ = Y , and the estimated intercept

α̂ = a = Y − bx, respectively.

The fitted regression line for the arsenic example (graphed in Figure 3) has slope

b = −.07815 ppm per km which indicates that if the distance of a community from the

plant was increased by one km, we would estimate that the population mean arsenic

concentration would decrease by .07815 ppm. The fitted line passes through the point

(x, Y ) = (16.1, 1.628) which indicates that the estimated mean response for a distance of

X = x = 16.1 km is equal to Ŷ (16.1) = Y = 1.628 ppm. The intercept for this fitted line

is a = 2.8862 ppm. We can use the residuals and a residual plot, as discussed in Section

9.3, to determine whether this fitted regression line supports the simple linear regression

model as an appropriate model for the data at hand. The observed values of the arsenic

concentrations Y , the fitted values Ŷ (x), and the residual values Y − Ŷ (x) are given in

Table 2 and the residual plot (a plot of the residuals Y − Ŷ (x) versus the distances x) is

given in Figure 4.

Table 2. Arsenic data, fitted values, and residuals.

distance concentration fitted value residual

X Y Ŷ Y − Ŷ

2 3.19 2.7299 0.4601
4 3.26 2.5736 0.6864
8 1.82 2.2610 -0.4410
10 1.02 2.1047 -1.0847
12 1.85 1.9484 -0.0984
15 2.05 1.7140 0.3360
21 1.34 1.2451 0.0949
23 0.79 1.0888 -0.2988
30 0.66 0.5417 0.1183
36 0.30 0.0728 0.2272

The residual plot appears reasonable overall, especially for such a small data set, with

little if any evidence that a straight line (constant rate of change) model is not appropriate.

There is one residual, −1.0847 for the community 10 km from the plant, which is somewhat

large in magnitude indicating that the observed concentration at a distance of 10 kilometers

is somewhat smaller than that predicted by the fitted regression line. The magnitude of
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this residual is not large enough to cause much concern about the simple linear regression

model. We might argue that there is some (slight) evidence of curvature in the residual plot

suggesting that the relationship between arsenic concentration and distance is nonlinear;

but, again there is not enough evidence to cause much concern. Based on these observations

it seems reasonable to use the simple linear regression model for the arsenic example.

Figure 3. Arsenic data with fitted line.
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Figure 4. Arsenic example residual plot.
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The next step in developing inferential methods for the simple linear regression model

is to determine a suitable estimator of the common variance σ2. We will use a pooled

estimator of the common variance based on the residuals. This pooled variance estimator



248 10.1 Inference for Regression

is analogous to the pooled variance estimator of the two sample problem of Chapter 8.

In the regression context the model allows a different mean for each distinct value of X

and the fitted values, the Ŷ ′s, provide estimates of these means. Thus the pooled variance

estimator for the regression problem is the “average” of the squared residuals

S2

p =

∑
(Y − Ŷ )2

n− 2
,

where the sum is over all n observations. The divisor in this pooled variance estimator is

n−2, since we need two degrees of freedom to estimate the line which determines the fitted

values. For the arsenic example the pooled variance estimate is S2
p = .29255 (Sp = .54088)

with n− 2 = 8 degrees of freedom.

Figure 5. Stem and leaf histogram for arsenic residuals.
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Figure 6. Arsenic residuals normal probability plot.
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The confidence interval estimates and hypothesis tests we will now develop are based

on the pooled variance estimator S2
p from above and the Student’s t distribution with n−2

degrees of freedom. We can examine the residuals to verify that the normality assumption

required for these inferential methods is reasonable. The only disturbing feature of the
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stem and leaf histogram in Figure 5 for the residuals from the arsenic example is the

one large (negative) residual corresponding to X = 10 we mentioned above; otherwise,

this histogram is consistent with a sample of size ten from a normal distribution. The

normal probability plot for the residuals given in Figure 6 also indicates that the normality

assumption is reasonable here.

First consider inference for the population slope β. The estimated standard error of

the estimated slope b, based on the pooled variance estimator S2
p , is

Ŝ.E.(b) =
Sp√∑
(x− x)2

,

and the quantity

T =
b− β

Ŝ.E.(b)

follows a Student’s t distribution with n− 2 degrees of freedom. Therefore, we can use the

Student’s t distribution with n− 2 degrees of freedom to form a confidence interval for β

or to test a hypothesis about β.

For the arsenic example we postulated that the population slope β (the rate of change

in arsenic concentration as a function of distance) should be negative, since we expect the

arsenic concentration to decrease as the distance from the plant increases. We can address

this contention by testing the null hypothesis H0 : β ≥ 0 versus the research hypothesis

H1 : β < 0. Under the null hypothesis, with β = 0, the quantity

T =
b− 0

Ŝ.E.(b)

follows the Student’s t distribution with n− 2 = 8 degrees of freedom and we can use the

Student’s t test statistic

Tcalc =
b

Ŝ.E.(b)

to test H0 : β ≥ 0 versus H1 : β < 0 by rejecting H0 : β ≥ 0 if Tcalc is sufficiently far

below zero. The P–value for this test is P (T ≤ Tcalc), where T denotes a Student’s t

variable with 8 degrees of freedom. In this example we have b = −.0782, Ŝ.E.(b) = .0161

and Tcalc = −4.85, which gives a P–value of P (T ≤ −4.85) = .0006. This P–value is

very small providing strong evidence that the population slope β is negative. The 97.5

percentile of the Student’s t distribution with 8 degrees of freedom is 2.306 which gives a

95% margin of error for b of M.E.(b) = 2.306(.0161) = .0371 and a 95% confidence interval

from −.0782 − .0371 = −.1153 to −.0782 + .0371 = −.0411. Thus we are 95% confident

that the population slope β is at least −.1153 ppm/km and at most −.0411 ppm/km

indicating a decrease in the population mean arsenic concentration of at least .0411 ppm
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and at most .1153 ppm for each increase of one kilometer in distance from the plant. Note

that this interpretation of the slope of the regression line should only be used in the range

of distances for which we have data, since we would not necessarily expect this simple

linear regression model to hold beyond this range.

The slope provides an estimate of how the population mean response changes as a

function of X. We might also want an estimate of the vertical location of the regression

line. The population mean response µ = µ(x) (the population mean of the response

variable Y at the mean x of the explanatory variable values) can be used to indicate the

location the population regression line. The sample mean response Y provides our estimate

of µ. The estimated standard error of the estimated mean response Y , based on the pooled

variance estimator S2
p , is

Ŝ.E.(Y ) =
Sp√
n

and the quantity

T =
Y − µ

Ŝ.E.(Y )

follows a Student’s t distribution with n− 2 degrees of freedom. Therefore, we can use the

Student’s t distribution with n− 2 degrees of freedom to form a confidence interval for µ

or to test a hypothesis about µ.

To get a feel for the overall population mean arsenic concentration at distances between

2 and 36 km from the plant we can estimate the population mean concentration for a

distance of X = x = 16.1 km, i.e., we can estimate µ = µ(16.1). The estimate of the

population mean concentration at 16.1 km is Y = 1.628 and the estimated standard error

of Y is

Ŝ.E.(Y ) =
Sp√
n

= .1710.

Since there are n−2 = 8 degrees of freedom associated with Sp, we know that the quantity

T =
Y − µ

Ŝ.E.(Y )

follows a Student’s t distribution with 8 degrees of freedom. Therefore, the 95% margin of

error of Y is M.E.(Y ) = 2.306(.1710) = .3943 and the interval from 1.628− .3943 = 1.2337

ppm to 1.628+ .3943 = 2.0223 ppm is a 95% confidence interval for µ, the population mean

arsenic concentration at 16.1 kilometers from the plant. Hence, we are 95% confident that

the population mean arsenic concentration for a community 16.1 km from the plant is

between 1.2337 and 2.0223 ppm.

The Student’s t test statistic obtained from the quantity T above by replacing µ by

a specific hypothesized concentration µ0 could be used to conduct a hypothesis test for
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comparing µ with µ0. Since a relevant µ0 value is not available, we will not consider such

a hypothesis test for the arsenic example.

You may have wondered why we used the population mean response µ = µ(x) instead

of the population intercept α to quantify the vertical location of the population regression

line. Since the population intercept is the population mean response for X = 0 and

since, as in the arsenic example, X = 0 is often not within the range of the values of the

explanatory variable we are interested in, there is often little interest in the value of α

except as part of the equation for the fitted regression line. Therefore, it is usually more

appropriate to consider inference for µ instead of α.

For a specified value x∗ of the explanatory variable (note that this x∗ should be in

the range of the explanatory variable values for which we have data) we can estimate the

corresponding population mean response µ(x∗) as

Ŷ (x∗) = a+ bx∗

or as

Ŷ (x∗) = Y + b(x∗ − x).

The first expression, giving Ŷ (x∗) in terms of a and b, is more convenient for computation

while the second expression, giving Ŷ (x∗) in terms of Y and b, allows us to more easily

find the estimated standard error of Ŷ (x∗) and see how it depends on the location of x∗

relative to x. It can be shown that the estimators Y and b are statistically independent

and that, because of this independence, we can express the estimated standard error of

Ŷ (x∗) in terms of the estimated standard errors of Y and b. For ease of notation let

v̂ar(Y ) = (Ŝ.E.(Y ))2 and v̂ar(b) = (Ŝ.E.(b))2

denote the estimated variances of Y and b. The estimated standard error of Ŷ (x∗) is

Ŝ.E.(Ŷ (x∗)) =

√
v̂ar(Y ) + (x∗ − x)2v̂ar(b).

Notice that the (x∗ − x)2 term in this standard error causes the standard error of Ŷ (x∗)

to increase as the distance between x∗ and x increases. That is, the variability in Ŷ (x∗) as

an estimator of µ(x∗) is smaller for values of x∗ close to x than it is for values of x∗ farther

from x. Some calculators and computer programs will provide the standard errors of Y

and b but will not provide the standard error of Ŷ (x∗), if this is true for your calculator

or computer program, you can use the expression above to find S.E.(Ŷ (x∗)).

We can use the fact that the quantity

T =
Ŷ (x∗)− µ(x∗)

Ŝ.E.(Ŷ (x∗))
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follows a Student’s t distribution with n−2 degrees of freedom to form a confidence interval

for µ(x∗) or to test a hypothesis about µ(x∗). Notice that α = µ(0) and we can make

inferences about the population intercept using the present approach with x∗ = 0.

Consider the problem of estimating the population mean arsenic concentration µ(20)

for a hypothetical community located 20 km from the power plant. Our estimate of µ(20)

is

Ŷ (20) = 2.8862− .07815(20) = 1.3232.

In this example

v̂ar(Y ) = .02925 and v̂ar(b) = .0002595

so that the estimated standard error of Ŷ (20) is

Ŝ.E.(Ŷ (20)) =
√
.02925 + (20− 16.1)2(.0002595) = .1822,

which gives a margin of error of M.E.(Ŷ (20)) = (2.306)(.1822) = .4202. Therefore, we

can be 95% confident that the population mean response µ(20) for a distance of 20 km is

between 1.3232 - .4202 = .9030 ppm and 1.3232 + .4202 = 1.7434 ppm.

In some situations instead of estimating the population mean response µ(x∗) for X =

x∗ we might wish to predict the actual response Y (x∗) which would be observed if we were

to measure Y when X = x∗. We can model the actual response value corresponding to

X = x∗ as Y (x∗) = µ(x∗)+ ε, where µ(x∗) is the corresponding population mean response

and ε represents a random, normally distributed quantity with mean zero and standard

deviation σ. The fitted value Ŷ (x∗) which served as our estimate of µ(x∗) provides a

suitable prediction (estimate) of the actual response value Y (x∗) as well, since µ(x∗) is the

mean of the distribution of Y (x∗). However, there is more variability in Ŷ (x∗) when it is

viewed as a predictor of Y (x∗) than there is when it is viewed as an estimator of µ(x∗).

We can use the standard error of prediction

S.E.P.(Ŷ (x∗)) =
√

v̂ar(Y ) + (x∗ − x)2v̂ar(b) + S2
p

to quantify the variability in Ŷ (x∗) as a predictor of Y (x∗), and in particular, we can use

this standard error of prediction to form an interval estimate of Y (x∗). Notice that the

standard error of prediction differs from the standard error for estimating µ(x∗) by the

addition of the term S2
p under the square root sign. This added term accounts for the

variability in the ε of the expression for Y (x∗) given above.

We estimated the population mean arsenic concentration µ(20) for a hypothetical

community located 20 km from the power plant above. Now consider the prediction of the
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actual response we would have observed if there was a community 20 km from the plant.

Since S2
p = 0.29255, the standard error for prediction for a distance of 20 km is

S.E.P.(Ŷ (20)) =
√
.02925 + (20− 16.1)2(.0002595) + .29255 = .5707

and the 95% prediction interval for the actual response at 20 km is the interval from 1.3232

- (2.306)(.5707) = 1.3232 - 1.3161 = .0071 ppm to 1.3232 + (2.306)(.5707) = 1.3232 +

1.3161 = 2.6393 ppm. Therefore, with 95% confidence we can predict that if we were to

measure the actual arsenic concentration at a community 20 km from the plant we would

get a value between .0071 ppm and 2.6393 ppm. Notice that this prediction interval is a

good bit longer than the 95% confidence interval (.9030, 1.7434) for the population mean

arsenic concentration for a community 20 km from the plant, since the prediction interval

takes the variability of the measurement process into consideration.

Example. Wheatear weight lifting and health status example. The black

wheatear is a small passerine (perching) bird that is resident in Spain and Morroco. The

male black wheatear demonstrates an exaggerated sexual display by collecting stones from

the ground and placing them in cavities in cliffs, caves, or buildings while the female

mate is present. Soler, Mart́in–Vivaldi, Maŕin, and Møller, Behav. Ecol. 10, 281–286,

(1999) investigated the relationship between such weight lifting and health status for black

wheatears. The data in the first two columns of Table 3 (which were read from Figure 1 of

this paper) correspond to a sample of n = 21 male black wheatears. The two variables are:

the bird’s T–cell response (in mm) which is a measure of the strength of the bird’s immune

system; and stone mass (in g) which is the average weight of the stones moved by the bird.

The T–cell response is essentially the increase in the thickness of the patagium (wing web)

in response to the injection of a lectin. A larger T–cell value indicates a stronger immune

system response.

These authors conjectured that male black wheatears signal their current health status

to their partners by carrying heavy stones. In particular, they conjectured that birds with

stronger immune systems would be expected to carry heavier stones. The plot of stone

mass versus T–cell response in Figure 7 shows a reasonably strong linear relationship

between stone mass and T–cell response. The authors argued that the T–cell response was

very precisely measured; thus, it is reasonable to treat T–cell response as the explanatory

variable in a simple linear regression model for stone mass.
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Table 3. Wheatear data, fitted values, and residuals.

T-cell stone
response (mm) mass (g) fitted value residual

X Y Ŷ Y − Ŷ

.18 6.06 5.7537 0.3063

.20 6.50 5.9540 0.5460

.21 6.28 6.0542 0.2258

.21 9.33 6.0542 3.2758

.25 3.33 6.4549 -3.1249

.25 5.44 6.4549 -1.0149

.25 5.67 6.4549 -0.7849

.25 6.61 6.4549 0.1551

.26 4.61 6.5551 -1.9451

.30 8.00 6.9558 1.0442

.31 7.78 7.0560 0.7240

.33 6.44 7.2563 -0.8163

.34 6.72 7.3565 -0.6365

.37 8.06 7.6570 0.4030

.38 8.11 7.7572 0.3528

.41 9.94 8.0577 1.8823

.43 7.56 8.2581 -0.6981

.43 9.06 8.2581 0.8019

.43 9.17 8.2581 0.9119

.47 6.78 8.6588 -1.8788

.51 9.33 9.0595 0.2705

Figure 7. Plot of stone mass versus T-cell response.
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The equation for the fitted regression line for this example (see Figure 8) is

Ŷ = 3.9505 + 10.0177X,

where Y denotes the stone mass in grams and X denotes the T–cell response in mm.

Figure 8. Wheatear data with fitted line.
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Figure 9. Wheatear example residual plot.
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The plot in Figure 8 and the residual plot in Figure 9 show that there are two points

which are relatively far away from the fitted line. The observation with X = .21 and

Y = 9.33 has a residual of 3.2758 (see Table 3) and the observation with X = .25 and

Y = 3.33 has a residual of -3.1249. All of the other residuals have magnitudes which are less
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than two. Because of these two mild outliers the coefficient of determination R2 = .3330

is not very large. Notice that even with these two unusual points T–cell response alone

still explains 33.3% of the variability in stone mass. If we had data for some other relevant

explanatory variables we could fit a more complex regression model which would account

for more of the variability in stone mass.

Figure 10. Stem and leaf histogram for wheatear residuals.

In this stem and leaf histogram the stem represents ones
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Figure 11. Wheatear residuals normal probability plot.
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The two mild outliers are apparent in the stem and leaf histogram of Figure 10 and

in the normal probability plot of Figure 11. Even with these points there does not seem

to be any problem in treating these stone mass data as forming a random sample of size

21 from a normal distribution.
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Table 4. Wheatear regression summary statistics.

n = 21 error d.f. = 19
X = .3223 S2

p = 2.0249

Y = 7.1800 ŜE(Y ) = .3105

y–intercept, a = 3.9505 ŜE(a) = 1.0936

slope, b = 10.0177 ŜE(b) = 3.2528
R2 = .3330

The slope, b = 10.0177 g per mm, of the fitted line indicates that if the T–cell response

was increased by 1 mm, then we would estimate that the population mean stone mass would

increase by 10.0177 grams. Since the T–cell response cannot increase by 1 mm and stay

within the range of the data, we might rephrase this by saying that if the T–cell response

increased by .1 mm, then we would estimate that the population mean stone mass would

increase by 1.00177 grams. We can state, with 95% confidence, that the population slope β

is between 3.2096 and 16.8258 g per mm. We can use a test of H0 : β ≤ 0 versus H1 : β > 0

to quantify the evidence in favor of the conjecture that the population mean stone mass

is an increasing function of the T–cell response. For this test we have Tcalc = 3.08 giving

a P–value of .0031. This provides strong evidence that the population slope is positive so

that a stronger T–cell response yields a higher population mean stone mass.

There is some interest here in considering the population mean stone mass for a low

T–cell response value (say X = .25) and for a high T–cell response value (say X = .45).

The estimate of the population mean stone mass for X = .25 is Ŷ (.25) = 6.4549 with

standard error .3897; and a 95% confidence interval for µ(.25) goes from 5.6393 to 7.2705

grams. The estimate of the population mean stone mass for X = .45 is Ŷ (.45) = 8.4584

with standard error .5184; and a 95% confidence interval for µ(.45) goes from 7.3734 to

9.5435 grams.
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Chapter 11

Chi–square Tests

11.1 Introduction

In this chapter we will consider the use of chi–square tests (χ2–tests) to determine

whether hypothesized models are consistent with observed data. These tests are based

on the χ2–square statistic which serves as an index of discrepancy between a collection

of observed frequencies and a hypothesized collection of expected frequencies. The χ2–

statistic summarizes the differences between the values actually observed and the values we

would expect to see if the hypothesized model was correct; with a large χ2 value indicating

that the hypothesized model is not consistent with the observed data. The first step in

forming the χ2–statistic is to find the observed frequencies with which each possible value

occurs in the data and the expected frequencies with which each possible value should occur

according to the hypothesized model. For each value the difference between the observed

frequency and the expected frequency is computed, this difference is then squared and this

squared difference is divided by the corresponding expected frequency. These standardized

squared differences are then added yielding the χ2–statistic

χ2 =
∑ (observed frequency − expected frequency)2

expected frequency
,

where the sum is over all of the possible values. Large values of this χ2–statistic indicate

evidence that, at least some of, the observed frequencies do not agree with the hypothesized

expected frequencies and thus that the hypothesized model may not be correct. That is,

large values of the χ2–statistic indicate that the observed data are not consistent with the

hypothesized model.

The χ2 distributions are skewed to the right with density curves which are positive

only for positive values of the variable. Density curves for representative χ2 distributions

are provided in Figure 1. The χ2 distributions for 1 and 2 degrees of freedom have their

mode at zero; for larger degrees of freedom (d.f.) the mode of the χ2 distribution is located

at d.f. − 2. Notice that the variability in the χ2 distribution increases as the degrees of

freedom increases. For the χ2–tests discussed in this chapter a large value of the χ2–

statistic constitutes evidence against the null hypothesis and the P–values for these tests

are areas under the appropriate χ2 density curve to the right of the observed value χ2

calc

of the χ2–statistic.

The χ2–tests and associated P–values discussed in this chapter are based on large

sample approximations which require reasonably large expected frequencies. One rule of
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thumb regarding this requirement says that no more than 20% of the expected frequencies

should be less than 5 and all of the expected frequencies should be at least 1. If these

conditions are not satisfied, you can combine some categories (values of the variable) to

increase the expected frequencies which are too small.

Figure 1. Chi–square distribution density curves.
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1 d.f.
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We will consider three different applications of χ2–tests in this chapter. In Section

11.2 we will consider χ2–tests for goodness of fit. These goodness of fit tests can be viewed

as extensions of the Z–test for H0 : p = p0 versus H1 : p 6= p0 of Chapter 5 to populations

with more than two possible classifications. In Section 11.3 we will consider χ2–tests for

homogeneity. These tests of homogeneity can be viewed as extensions of the Z–test for

H0 : p1 = p2 versus H1 : p1 6= p2 of Chapter 6 to two or more populations with two or more

possible classifications. Finally in Section 11.4 we will consider χ2–tests for independence.

These tests for independence are used to examine the relationship between two or more

classification factors.

Throughout this chapter we will provide details of the computations involved in com-

puting χ2–statistics. This does not indicate that you should compute these statistics by

hand; however, if you choose to do so be sure to avoid rounding at intermediate stages.

Some calculators and most statistical programs will compute χ2–statistics, associated P–

values, and other relevant information.

11.2 Chi–square Tests for Goodness of Fit

A χ2–test for goodness of fit is used to determine whether the outcomes predicted

by a hypothesized model are consistent with observed data. The hypothesized model is

used to determine the outcomes we would expect to observe and the χ2–statistic is used

to quantify the agreement between the observed outcomes and the expected outcomes. A
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small value of the χ2–statistic indicates that the observed outcomes are in agreement with

the outcomes predicted by the hypothesized model (the data are consistent with the model)

and a large value indicates inconsistency between the observed data and the hypothesized

model.

First consider the χ2–test for goodness of fit for situations where the hypothesized

model completely specifies the probabilities for each of the possible outcomes. More for-

mally, consider a situation where the population units can be categorized into k mutually

exclusive and exhaustive classifications and where the model completely specifies the prob-

abilities, p1, p2, . . . , pk, of belonging to these k classifications. The χ2–test of goodness of

fit is used to test the null hypothesis that the k probabilities specified by the model are

correct versus the alternative hypothesis that these probabilities are not all correct. The

χ2–test is most easily presented in terms of the observed frequencies (observed counts),

f1, f2, . . . , fk, of the k classifications and the hypothetical expected frequencies (expected

counts), F1, F2, . . . , Fk, predicted by the model. Assuming that the data correspond to a

random sample of size n, we can express the expected frequencies in terms of the model

probabilities as F1 = np1, F2 = np2, . . . , Fk = npk. We will develop the χ2–test in the

context of several examples.

Example. Inheritance in peas (flower color). In Section 5.3 we described a

simple Mendelian inheritance model for the color of pea plant flowers arising from crossing

two first generation plants. This model hypothesizes that the probability that a plant

has red flowers is pR = 3/4 and the probability that a plant has white flowers is pW =

1 − pR = 1/4. Mendel observed n = 929 pea plants arising from a cross of two first

generation plants of which 705 plants had red flowers and 224 plants had white flowers.

Under the hypothesized model we would expect to see red flowers 3/4 of the time and

white flowers 1/4 of the time. Thus, for Mendel’s experiment with a total of 929 plants

we would expect to see about 696.75 plants with red flowers and about 232.25 plants with

white flowers.

We can test the consistency of this model with the data by comparing the observed

frequencies of red and white flowered plants to the corresponding expected frequencies. The

first step in this comparison is to find the differences between the observed and expected

frequencies of plants for each of the two colors. In this example we have differences of

705 − 696.75 = 8.25 (red) and 224 − 232.25 = −8.25 (white.) These differences add to

zero, since both the observed and expected frequencies add to 929. The second step is

to square each difference and standardize it by dividing by the corresponding expected

frequency. This standardization gives 68.0625/696.75 = .0977 (red) and 68.0625/232.25 =

.2931 (white.) Adding these standardized squared differences gives the χ2–statistic χ2

calc =

.0977 + .2931 = .3908. These computations are summarized in Table 1.
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Table 1. Pea plant flower color example.

flower observed expected
color frequency frequency obs− exp (obs− exp)2/exp

red 705 696.75 8.25 .0977
white 224 232.25 -8.25 .2931

total 929 929 χ2

calc = .3908

A large value of the χ2–statistic indicates evidence against the null hypothesis that the

model is valid H0 : pR = 3/4 and pW = 1/4 and in favor of the alternative hypothesis that

the model is not valid H1 : it is not true that pR = 3/4 and pW = 1/4. We can determine

whether χ2

calc = .3908 is large by computing the relevant P–value. The P–value for this

χ2–test is the probability of observing a value of χ2 as large or larger than the calculated

value χ2

calc = .3908 computed using the appropriate χ2 distribution. In a situation like

the present example, where there are k categories or classifications and the model com-

pletely specifies the k corresponding probabilities, the appropriate χ2 distribution is the

χ2 distribution with k − 1 degrees of freedom. In this example there are k = 2 possible

classifications (red or white) and the model completely specifies the two corresponding

probabilities (pR = 3/4 and pW = 1/4), so the χ2 distribution with k − 1 = 1 degree of

freedom is used to compute the P–value. With χ2

calc = .3908 and one degree of freedom we

get the P–value P (χ2 ≥ .3908) = .5310. This P–value is quite large and we are not able

to reject the null hypothesis; therefore, we conclude that the observed data are consistent

with Mendel’s model.

In this example there are k = 2 classifications and pW = 1− pR, thus the hypotheses

specified in terms of pR and pW above can be written more simply as H0 : pR = 3/4 and

H1 : pR 6= 3/4. In section 5.3 we used the normal approximation to perform a Z–test for

these hypotheses. The χ2–test presented above is actually equivalent to this Z–test. To

see this equivalence consider the Z–test for H0 : p = p0 versus H1 : p 6= p0; for this test we

have

Z2 =
(p̂− p0)

2

p0(1− p0)/n
=

(np̂− np0)
2

np0(1− p0)

= [(1− p0) + p0]
(np̂− np0)

2

np0(1− p0)

=
(np̂− np0)

2

np0

+
(n[1− p̂]− n[1− p0])

2

n(1− p0)
= χ2;

and a value of Z which is far away from zero corresponds to a large value of Z2 = χ2.

Furthermore, it can be shown that the square of a standard normal variable follows the χ2

distribution with one degree of freedom; and thus these two approaches are equivalent.
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The χ2–test is of more interest when there are three or more classifications, since

there is no Z–test in these cases. The χ2–test for an example with k = 4 classifications is

developed below.

Example. Inheritance in peas (seed shape and color). We will now consider the

Mendelian inheritance model for two independently inherited characteristics. In particular

we will consider the characteristics seed shape, with possible shapes of round (R, dominant)

and wrinkled (r, recessive), and seed color, with possible colors of yellow (Y , dominant)

and green (y, recessive). If a RRY Y genotype plant with round yellow seeds is crossed

with a rryy genotype plant with wrinkled green seeds, the offspring will all have round

yellow seeds and genotype RrY y. If two of the resulting RrY y genotype plants with round

yellow seeds are crossed, there are 16 equally likely possible genotypes. The nine genotypes

RRY Y,RRY y,RRyY,RrY Y,RrY y,RryY, rRY Y, rRY y, rRyY yield round yellow seeds;

the three genotypes rrY Y, rrY y, rryY yield wrinkled yellow seeds; the three genotypes

RRyy,Rryy, rRyy yield round green seeds; and, the single genotype rryy yields wrinkled

green seeds. The facts that these 16 possible genotypes are equally likely and each plant

possesses only one genotype yield the probability distribution summarized in Table 2.

Table 2. Pea plant seed shape/color distribution.

shape/color probability

round yellow 9/16
wrinkled yellow 3/16

round green 3/16
wrinkled green 1/16

The results of one of Mendel’s experiments regarding seed shape and color, with

n = 556 plants, are summarized in Table 3. Table 3 also contains the expected frequencies,

computed using the distribution of Table 2, and the computations leading to the χ2 statis-

tic. In this example there are k = 4 classifications and the P–value P (χ2 ≥ .4700) = .9254

Table 3. Pea plant seed shape and color example.

observed expected
shape/color frequency frequency obs− exp (obs− exp)2/exp

round yellow 315 312.75 2.25 .0162
wrinkled yellow 101 104.25 -3.25 .1013

round green 108 104.25 3.75 .1349
wrinkled green 32 34.75 -2.75 .2176

total 556 556 χ2

calc = .4700
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for the χ2–test is computed using the χ2 distribution with k−1 = 3 degrees of freedom. In

this example, the P–value is quite large and we are not able to reject the null hypothesis;

therefore, we conclude that the observed data are consistent with Mendel’s model.

In both of the preceding examples the data are consistent with the hypothesized

model. The following example, which is also concerned with a Mendelian inheritance

model, illustrates a situation where the data are not consistent with the model.

Example. Inheritance in maize (leaf characteristics). This example is taken

from Snedecor and Cochran (1980), the original source is Lindstrom (1918) Cornell Agr.

Exp. Sta. mem. 13. Lindstrom crossed two types of maize (corn) plants and classified the

resulting plants into four categories based on the appearance of the leaves. The Mendelian

model for this example is analogous to the model of the pea plant seed shape and color

example with respective probabilities of 9/16, 3/16, 3/16, and 1/16. Thus the model pre-

dicts that the four leaf types should occur in a ratio of 9 : 3 : 3 : 1. The data and the

computations are summarized in Table 4.

Table 4. Maize leaf type example.

observed expected
leaf type frequency frequency obs− exp (obs− exp)2/exp

green 773 731.813 41.1875 2.3181
golden 231 243.938 -12.9375 0.6862

green–striped 238 243.938 -5.9375 0.1445
green–golden–striped 59 81.313 -22.3125 6.1226

total 1301 1301 χ2

calc = 9.2714

In this example χ2

calc = 9.2714 is large indicating disagreement between the model

and the data. The P–value .0259, computed using the χ2 distribution with 3 degrees of

freedom, is small enough to allow us to conclude that Lindstrom’s data are not consistent

with the Mendelian model which predicts frequencies in the ratio of 9 : 3 : 3 : 1.

Examination of the four terms we added to get χ2

calc indicates that the green–golden–

striped term 6.1226 is large relative to the other terms. Thus the evidence against the

model seems to be due to the fact that the observed frequency of green–golden–striped

plants 59 is much smaller than the expected frequency 81.313. Lindstrom argued that this

discrepancy could be explained by “the weakened condition of the last three classes due

to their chlorophyll abnormality”. In particular, he noted that the plants in the green–

golden–striped class were not very vigorous (did not grow well). This suggests that the

evidence against the model may be due to the fact that some of the green–golden–striped

plants did not survive long enough to be counted. Therefore, we might wonder whether
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our rejection of the 9 : 3 : 3 : 1 model can be attributed to the poor survivorship of the

green–golden–striped plants. We will now perform an exploratory analysis to address this

question.

First consider the 1242 plants in the first three classifications. According to the

model the frequencies for these three classifications should be in the ratio 9 : 3 : 3. The

computations for a χ2 test for this subset of the original data are demonstrated in Table

5. For this subset of the original data we have χ2

calc = 2.6914 with 3 − 1 = 2 degrees of

freedom which gives a P–value of .2604. Therefore, there is evidence that the frequencies

in the first three classes are consistent with the predicted ratio of 9 : 3 : 3.

Table 5. Maize leaf type example, 9:3:3 model.

observed expected
leaf type frequency frequency obs− exp (obs− exp)2/exp

green 773 745.2 27.8 1.0371
golden 231 248.4 -17.4 1.2188

green–striped 238 248.4 -10.4 0.4354

total 1242 1242 χ2

calc = 2.6914

This test and the fact that the observed frequency of green–golden–striped plants is

much smaller than expected suggest that the reason that the original data do not agree

with the model may be poor survivorship of the green–golden–striped plants, since the

data for the other classes do agree with the model.

In some situations, like the two examples which follow, the hypothesized model does

not completely specify the probabilities for the k possible outcomes and it is necessary to

estimate these probabilities before performing the χ2 goodness of fit test.

Example. Radioactive disintegrations. This example is taken from Feller (1957),

p. 149 and Cramér (1946) p. 436. In a famous experiment by Rutherford, Chadwick, and

Ellis (Radiations from Radioactive Substances, Cambridge, 1920) a radioactive substance

was observed during 2608 consecutive time intervals of length 7.5 seconds each. The

number of particles reaching a counter was recorded for each period giving the results

summarized in Table 6.

The Poisson distribution, as discussed in Chapter 4a, provides a plausible model for

the number of particles, X, observed in this experiment. Therefore, we will perform a χ2

goodness of fit test to see whether a Poisson distribution is suitable as a model for the

distribution of the observed number of particles in this experiment. The Poisson model

places no upper bound on the number of particles which could be observed; so, for this
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test, we will use “10 or more particles” as the largest possible “value” of the variable. The

Poisson distribution with parameter λ specifies probabilities of the form

P (X = x) =
λx

x!
e−λ

for x = 0, 1, 2, . . . Notice that this probability function does not completely specify the

Table 6. Radioactive disintegrations data.

observed
number frequency

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27
10 10
11 4
12 2

total 2608

probabilities of the possible values of X, since there is an unknown parameter λ in the

formula. Therefore, to perform the χ2–test we first need to use the data to estimate λ.

Since λ is the mean of the Poisson distribution, we can use the sample mean 3.8704 as

an estimate of λ and use the formula from above to determine the expected frequencies.

Thus, for x = 0, 1, . . . , 9, we compute the expected frequencies using the formula

2608

(

3.8704x

x!
e−3.8704

)

and we subtract the sum of these expected frequencies from 2608 to find the expected

frequency for X ≥ 10. The observed and expected frequencies and the terms used to

calculate the χ2–statistic are summarized in Table 7. Because we estimated the parameter

λ of the hypothesized Poisson distribution we need to reduce the degrees of freedom for

the χ2–test by one. For this example we have χ2

calc = 12.8815 with k − 2 = 9 degrees of

freedom which gives a P–value of .1680. Since this P–value is not small we can conclude

that a Poisson model with λ = 3.8704 provides a reasonable model for the number of

radioactive disintegrations observed in this experiment.
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Table 7. Radioactive disintegrations.

observed expected
number frequency frequency obs− exp (obs− exp)2/exp

0 57 54.3769 2.6231 0.1265
1 203 210.4604 -7.4604 0.2645
2 383 407.2829 -24.2829 1.4478
3 525 525.4491 -.4491 0.0004
4 532 508.4244 23.5756 1.0932
5 408 393.5610 14.4390 0.5297
6 273 253.8730 19.1270 1.4410
7 139 140.3700 -1.3700 0.0134
8 45 67.9110 -22.9110 7.7294
9 27 29.2047 -2.2047 0.1664

≥ 10 16 17.0865 -1.0865 0.0691

total 2608 2608 χ2

calc = 12.8815

Example. Bacteria counts. This example is taken from Feller (1957), p.153. The

original source is T. Matuszewsky, J. Supinska, and J. Neyman (1936), Zentralblatt für

Bakteriologie, Parasitenkunde und Infektionskrankrankheiten, II Abt., 95.

Table 8. Bacteria counts data.

observed
number frequency

0 5
1 19
2 26
3 26
4 21
5 13
6 8

total 118

A Petri dish with bacteria colonies was examined under a microscope. The dish was

divided into small squares and the number of bacteria colonies, visible as dark spots,

was recorded for each square. The data are given in Table 8. If the bacteria colonies

were randomly distributed over the Petri dish, without being clustered together, then the

Poisson model should hold. The sample mean number of bacteria colonies is 2.9322 and,

as in the preceding example, we can use this sample mean to estimate the parameter λ of

the Poisson model.
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Table 9. Bacteria counts.

observed expected
number frequency frequency obs− exp (obs− exp)2/exp

0 5 6.2870 -1.2870 .2635
1 19 18.4347 .5653 .0173
2 26 27.0272 -1.0272 .0390
3 26 26.4164 -.4164 .0066
4 21 19.3645 1.6354 .1381
5 13 11.3562 1.6438 .2380
≥ 6 8 9.1140 -1.1141 .1362

total 118 118 χ2

calc = .8386

The observed and expected frequencies and the terms used to calculate the χ2–statistic

are summarized in Table 9. Again, since we estimated the parameter λ of the hypothesized

Poisson distribution, we need to reduce the degrees of freedom for the χ2–test by one. For

this example we have χ2

calc = .8386 with k − 2 = 5 degrees of freedom which gives a P–

value of .9745. Since this P–value is very large, we can conclude that a Poisson model with

λ = 2.9322 provides a reasonable model for the number of bacteria colonies as observed in

this experiment. This indicates that the conjecture that the bacteria colonies are randomly

distributed over the Petri dish, without being clustered together, is consistent with the

observations.

11.3 Chi–square Tests for Homogeneity

We will now consider χ2–tests for the homogeneity of two or more population dis-

tributions. These tests can be viewed as generalizations of the Z–test of equality of two

population proportions of Section 6.2 to allow for more than two populations or more than

two possible classifications.

A probability distribution for a qualitative variable with k possible values corre-

sponding to k mutually exclusive classifications can be represented by a collection p =

(p1, p2, . . . , pk) of k probabilities which sum to one. Givenm such probability distributions,

we have m collections of probabilities p1 = (p11, p12, . . . , p1k), p2 = (p21, p22, . . . , p2k), . . .,

and pm = (pm1, pm2, . . . , pmk) as shown in Table 10. The null hypothesis of homogeneity

of these m distributions, H0 : p1 = p2 = · · · = pm, specifies that the probability of ob-

serving a unit in a particular classification is the same for all m of the populations, i.e.,

for each classification j = 1, 2, . . . , k, we have p1j = p2j = · · · = pmj .
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Table 10. Notation for m populations and k classifications.

classification probabilities

population 1 2 . . . k sum

1 p11 p12 . . . p1k 1
2 p21 p22 . . . p2k 1
. . . . . .
. . . . . .
. . . . . .
m pm1 pm2 . . . pmk 1

Suppose that m independent random samples of sizes n1, n2, . . . , and nm are obtained

from these m population distributions and let fij denote the observed frequency of units

in classification j for the sample from population i as shown in Table 11. Under the

null hypothesis we would expect the m collections of k observed frequencies in each row

(sample) of Table 11 to be the same (no difference from row to row).

We can use the combined observed frequencies F1, F2, . . . , Fk in the last line of Table

11, obtained by adding the corresponding frequencies in the respective columns, and the

combined sample size n = n1 + n2 + · · · + nm to form estimates of the frequencies we

would expect to observe under the null hypothesis of homogeneity. We first compute the

estimates p̂1 = F1/n, p̂2 = F2/n, . . . , and p̂k = Fk/n of the assumed common classification

probabilities p1, p2, . . . , and pk and then we multiply this collection of p̂′s by the respective

sample sizes to get the expected frequencies for each population (row of the table). The

P–value for the resulting χ2–statistic, which is based on the m× k observed and expected

frequencies, is obtained from the χ2 distribution with (m− 1)(k − 1) degrees of freedom.

Table 11. Data for m populations and k classifications.

population observed frequencies sample
1 2 . . . k size

1 f11 f12 . . . f1k n1

2 f21 f22 . . . f2k n2

. . . . . .

. . . . . .

. . . . . .
m fm1 fm2 . . . fmk nm

combined F1 F2 . . . Fk n

We will first apply this χ2–test of homogeneity to an example withm = 2 dichotomous

(k = 2) populations.
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Example. Cocaine addiction. This example is based on a study of D.M. Barnes

(1988), Science, 241, 1029–1030, as described in Moore (1995). This study was conducted

to compare two antidepressants as treatments for cocaine addiction. In particular, the

researchers wanted to compare the effects of the antidepressant desipramine with the effects

of lithium (a standard treatment for cocaine addiction.) A group of 48 chronic cocaine

users was randomly divided into two groups of 24. One group was treated with desipramine

and the other was treated with lithium. The subjects were tracked for three years and the

number of subjects who relapsed into cocaine use during this period was recorded. The

data are summarized as observed frequencies in Table 12.

Table 12. Cocaine example: observed and expect frequencies.

observed frequency expected frequency

relapsed relapsed
treatment yes no total treatment yes no total

desipramine 10 14 24 desipramine 14 10 24
lithium 18 6 24 lithium 14 10 24

combined 28 20 48

For this example we can view the data as independent random samples of size 24

from dichotomous populations with population success probabilities pD and pL, where pD

is the probability that one of these 48 cocaine users would relapse into cocaine use if all

48 users were treated with desipramine and pL is the analogous probability assuming that

all 48 users were treated with lithium. We can use a χ2–test to test the null hypothesis

H0 : pD = pL that the probability of relapse is the same for both treatments versus the

alternative hypothesis H1 : pD 6= pL of different probabilities of relapse. Under the null

hypothesis we would expect to observe the same relapse proportions under each treatment;

furthermore, since 28 of the 48 users suffered a relapse we can use the combined sample

relapse proportion p̂ = 28/48 as our estimate of the common relapse probability we would

expect to observe under the null hypothesis. The expected frequencies in Table 12 were

computed using this p̂ as the estimated common relapse probability and the sample sizes,

which are both 24. The differences between the observed and expected frequencies and

the four components of the χ2–statistic are given in Table 13.

The P–value for χ2

calc = 192/35 = 5.487, computed using the χ2 distribution with

(2−1)(2−1) = 1 degrees of freedom, is P (χ2 ≥ 5.487) = 0.0192. This small P–value allows

us to reject the null hypothesis of homogeneity and conclude that pD 6= pL indicating that

the probability of relapse is not the same when a user is treated with desipramine as when

the user is treated with lithium. Since this example involves two dichotomous populations,

we could have used the Z–test of Section 6.2, which is equivalent to the χ2 test from above
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in this situation, to perform this test. More importantly, since we have two dichotomous

populations, we can use the Z–interval of Section 6.1 to quantify the size and direction of

the difference between pD and pL. The sample success proportions are p̂D = .4167 and

p̂L = .75 and the 95% confidence interval for pL− pD is (.0708, .5959). Hence, we are 95%

confident that treating one of these 48 cocaine users with desipramine instead of lithium

would reduce the probability of relapse by at least .0708 and as much as .5959.

Table 13. Cocaine example: chi–square computations.

obs - exp (obs - exp)2/ exp

relapsed relapsed
treatment yes no treatment yes no

desipramine -4 4 desipramine 16/14 16/10
lithium 4 -4 lithium 16/14 16/10

χ2

calc = 192/35 = 5.487

The next example with m = 3 populations and k = 3 categories will be used to

demonstrate the extension of the χ2–test of homogeneity to situations with three or more

populations and three or more categories.

Example. Attitudes of School Children. This example is based on a study

described by Chase and Dummer (1992), Research Quarterly for Exercise and Sport, 63,

418–424, as described in DeGroot and Schervish (2002). This study was conducted to

examine the attitudes of school–aged children in Michigan. Three independent random

samples of children were obtained. A sample of 149 children from rural areas, a sample of

151 children from suburban areas, and a sample of 178 children from urban areas. Each

child was asked which of the following was most important to them: good grades, athletic

ability, or popularity. The observed frequencies are given in Table 14 and the expected

frequencies, based on the combined probability estimates 247/478 = .5167, 90/478 = .1883,

and 141/478 = .2950 and the sample sizes 149, 151, and 178 are given in Table 15.

Table 14. Attitude example: observed frequencies.

sample good athletic sample
grades ability popularity size

rural 57 42 50 149
suburban 87 22 42 151

urban 103 26 49 178

combined 247 90 141 478
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Table 15. Attitude example: expected frequencies.

sample good athletic sample
grades ability popularity size

rural 76.9937 28.0544 43.9519 149
suburban 78.0272 28.4310 44.5418 151

urban 91.9791 33.5146 52.5063 178

The differences between the observed and expected frequencies and the nine compo-

nents of the χ2–statistic are given in Table 16. The P–value for χ2

calc = 18.8276, computed

using the χ2 distribution with (3− 1)(3− 1) = 4 degrees of freedom, is P (χ2 ≥ 18.8276) =

0.0008. This very small P–value indicates very strong evidence that the attitude distri-

butions (the three probabilities for the three choices given to these children) are not the

same for the three areas.

Table 16. Attitude example: chi–square computations.

obs - exp (obs - exp)2/exp

sample good athletic good athletic
grades ability popularity grades ability popularity

rural -19.9937 13.9456 6.0481 5.19197 6.93225 0.83227
suburban 8.9728 -6.4310 -2.5418 1.03184 1.45466 0.14505

urban 11.0209 -7.5146 -3.5063 1.32053 1.68493 0.23414

The two largest (obs - exp)2/exp terms, 5.19197 for the rural–good grades category

and 6.93225 for the rural–athletic ability category, are much larger than the other terms.

This fact and the observed relative frequencies given in Table 17 suggest that the attitude

distributions might be the same for the suburban and urban children but different for the

rural children.

Table 17. Attitude example: observed relative frequencies.

sample good athletic
grades ability popularity

rural .3826 .2819 .3356
suburban .5762 .1457 .2781

urban .5787 .1461 .2753

The χ2–statistic based on the data for suburban and urban children only is χ2

calc =

.0034 with (2−1)(3−1) = 2 degrees of freedom, which gives a P–value of .9983 and supports

the contention that the attitude distribution is the same for the suburban children as it is

for the urban children. Furthermore, if we combine the suburban sample and the urban
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sample to form a nonrural sample of size 329, the χ2–statistic for comparing the rural and

nonrural samples is χ2

calc = 18.8243 with (2 − 1)(3 − 1) = 2 degrees of freedom and the

P–value is less than .0001, confirming our conjecture that the attitude distribution for the

rural children is not the same as that for the nonrural children.

11.4 Chi–square Tests for Independence

A χ2–test for independence is used to determine whether two or more qualitative

classification factors are independent. In this section we will restrict our attention to

crossed classifications of units with respect to two qualitative classification factors. Two

classification factors, A and B, are said to be independent, if the conditional probabilities

for the levels of factor A (respectively, factor B), obtained by fixing the level of factor

B (factor A), are the same regardless of the level at which factor B (factor A) is fixed.

To avoid complex notation we will describe independence and develop the χ2–test for

independence in the context of the following example.

Example. Hawaiian blood types. This example uses data from A.E. Mourant, et

al., The Distribution of Blood Groups and Other Polymorphisms, Oxford University Press,

London, 1976. The Blood Bank of Hawaii cross classified 145,057 individuals according

to their blood type (A, AB, B, O) and their ethnic group (Hawaiian, Hawaiian–Chinese,

Hawaiian–White, White). The frequencies for each of the 16 combinations of the 4 levels

of these two qualitative classification factors are given in Table 18.

Table 18. Blood type and ethnic group observed frequencies.

ethnic group

blood Hawaiian Hawaiian– Hawaiian– White
type Chinese White total

A 2490 2368 4671 50008 59537
AB 99 243 236 5001 5579
B 178 568 606 16252 17604
O 1903 2206 4469 53759 62337

total 4670 5385 9982 125020 145057

The question we want to consider here is whether the distribution of blood types is

independent of the distribution of the ethnic groups. If the distribution of blood types is

the same for each of the four ethnic groups, then classification with respect to blood type

is independent of classification with respect to ethnic group. Furthermore, independence

of two factors is symmetric so that if the distribution of blood types is independent of the
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distribution of ethnic groups, then it also follows that the distribution of ethnic groups is

independent of the distribution of blood types.

Under the hypothesis of independence the theoretical conditional distributions of

blood type are the same for each ethnic group. The conditional distributions of blood

type for each ethnic group summarized in Figure 2 show some evidence that the distribu-

tions of blood type are not the same for these ethnic groups indicating dependence between

classification with respect to blood type and classification with respect to ethnic group.

Figure 2. Conditional distributions of blood type by ethnic group.

Hawaiian

A 53.32%

AB 2.12%

B 3.81%

O 40.75%

Hawaiian–Chinese

A 43.97%

AB 4.51%

B 10.55%

O 40.97%

Hawaiian–White

A 46.79%

AB 2.36%

B 6.07%

O 44.77%

White

A 40.00%

AB 4.00%

B 13.00%

O 43.00%

We can compute the expected frequencies for this example the same way we did for

the χ2–tests of homogeneity in Section 11.3. The deviations between the observed and

expected frequencies and the 16 terms which are summed to give the χ2–statistic are

given in Table 19. In this example several of the χ2 terms are large indicating where the

hypothesis of independence is not supported by these data. The χ2–statistic for testing the
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independence of blood type and ethnic group is χ2

calc = 1078.6036 with (4− 1)(4− 1) = 9

degrees of freedom and the P–value is less than .0001. Therefore, there is very strong

evidence against the null hypothesis of independence. We can conclude that the data

collected by the Blood Bank of Hawaii are clearly inconsistent with the hypothesis of

independence and that the distribution of blood types is not the same for these four ethnic

groups.

Table 19. Hawaiian blood type example chi–square information.

The first number is the deviation (obs - exp) and the number in
parentheses is the χ2 term (obs - exp)2/exp.

ethnic group

blood Hawaiian Hawaiian– Hawaiian– White
type Chinese White

A 573.25 157.79 574 -1305
(171.45) (11.265) (80.419) (33.191)

AB -80.61 35.889 -147.9 192.64
(36.179) (6.2189) (56.989) (7.7177)

B -388.7 -85.52 -605.4 1079.7
(266.65) (11.191) (302.56) (76.83)

O -103.9 -108.2 179.32 32.729
(5.3783) (5.055) (7.4962) (.0199)
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Chapter 12

Comparing Two or More Means

12.1 Introduction

In Chapter 8 we considered methods for making inferences about the relationship

between two population distributions based on the relationship between the means of

these distributions. In many situations interest centers on the relationship among more

than two population distributions. Therefore, in this chapter we consider methods of

inference for comparing two or more population distributions based on the relationships

among the corresponding population means.

We will restrict our attention to situations where the population distributions (density

curves) of k ≥ 2 continuous variables, Y1, Y2, . . . , and Yk, are identical except for their lo-

cations on the number line. This generalizes the shift assumption of the two population

problem to the k ≥ 2 population problem. Under this shift assumption inferences for com-

paring the k population distributions reduce to inferences for comparing the k population

means. As in the two population case, when the shift assumption is not valid we must be

careful about how we interpret an inference about the relationships among the population

means.

We will restrict our attention to methods which are appropriate when the data com-

prise k independent random samples: a random sample of size n1 from a population with

population mean µ1 (the Y1 sample); a random sample of size n2 from a population with

population mean µ2 (the Y2 sample); . . . , and a random sample of size nk from a population

with population mean µk (the Yk sample). The assumption that these random samples

are independent basically means that the method used to select the random sample from

a particular population is not influenced by the method used to select the random sample

from any other population.

We will use the following small example to clarify the definitions and computations

introduced in this chapter. You should use a suitable calculator or computer program to

perform these computations.

Example. Potato leafhopper survival. D. L. Dahlman (M.S. thesis, Iowa State

University, 1963) studied the survival and behavioral responses of the potato leafhopper

Empoasca Fabae (Harris) on synthetic media. The data given in Table 1 are survival times

(in days) defined as the number of days until 50% of the insects in a cage were dead. This

study was conducted using a completely randomized experiment design with two cages

(units) assigned to each of four treatment groups (n1 = n2 = n3 = n4 = 2). That is,

the 8 cages were randomly assigned to the 4 treatments so that there were two cages in

each treatment group. The treatments consisted of four modifications of the basic 2%
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agar synthetic feeding medium. The treatments were a control (2% agar), 2% agar plus

fructose, 2% agar plus glucose, and 2% agar plus sucrose, respectively.

Table 1. Potato Leafhopper Data.

treatment survival time

control 2.3
control 1.7
fructose 2.1
fructose 2.3
glucose 3.0
glucose 2.8
sucrose 3.6
sucrose 4.0

We can define the four population means by imagining what would have happened if all

of the eight cages were assigned to a particular treatment group. For example, we can

define the control population mean µ1 = µC as the mean survival time we would have

observed if all 8 cages had been assigned to the control group; we can define the fructose

population mean µ2 = µF as the mean survival time we would have observed if all 8 cages

had been assigned to the fructose group; and so on. The notation we will use in the sequel

is summarized in Table 2.

Table 2. Potato Leafhopper Population Means.

treatment: control fructose glucose sucrose
population mean: µC µF µG µS

12.2 Comparing the means of k normal populations

In this section we consider inferences about the relationships among k normal means.

First we discuss the analysis of variance (ANOVA) and the overall F–test; then we con-

sider the sequential use of F–tests for comparing nested models; and finally we discuss

simultaneous confidence interval estimates for linear combinations of means.

12.2a Assumptions, notation, and the overall F–test

In order to develop inferential methods we need to make an assumption about the

form of the population distributions of the Y ′s. We will assume that the k population

distributions are normal distributions with a common population variance σ2 (common

population standard deviation σ). Thus, the population distribution of Y1 is a normal
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distribution with population mean µ1 and population variance σ2; the population distri-

bution of Y2 is a normal distribution with population mean µ2 and population variance

σ2; . . ., and the population distribution of Yk is a normal distribution with population

mean µk and population variance σ2. As stated in the introduction, we will assume that

the data comprise k independent random samples. Notice that we are assuming that the

k population variances are equal which, together with the normality assumption, implies

that the shift assumption is valid.

First consider the question of whether the k means µ1, . . . , µk are all equal. We

can address this question by performing a hypothesis test for the null hypothesis H0 :

µ1 = · · · = µk versus the alternative hypothesis that at least two of the k means are

different (H1 : it is not true that µ1 = · · · = µk). Notice that this alternative hypothesis

specifies that the k means are not all equal, it does not specify how the means differ and,

in particular, it does not specify that there are k distinct means. We will motivate the

method used to perform this hypothesis test about the k means as a comparison of two

estimators of the common population variance σ2.

To make the notation clear we will need to use double subscripts on the observations.

As indicated in Table 3, we will let Yij denote the jth observation in the ith group (ith

sample), for i = 1, 2, . . . , k and j = 1, 2, . . . , ni, and we will let Y i denote the sample mean

for the ith group.

Table 3. Notation for the k group (sample) problem.

group data sample mean population mean

group 1 Y11, Y12, . . . , Y1n1
Y 1 µ1

group 2 Y21, Y22, . . . , Y2n2
Y 2 µ2

. . . .

. . . .

. . . .
group k Yk1, Yk2, . . . , Yknk

Y k µk

The pooled estimator S2
p of the common variance σ2 for the model with k population

means µ1, . . . , µk is the natural extension of the pooled variance estimator of the two sample

case to k samples. That is, S2
p is the sum of the squared deviations of the observations

from their respective group sample means divided by the appropriate degrees of freedom

which is n − k = (n1 − 1) + · · · + (nk − 1), where n = n1 + · · · + nk is the total number

of observations. The numerator of S2
p , denoted by SS(within the k groups), is the sum of
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squares within the k groups (the sum of squared deviations of the observations within each

group from their respective group sample mean). In symbols we have

S2
p =

SS(within the k groups)

n− k
, with

SS(within the k groups) =
k∑

i=1

ni∑

j=1

(
Yij − Y i

)2

=

n1∑

j=1

(
Y1j − Y 1

)2
+ · · ·+

nk∑

j=1

(
Ykj − Y k

)2
.

The pooled variance estimator S2
p is a valid (unbiased) estimator of the common

variance σ2 when the k group means µ1, . . . , µk are distinct and also when some or all of

the means are equal. The computations for finding S2
p described above are illustrated for

the potato leafhopper data in Table 4.

Table 4. Potato leafhopper deviations from treatment means.

treatment observation treatment deviation squared deviation
mean from mean from mean

control 2.3 2.0 .3 .09
control 1.7 2.0 -.3 .09
fructose 2.1 2.2 -.1 .01
fructose 2.3 2.2 .1 .01
glucose 3.0 2.9 .1 .01
glucose 2.8 2.9 -.1 .01
sucrose 3.6 3.8 -.2 .04
sucrose 4.0 3.8 .2 .04

sum of squared deviations = .3
S2

p = .3/4 = .075

Under the null hypothesis H0 : µ1 = · · · = µk we can view the k random samples

as constituting one random sample of size n = n1 + · · · + nk from a normal population

with population variance σ2. Therefore, when H0 is true we can estimate the common

variance σ2 using the squared deviations of the observations from the overall sample mean

Y (Y is the average of all n observations and in terms of the k sample means, Y 1, . . . , Y k,

Y = (n1Y 1+· · ·+nkY k)/n). The variance estimator S2
0 is the sum of the squared deviations

of the observations from the overall sample mean divided by the appropriate degrees of

freedom which is n − 1. The numerator of S2
0 , denoted by SS(about the overall mean),
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is the sum of squares about the overall mean (the sum of the squared deviations of the

observations from the overall sample mean). In symbols we have

S2
0 =

SS(about the overall mean)

n− 1
, with

SS(about the overall mean) =
k∑

i=1

ni∑

j=1

(
Yij − Y

)2
,

and we see that S2
0 is simply the usual one sample estimator of the variance computed

ignoring the existence of the k groups.

The variance estimator S2
0 is a valid (unbiased) estimator of the common variance σ2

if, and only if, the null hypothesis H0 : µ1 = · · · = µk is true. If H0 : µ1 = · · · = µk is not

true, then S2
0 is positively biased as an estimator of the common variance σ2, i.e., if H0 is

not true, then S2
0 tends to systematically overestimate σ2. The computations for finding

S2
0 described above are illustrated for the potato leafhopper data in the Table 5.

Table 5. Potato leafhopper deviations from overall mean.

treatment observation overall deviation squared deviation
mean from mean from mean

control 2.3 2.725 -.425 .180625
control 1.7 2.725 -1.025 1.050625
fructose 2.1 2.725 -.625 .390625
fructose 2.3 2.725 -.425 .180625
glucose 3.0 2.725 .275 .075625
glucose 2.8 2.725 .075 .005625
sucrose 3.6 2.725 .875 .765625
sucrose 4.0 2.725 1.275 1.625625

sum of squared deviations = 4.275
S2

0 = 4.275/7 = .6107

We have defined two estimators S2
p and S2

0 of the common variance σ2. Both of these

estimators are unbiased estimators of σ2 when H0 : µ1 = · · · = µk is true. The estimator

S2
p is unbiased as an estimator of σ2 even when H0 is not true; but, S2

0 is positively biased

as an estimator of σ2 when H0 is not true. Therefore, we can view an observed value of

S2
0 which is sufficiently large relative to the observed value of S2

p as evidence against the

null hypothesis H0 : µ1 = · · · = µk.

Before we discuss a method for determining whether the observed value of S2
0 is large

relative to S2
p we consider a decomposition of the deviation of an observation from the

overall mean and a corresponding decomposition of the sum of squares about the overall

mean.
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The deviation of an observation Yij from the overall mean Y can be expressed as the

sum of the deviation of the observation from its group mean Y i and the deviation of its

group mean from the overall mean, i.e.,

Yij − Y =
(
Yij − Y i

)
+
(
Y i − Y

)
.

Furthermore, it can be shown that, there is a corresponding decomposition of the sum of

squares about the overall mean as the sum of the sum of squares within the k groups plus

the sum of squares among the k groups, i.e.,

SS(about the overall mean) = SS(within the k groups) + SS(among the k groups),

where

SS(among the k groups) =

k∑

i=1

ni∑

j=1

(
Y i − Y

)2
=

k∑

i=1

ni

(
Y i − Y

)2
.

This decomposition is often summarized in a tabular form known as an analysis of variance

table or ANOVA table as shown in Table 6.

Table 6. A basic ANOVA table.

source of degrees of sum of
variation freedom squares

among groups k − 1 SS(among the k groups)
within groups n− k SS(within the k groups)

total n− 1 SS(about the overall mean)

Notice that the ANOVA table also indicates the corresponding decomposition of the

total degrees of freedom, n−1, into the sum of the degrees of freedom among the k groups,

k−1, and the degrees of freedom within the k groups, n−k. You can think of these degrees

of freedom as indicating the “amount of information” contained in the corresponding sums

of squares. If we use the degrees of freedom to normalize the sum of squares, by dividing

the sum of squares by its degrees of freedom, the resulting “average” is known as a mean

square, denoted by MS.

From the ANOVA decomposition of the sum of squares about the overall mean we

can identify the sum of squares among the k groups, SS(among the k groups), as the term

which causes S2
0 to be positively biased as an estimator of σ2. Therefore we can determine

whether S2
0 is large relative to S2

p by determining whether SS(among the k groups) is large
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relative to SS(within the k groups). We will base this determination on the ratio of the

mean squares corresponding to these sums of squares. The relevant ratio is the F–statistic

Fcalc =
MS(among the k groups)

MS(within the k groups)

=
SS(among the k groups)/(k − 1)

SS(within the k groups)/(n− k)
.

When the null hypothesis H0 : µ1 = · · · = µk is true this F–statistic follows the F

distribution with numerator degrees of freedom k− 1 and denominator degrees of freedom

n−k. Sufficiently large values of Fcalc constitute evidence against H0 : µ1 = · · · = µk. The

P–value for this hypothesis test is the probability of observing a value of the F–statistic

as large or larger than the calculated value Fcalc, i.e., the P–value is

P–value = P (F ≥ Fcalc),

where F denotes a variable which follows the F distribution with k − 1 and n− k degrees

of freedom. (The F distributions are skewed to the right with density curves which are

positive only for positive values of the variable.)

The ANOVA for the potato leafhopper example (including mean squares) is given

in Table 7. In this example the calculated F–statistic is Fcalc = 1.325/.075 = 17.6667

and the P–value (computed using the F distribution with 3 and 4 degrees of freedom) is

P (F ≥ 17.6667) = .0090. Since the P–value .0090 is very small, we conclude that there is

very strong evidence that diet does have an effect on the survival time of potato leafhoppers

in the sense that at least two of the four treatment mean survival times are different.

Table 7. Potato leafhopper ANOVA table.

source of degrees of sum of mean
variation freedom squares square

among groups 3 3.975 1.325
within groups 4 .300 .075

total 7 4.275

12.2b F–tests for comparing nested models

The overall F–test, for H0 : µ1 = µ2 = · · · = µk, developed above is too general to

be of much use by itself. This overall F–test only allows us to conclude that either the k

group means are all equal or they are not all equal. In many situations, like the potato

leafhopper example, there is enough subject matter information to formulate more specific
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potential restrictions on the k group means. We will now discuss the use of F–tests for

sequential comparisons (hypothesis tests) of a nested sequence of candidate models for

k group means. We will develop this approach in the context of the potato leafhopper

example.

Some natural groupings of the means µC , µF , µG and µS of the potato leafhopper

example can be formed using the facts that fructose and glucose are 6–carbon sugars while

sucrose is a 12–carbon sugar. Consider the following sequence of four nested models for

the relationship among these means. These models are nested in the sense that each model

in the sequence is a special case (restricted version) of the model that precedes it in the

sequence. Thus model (2) is a special case (restricted version) of model (1); model (3) is

a special case of model (2); and, model (4) is a special case of model (3).

model (1): The full model with four separate means, µC , µF , µG and µS .

model (2): The reduced model with three means, µC , µS , and the 6-carbon sugar mean

µ6, corresponding to the assumption that there is no difference between the effects of

the two 6–carbon sugars in the sense that µF = µG.

model (3): The more reduced model with two means, µC , and the added sugar mean µA,

corresponding to the assumption that there is no difference between the effects of the

6–carbon sugars and the 12–carbon sugar in the sense that µS = µ6.

model (4): The most reduced model with one mean, µ, corresponding to the assumption

that there is no difference between the effects of the added sugar diets and the control

(no added sugar) diet in the sense that µC = µA.

Before we proceed with this example a brief discussion of the hypothesis testing ap-

proach to the comparison of a full model with a reduced model is in order. The reduced

model is simpler than the full model in the sense that it specifies fewer means. Therefore,

unless there is sufficient evidence to the contrary, we would prefer the simpler reduced

model over the more complicated full model. This suggests a test of the null hypothesis

H0 : The restrictions which define the reduced model are valid.

(The reduced model suffices and the full model is not needed.)

versus the alternative hypothesis

H1 : The restrictions which define the reduced model are not valid.

(The reduced model does not suffice and the full model is needed.)

If we find sufficient evidence to reject the null hypothesis, then we conclude that the full

model is needed and we abandon the reduced model. But, if we do not find sufficient
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evidence to reject the null hypothesis, then we conclude that we do not need the full model

and the simpler reduced model will suffice.

We will now outline the approach we will use for our analysis of the sequence of four

models for the potato leafhopper example.

Step 1: We will first consider a hypothesis test for comparing the full model (1) with

the reduced model (2). The full model (1) specifies that there are four means µC , µF , µG,

and µS . Since the reduced model (2) is obtained from model (1) by imposing the restriction

that µF = µG, our null hypothesis is

H0 : µF = µG

and our alternative hypothesis is

H1 : µF 6= µG.

Under H0 there is a common population mean survival time, µ6, for the two 6–carbon

sugar diets and our model only requires the three means µC , µS , and µ6. Under H1 there

are two 6–carbon sugar diet means µF and µG and our model specifies the four means

µC , µF , µG, and µS .

If we find sufficient evidence to reject H0, we will conclude that we cannot reduce the

four treatment means to three treatment means as indicated, since µF 6= µG and thus we

need four treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

two 6–carbon sugar treatment means (µF = µG) and we only need three treatment means

in our model µC , µS , and the 6-carbon sugar mean µ6. If this happens we will continue by

comparing model (2) (which now plays the role of the full model) with the reduced model

(3).

Step 2: If our comparison of model (1) and model (2) (step 1) results in the conclusion

that we do not need the four means of model (1), then we will consider a test for comparing

the current full model (2) with the reduced model (3). Model (2) specifies that there are

three means µC , µS , and µ6. Since the reduced model (3) is obtained from model (2) by

imposing the restriction that µS = µ6, our null hypothesis is

H0 : µS = µ6

and our alternative hypothesis is

H1 : µS 6= µ6.

Under H0 there is a common population mean survival time, µA, for the three added sugar

diets and our model only requires the two means µC and µA. Under H1 there are two
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added sugar diet means, µS and µ6, and our model specifies the three means µC , µS and

µ6.

If we find sufficient evidence to reject H0, we will conclude that we cannot reduce the

three treatment means to two treatment means as indicated, since µS 6= µ6, and thus we

need three treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

6–carbon sugar treatment mean and the sucrose treatment mean (µS = µ6) and we only

need two treatment means in our model µC and the added sugar mean µA. If this happens

we will continue by comparing model (3) (which now plays the role of the full model) with

the reduced model (4).

Step 3: If our comparison of model (2) and model (3) (step 2) results in the conclusion

that we do not need the three means of model (2), then we will consider a test for comparing

the current full model (3) with the reduced model (4). Model (3) specifies that there are

two means µC and µA. Since the reduced model (4) is obtained from model (3) by imposing

the restriction that µC = µA, our null hypothesis is

H0 : µC = µA

and our alternative hypothesis is

H1 : µC 6= µA.

Under H0 there is a common population mean survival time, µ, for all of the diets and our

model only requires the one mean µ. Under H1 there are two means, µC and µA.

If we find sufficient evidence to reject H0 we will conclude that we cannot reduce the

two treatment means to one treatment mean as indicated since, µC 6= µA, and thus we

need two treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

control (no added sugar) treatment mean and the added sugar treatment mean (µC = µA)

and we only need one treatment mean in our model. If this happens we will stop, since

this is the end of our sequence of models.

Now that we have a plan of attack for our comparisons we need to know how to perform

an F–test to compare a full model with a reduced model. Consider a full model with a

group means and a reduced model with b group means (b < a) obtained by restrictions

which result in a reduction of the a groups (means) of the full model into the b groups

(means) of the reduced model. The sum of squares among the b groups in the reduced

model SS(among the b groups) = SS(reduced model) is actually part of the sum of squares

among the a groups in the full model SS(among the a groups) = SS(full model). The sum
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of squares due to the full model after the reduced model SS(full model | reduced model)

is defined as the difference,

SS(full model | reduced model) = SS(full model)− SS(reduced model)

= SS(among the a groups)− SS(among the b groups),

between the two model sums of squares. The degrees of freedom for this sum of squares is

the corresponding difference, df(full model)− df(reduced model) = a− b, between the two

model degrees of freedom. Partitioning the sum of squares among the a groups of the full

model into the sum of squares among the b groups of the reduced model and the sum of

squares for the full model after the reduced model yields the ANOVA of Table 8.

Table 8. ANOVA table for model comparison.

source of degrees of sum of
variation freedom squares

reduced model b− 1 SS(reduced model)
full model after reduced model a− b SS(full model | reduced model)

within the a groups of the full model n− a SS(within the a groups)

total n− 1 SS(about the overall mean)

The F–test for comparing these models can be viewed as a test of

H0 : the reduced model with b group means will suffice

versus

H1 : the full model with a group means is needed.

More formally, the null hypothesis specifies that the restrictions which reduce the a means

of the full model to the b means of the reduced model are valid. The F–statistic for this

comparison is

Fcalc =
MS(full model | reduced model)

MS(within the a groups of the full model)
.

If the P–value P (F ≥ Fcalc), where F denotes an F variable with a− b and n− a degrees

of freedom, is small enough, we reject H0 and conclude that the reduced model with b

group means is not appropriate and we need the full model with a group means. If the

P–value is not small enough, we fail to reject H0 and conclude that the reduced model

with b group means is appropriate and we do not need the full model with a group means.

We will now use this method to evaluate the sequence of four models proposed above

for the potato leafhopper example. The ANOVA’s for models (1) and (2) are given in

Tables 9 and 10.
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Table 9. ANOVA table for model (1).

source of degrees of sum of mean
variation freedom squares square

among the 4 groups 3 3.975 1.325
within the 4 groups 4 .300 .075

total 7 4.275

Table 10. ANOVA table for model (2).

source of degrees of sum of mean
variation freedom squares square

among the 3 groups 2 3.485 1.7425
within the 3 groups 5 .790 .1580

total 7 4.275

The ANOVA for comparing model (1) and model (2) provided in Table 11 can be

constructed from the information in the preceding ANOVA tables. The only computation

required is to subtract the reduced model among groups sum of squares from the full model

among groups sum of squares to get SS(full model | reduced model) = 3.975−3.485 = .49,

with 3− 2 = 1 degrees of freedom.

Table 11. ANOVA table for comparing model (1) and model (2).

source of degrees of sum of mean
variation freedom squares square

reduced model 2 3.485 1.7425
full model after reduced model 1 .490 .4900

within the 4 groups 4 .300 .0750

total 7 4.275

The calculated F–statistic for comparing model (1) and model (2) is Fcalc = .49/.075

= 6.5333 with a P–value of .0629. (This P–value is computed using the F distribution

with 1 and 4 degrees of freedom.) This P–value is not small enough to allow us to reject

the hypothesis that µF = µG so we conclude that the three means (µC , µS , µ6) of the

reduced model (2) will suffice and we do not need the four means of the full model (1). We

now proceed to compare the current full model (2) to the reduced model (3). The ANOVA

for model (3) is given in Table 12.



12.2b F–tests for comparing nested models 289

Table 12. ANOVA table for model (3).

source of degrees of sum of mean
variation freedom squares square

among the 2 groups 1 1.4017 1.4017
within the 2 groups 6 2.8733 .4789

total 7 4.275

We can produce the ANOVA for comparing model (2) and model (3) of Table 13 as

before. In this case we find that SS(full model | reduced model) = 3.485−1.4017 = 2.0833,

with 2− 1 = 1 degrees of freedom.

Table 13. ANOVA table for comparing model (2) and model (3).

source of degrees of sum of mean
variation freedom squares square

reduced model 1 1.4017 1.4017
full model after reduced model 1 2.0833 2.0833

within the 3 groups 5 .7900 .1580

total 7 4.275

The calculated F–statistic for comparing model (2) and model (3) is Fcalc =

2.0833/.158 = 13.1854 with a P–value of .0150. (This P–value is computed using the F

distribution with 1 and 5 degrees of freedom.) This P–value is small enough to allow us

to reject the hypothesis that µS = µ6 so we conclude that the three means (µC , µS , µ6)

of model (2) are needed in the sense that the reduced model (3) with two means (µC , µA)

does not suffice. We will stop at this point and base any further inferences about these

diets on the three means of model (2).

Remark: At each stage of our sequential comparison of models for the potato leafhop-

per example we arrived at the reduced model by combining two groups from the full model

which caused the degrees of freedom for the full model after the reduced model to be one

in each comparison. It is possible to compare models for which the degrees of freedom for

the full model after the reduced model is larger than one. We can demonstrate this by

supposing that it had not occurred to us to consider combining the two 6–carbon sugar

groups. That is, suppose that our initial comparison had been between model (1), with

four separate means, and model (3), with two means (µC and µA), one for the no added

sugar control diet group and one for the added sugar diet group. In this case the reduced

model is obtained from the full model by combining the three added sugar groups to get
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a single added sugar group and the corresponding null hypothesis is H0 : µF = µG = µS .

Thus, in this case the full model has 4 means (3 degrees of freedom), the reduced model

has 2 means (1 degree of freedom), and the sum of squares for the full model after the

reduced model has 3 − 1 = 2 degrees of freedom. For this comparison we would have

SS(full model | reduced model) = 3.975 − 1.4017 = 2.5733, with 3 − 1 = 2 degrees of

freedom, SS(within the 4 groups of the full model) = .3 with 4 degrees of freedom, and a

calculated F–statistic of Fcalc = (2.5733/2)/(.3/4) = 17.1553. If we were to perform this

test, the P–value would be computed using the F distribution with 2 and 4 degrees of

freedom.

12.2c Confidence intervals for linear combinations of means

A linear combination of the k population means µ1, . . . , µk is a quantity of the form

λ = c1µ1 + c2µ2 + · · ·+ ckµk,

where the coefficients, c1, . . . , ck, are suitably chosen constants. For example, if we take

all of the coefficients in this linear combination to be 1/k, we obtain the average of the

means (µ1 +µ2 + · · ·+µk)/k. If we take one coefficient to be 1, a second to be -1, and the

others to be 0, we obtain a difference of two means, e.g., taking c1 = −1, c2 = 1 and the

other ci = 0, yields µ2 − µ1.

The obvious estimate of the linear combination λ = c1µ1 + c2µ2 + · · · + ckµk is the

corresponding linear combination of the sample means

λ̂ = c1Y 1 + c2Y 2 + · · ·+ ckY k.

In the present context of k independent random samples of sizes n1, . . . , nk with a common

population variance σ2, the population standard error of this estimated linear combination

is

S.E.(λ̂) =

√
σ2

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)

which can be estimated, using the pooled estimator S2
p = MS(within) of the common

variance, by the sample standard error

Ŝ.E.(λ̂) =

√
S2

p

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)
.

A set of confidence intervals is said to form a set of simultaneous 95% confidence

intervals if the procedure which yields the set of confidence intervals is such that 95% of

the time all of the intervals will contain the corresponding parameters. We can use the
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Scheffé method to form simultaneous 95% confidence intervals for linear combinations of

k population means. The basic idea of this method is to use a margin of error multiplier

which is large enough to insure that the collection of confidence intervals it produces for

all possible linear combinations of the k means form a set of simultaneous 95% confidence

intervals. The margin of error multiplier for Scheffé’s method when there are k means in

the model is
√

(k − 1)F(k−1,n−k)(.95), where F(k−1,n−k)(.95) is the 95th percentile of the

F distribution with k − 1 and n− k degrees of freedom. Thus the 95% Scheffé margin of

error for λ̂ = c1Y 1 + c2Y 2 + · · ·+ ckY k is

M.E.(λ̂) =

√
(k − 1)[F(k−1,n−k)(.95)]S2

p

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)
.

We now return to our analysis of the potato leafhopper example for which we have

concluded that model (2) with the three means µC , µS , and µ6 is the appropriate model.

We now need to make some sort of inference about the relationship among these three

population mean survival times. We will use selected linear combinations and confidence

intervals to explore the relationship among these three population mean survival times.

The sample means for the three diet groups are Y C = 2 (based on the nC = 2

control diet observations), Y S = 3.8 (based on the nS = 2 sucrose diet observations), and

Y 6 = 2.55 (based on the n6 = 4 6–carbon sugar diet observations). The pooled estimate

of the population variance is S2
p = MS(within) = .158 with 5 degrees of freedom. For this

model we have k = 3 means and n = 8 observations; therefore, the Scheffé margin of error

multiplier is
√

2(5.7861) = 3.4018 (since the 95th percentile of the F distribution with 2

and 5 degrees of freedom is 5.7861).

We will begin our comparisons among the three means by estimating the three pairwise

differences, µS − µC , µ6 − µC , and µS − µ6. First note that given two sample means Y 1

and Y 2 based on n1 and n2 observations the estimated standard error of Y 1 − Y 2 is

ŜE(Y 1 − Y 2) =

√
S2

p

(
1

n1
+

1

n2

)
.

The estimates of the three pairwise differences and the corresponding standard errors and

simultaneous 95% margins of error are given in the Table 14.

Table 14. Estimates of the pairwise differences.

difference estimate standard error margin of error

µS − µC Y S − Y C = 1.8
√
.158

(
1
2 + 1

2

)
= .3975 3.4018(.3975) = 1.3522

µ6 − µC Y 6 − Y C = .55
√
.158

(
1
2 + 1

4

)
= .3442 3.4018(.3442) = 1.1709

µS − µ6 Y S − Y 6 = 1.25
√
.158

(
1
2 + 1

4

)
= .3442 3.4018(.3442) = 1.1709
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Adding and subtracting these margins of error from the corresponding estimates to get

confidence intervals we conclude that we are 95% confident that .4478 ≤ µS−µC ≤ 3.1522,

−.6209 ≤ µ6 − µC ≤ 1.7209, and .0791 ≤ µS − µ6 ≤ 2.4209. These confidence intervals

suggest that µ6 and µC are not different and that µS is larger than both of the other means.

Thus, a confidence interval for µS − (µC + µ6)/2 would be useful for indicating how much

larger µS is than the average of the other two means. Since this expression is a linear

combination of the three means we can add a confidence interval for this combination to

our set of confidence intervals and still have simultaneous confidence of 95%. Our estimate

of µS − (µC + µ6)/2 is Y S − (Y C + Y 6)/2 = 1.525 with standard error

ŜE

(
Y S −

Y C + Y 6

2

)
=

√
S2

p

[
1

nS

+
1

4nC

+
1

4n6

]

=

√
.158

[
1

2
+

1

8
+

1

16

]
= .3296

and margin of error 3.4018(.3296) = 1.1212. Thus we are 95% confident that

.4038 ≤ µS − (µC + µ6)/2 ≤ 2.6462 and − .6209 ≤ µ6 − µC ≤ 1.7209.

Based on these confidence intervals we can conclude that there is no difference between

the effects of adding a 6–carbon sugar to the diet or using the standard diet with no added

sugar in the sense that the data are consistent with the claim that µC = µ6. On the

other hand, we find that adding the 12–carbon sugar sucrose to the potato leafhopper diet

increases the mean survival time by something between .4038 and 2.6462 days over the

average of the mean survival times corresponding to a diet with no added sugar or with

an added 6–carbon sugar, i.e., we can conclude with 95% confidence that µS exceeds the

average (µC + µ6)/2 by at least .4038 days and as much as 2.6462 days.

We will now revisit the fruitfly fecundity example of Chapter 8 and consider an analysis

for this example using the methods of the present chapter.

Example. Fecundity of fruitflies (revisited). Sokal, R.R. and Rohlf, F.J. (1969)

Biometry, W.H. Freeman, p.232, discuss a study conducted to compare the fecundity of

three genetic lines of Drosophila melanogaster. The data, provided in Table 5 of Chapter

8, consist of per diem fecundities (number of eggs laid per female per day for the first 14

days of life) for 25 females of three lines of Drosophila melanogaster. Two of these genetic

lines were selected for resistance (RS) and susceptibility (SS) to DDT, the third line is

a nonselected control (NS). Recall that the investigator wanted to know if there was any

evidence that the population mean fecundities for the two selected lines (µRS and µSS)
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were different. The investigator also wanted to know how the population mean fecundity

µNS for the nonselected line related to the mean fecundities of the selected lines.

When we first considered this example, we found that the data was reasonably mod-

eled as consisting of three independent random samples, each of size 25, from normal

distributions with respective population mean fecundities µRS , µSS , and µNS and with

common population variance σ2. We can address the investigator’s question about the re-

lationship between the mean fecundities of the selected lines using the following sequence

of two nested models.

model (1): The full model with three separate means, µRS for the resistant line, µSS for

the susceptible line, and µNS for the nonselected line.

model (2): The reduced model with two means, µNS for the nonselected line and µS for

the selected lines corresponding to the assumption that there is no difference between

the mean fecundities for the two selected lines in the sense that µRS = µSS .

The ANOVA’s for models (1) and (2) are given in Tables 15 and 16 and the ANOVA

for comparing these models is given in Table 17.

Table 15. ANOVA table for the full model with 3 lines.

source of degrees of sum of mean
variation freedom squares square

among the 3 lines 2 1362.2115 681.1057
within the 3 lines 72 5659.0224 78.5975

total 74 7021.2339

Table 16. ANOVA table for reduced model with 2 lines.

source of degrees of sum of mean
variation freedom squares square

among the 2 lines 1 1329.0817 1329.0817
within the 2 lines 73 5692.1522 77.9747

total 74 7021.2339

Table 17. ANOVA table for comparing the models.

source of degrees of sum of mean
variation freedom squares square

2 line model 1 1329.0817 1329.0817
3 line model after 2 line model 1 33.1298 33.1298

within the 3 lines 72 5659.0224 78.5975

total 74 7021.2339

The calculated F–statistic for comparing model (1) and model (2) is Fcalc =

33.1298/78.5975 = .42 with a P–value of .5182. (This P–value is computed using the F
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distribution with 1 and 72 degrees of freedom.) This P–value is quite large indicating

that there is no evidence that µRS is different from µSS . We can conclude that the three

means (µRS , µSS , and µNS) of the full model (1) are not needed and we are justified in

adopting the simplified model (2) with mean fecundity µNS for the nonselected line and

mean fecundity µS for the selected lines. The remainder of our analysis will be in terms

of this reduced model.

Before we proceed with our analysis of this example it is instructive to compare the

ANOVA F–test we just used to test the null hypothesis H0 : µRS = µSS versus the

alternative hypothesis H1 : µRS 6= µSS with the t–test we used in Chapter 8 for this

same hypothesis test. The ANOVA F–test is equivalent to a t–test based on the difference

Y RS−Y SS = 1.628 and the pooled sample variance MS(within) = 78.5975 with 72 degrees

of freedom. This pooled sample variance has 72 degrees of freedom, since it is computed

using all three of the samples. The t–test we considered in Chapter 8 was based on

the difference Y RS − Y SS = 1.628 and the pooled sample variance S2
p with 48 degrees

of freedom based on the two samples from the selected lines. Thus, these two t–tests

differ because they use different estimated standard errors due to the way in which the

population variance is estimated. If the assumption of a common variance for all three

lines is reasonable, then the ANOVA F–test is better than the t–test of Chapter 8, since

it is based on a better (higher degrees of freedom) estimate of the population variance.

Since there are only two means in the reduced model we can use the overall F–

test to compare these means. The calculated F–statistic for testing the null hypothesis

H0 : µNS = µS is Fcalc = 1329.0817/77.9747 = 17.05 with a P–value that is less than

.0001. (This P–value is computed using the F distribution with 1 and 73 degrees of

freedom.) This very small P–value indicates that there is very strong evidence that the

mean fecundity for the nonselected line µNS is not the same as the mean fecundity µS for

the selected lines. This F–test for comparing these two means is equivalent to the t–test

we performed in Chapter 8 in these sense that these two tests give the same P–value. In

fact, for the present circumstance of comparing two means (using a model with only two

means) the square of the Student’s t–statistic is equal to the F–statistic. We can form

a 95% confidence interval for the difference µNS − µS between these mean fecundities to

determine which mean is larger and to get an estimate of the size of this difference. In

this example, we are 95% confident that µNS − µS is between 4.6192 and 13.241. That is,

we are 95% confident that the population mean fecundity (mean number of eggs laid per

day for the first 14 days of life) µNS for the nonselected line exceeds the population mean

fecundity µS for the selected lines by at least 4.6192 eggs per day and perhaps as much as

13.241 eggs per day.

In conclusion, we have found that the distributions of fruitfly fecundity for two selected

populations are identical (since we assumed a common variance and since we failed to reject
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µRS = µSS); but, the distribution of fruitfly fecundity for the nonselected population differs

from the distribution for the selected population by having a larger (by 4.6192 to 13.241

eggs per day) population mean fecundity.

Before we leave this example we will consider one more approach to its analysis.

Suppose that we did not have enough a priori information to allow use to confidently

propose a reasonable sequence of nested models for our analysis. In this situation we

could perform an exploratory analysis by using the Scheffé method to form simultaneous

95% confidence intervals for interesting linear combinations of the three population mean

fecundities.

We begin our analysis by considering the three pairwise differences between the pop-

ulation mean fecundities. The estimates of the three pairwise differences and the simulta-

neous 95% confidence intervals are given in the Table 18.

Table 18. Estimates of the pairwise differences.

difference estimate confidence interval

µNS − µRS 8.116 (1.848, 14.384)

µNS − µSS 9.744 (3.476, 16.012)

µRS − µSS 1.628 (-4.640, 7.896)

Based on these simultaneous confidence intervals we can conclude that the population

mean fecundities µRS and µSS for the selected lines are not different and we can conclude

that the population mean fecundity for the nonselected line µNS is larger than each of

the other population mean fecundities. Since we have concluded that the selected line

means are not different it would be of interest to also consider a contrast between the

nonselected line population mean µNS and the average (µRS + µSS)/2. The estimate of

the contrast µNS − (µRS + µSS)/2 is 8.93 and the Scheffé method gives the confidence

interval (3.5020, 14.3581). Thus we can conclude, with 95% confidence that −4.640 ≤

µRS − µSS ≤ 7.896 and 3.5020 ≤ µNS − (µRS + µSS)/2 ≤ 14.3581. This allows us to

conclude that µRS = µSS and µNS exceeds (µRS +µSS)/2 by at least 3.5020 and as much

as 14.3581 eggs per day.
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Chapter 4a

Probability Models

4a.1 Introduction

Chapters 2 and 3 are concerned with data description (descriptive statistics) where a

sample of values of the variable X is obtained and the distribution of the observed values

of X within the sample is examined. Chapter 4 is concerned with methods of obtaining

a sample, by sampling or experimentation, which will allow us to use the information

in the sample to make inferences about a population. The majority of the remainder of

this book is devoted to methods for using a sample to make inferences about a population

(inferential statistics). The basic idea of inferential statistics is to use the distribution of X

in a suitably chosen sample to make inferences about the distribution ofX in the population

(the population distribution of X). In other words, the goal of inferential statistics is to

obtain a sample of values of X and use these sample values to make inferences about the

process which generates them by making inferences about the (theoretical) probabilities

which these values must obey.

To make inferences about the population distribution of X we need to formulate a

suitable probability model for the distribution of X. This probability model may be only

partially specified with one or more unknown parameters, in which case we will need

to estimate this parameter or these parameters in order to make inferences about the

population distribution. This chapter provides a general discussion of probability models

and presents some specific probability models.

4a.2 Probability models for a variable with a finite number of values

Let x1, x2, . . . , xk denote the k distinct possible values of the variable X. A probability

model for the distribution of X is an assignment of k probabilities p1, p2, . . . , pk to the k

possible values of X. For i = 1, 2, . . . , k, pi denotes the probability that X will take on the

value xi, in symbols we write P (X = xi) = pi. We can think of these probabilities as the

theoretical relative frequencies with which X will take on these values, according to this

probability model. Notice that any collection of k probabilities, each of which is between

0 and 1, which sum to 1 defines a potential probability model for the distribution of X.

We can think of a probability model for the distribution of X in terms of a box model.

Imagine a box of balls where each ball is labeled with one of the k possible values of X and

where the proportion of balls in the box labeled xi is pi, for i = 1, 2, . . . , k. According to the

probability model, measuring or observing the value of X is equivalent to selecting a ball

at random from this box and observing the label on the ball. If we are formulating a model
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for sampling from a physical population of units, then a ball represents a population unit

and the balls in the box constitute the population. If X represents the outcome of some

process of measurement or experimentation, then a ball represents a particular outcome

and the box of balls represents the population of possible outcomes or values for X.

Tabular and graphical representations of probability models or population distribu-

tions are analogous to relative frequency distributions and bar graphs or histograms. That

is, a probability distribution for a variable with k possible values is a table listing the pos-

sible values and the associated probabilities. If X is qualitative, so that the possible values

x1, . . . , xk are simply names for k possible categories, then we can use a bar graph with k

bars to give a graphical representation of the probability distribution. If X is quantitative,

so that the possible values x1, . . . , xk are meaningful numerical values, then we can use

a probability histogram to represent the distribution graphically. Notice that a graphical

representation of a probability distribution uses area to represent probability.

The probability model (probability distribution) for a dichotomous (two–valued) vari-

able is the Bernoulli model with success probability p. It is conventional to refer to

one of the two possible values (outcomes) as a “success” and the other as a “failure.”

These generic labels are not meant to imply that observing a success is good. Rather,

we can think of choosing one of the two possible outcomes and asking, “Did we observe

the chosen outcome?”, with the two possibilities being yes (a success) and no (a failure).

The Bernoulli model with success probability p has two probabilities P (success) = p and

P (failure) = q = 1− p, where p is between zero and one.

The two examples below provide simple examples of Bernoulli distributions with suc-

cess probability p = 2/3. The first indicates how this distribution applies to selecting a unit

at random from a physical population. The second indicates the application to observing

the outcome of an experimental trial.

Example. A box containing balls of two types. Consider a box containing balls

of which 2/3 are red and 1/3 are green. Define observing a red ball as a success. If we

mix the balls thoroughly and then select one ball at random, the probability that we will

obtain a red ball is 2/3 and the probability that we will obtain a green ball is 1/3. The

corresponding probability distribution specifies the probability of observing a red ball as

P (red) = 2/3 and the probability of observing a green ball as P (green) = 1/3. Thus, with

success corresponding to red, the color of the ball selected follows the Bernoulli distribution

with success probability p = 2/3.

Example. Tossing a fair die once. Suppose that a fair (balanced) die is tossed

once and the number of dots on the upturned face is observed. Define a success to be the

occurrence of a 1, 2, 3, or 4. Since the die is fair, the probability of a success on a single

trial is p = 4/6 = 2/3. Therefore, with success defined as above, tossing the fair die once

yields a Bernoulli variable with success probability p = 2/3.
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The next example provides an instance where theoretical considerations in the form

of a simple Mendelian inheritance model lead to a Bernoulli distribution.

Example. Inheritance in peas (flower color). In his investigations, during the

years 1856 to 1868, of the chromosomal theory of inheritance Gregor Mendel performed

a series of experiments on ordinary garden peas. One characteristic of garden peas that

Mendel studied was the color of the flowers (red or white). When Mendel crossed a plant

with red flowers with a plant with white flowers, the resulting offspring all had red flowers.

But when he crossed two of these first generation plants, he observed plants with white as

well as red flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers

(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (combinations) RR,Rr, rR, and rr.

The three genotypes RR,Rr, and rR, which include the dominant R allele, will yield red

flowers while the fourth genotype rr will yield white flowers. If a red flowered RR genotype

parent is crossed with a white flowered rr genotype parent, then all of the offspring will

have genotype Rr and will produce red flowers. The basic Mendelian inheritance model

assumes that a pair of alleles is formed by randomly choosing one allele from each parent.

Under this model, if two of these first generation Rr genotype plants are crossed, each of

the four possible genotypes RR,Rr, rR, and rr is equally likely and plants with white as

well as red flowers will occur. Under this simple model, with each of the four genotypes

having the same probability of occurring, the probability that a plant will have red flowers

is P (red) = 3/4 and the probability that a plant will have white flowers is P (white) = 1/4.

This Bernoulli distribution for flower color is summarized in Table 1.

Table 1. Pea plant flower color distribution.

flower color probability

red 3/4
white 1/4

Example. Inheritance in peas (seed shape and color). We will now con-

sider the Mendelian inheritance model for two independently inherited characteristics. In

particular we will consider the characteristics seed shape, with possible shapes of round

(R, dominant) and wrinkled (r, recessive), and seed color, with possible colors of yellow

(Y , dominant) and green (y, recessive). If an RRY Y genotype plant with round yellow

seeds is crossed with an rryy genotype plant with wrinkled green seeds, the offspring will

all have round yellow seeds and genotype RrY y. If two of the resulting RrY y genotype

plants with round yellow seeds are crossed, there are 16 equally likely possible genotypes.

The nine genotypes RRY Y,RRY y,RRyY,RrY Y,RrY y,RryY, rRY Y, rRY y, rRyY yield
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round yellow seeds; the three genotypes rrY Y, rrY y, rryY yield wrinkled yellow seeds; the

three genotypes RRyy,Rryy, rRyy yield round green seeds; and, the single genotype rryy

yields wrinkled green seeds. The fact that these 16 possible genotypes are equally likely

yields the probability distribution summarized in Table 2.

Table 2. Pea plant seed shape/color distribution.

shape/color probability

round yellow 9/16
wrinkled yellow 3/16
round green 3/16

wrinkled green 1/16

4a.3 Probability models for discrete quantitative variables

The remainder of our discussion of probability models is restricted to probability mod-

els for quantitative variables. Let us begin by considering certain parameters associated

with the probability model for a quantitative variable X with possible numerical values

x1, x2, . . . , xk and corresponding probabilities p1, p2, . . . , pk. In this case the possible values

are meaningful numerical values, such as counts or measurements of a physical quantity,

and can be viewed as points on the number line. Thus we can discuss the shape of a distri-

bution, the locations of representative values such as the population median or quartiles,

and quantities which describe the location of and variability in the distribution.

The population mean µ = µX of X (population mean of the distribution of X) is the

location of the balancing point of the probability histogram or, algebraically, the weighted

average of the possible values of X with weights given by the corresponding probabilities.

More formally, we have

µX = x1p1 + · · ·+ xkpk =
k
∑

i=1

xipi.

The population mean is the long run average value of X in the sense that if we observed

values of X repeatedly and if these observations occurred with the specified probabilities,

then in the long run the average of these values would be equal to µX , since x1 would occur

p1 × 100% of the time, x2 would occur p2 × 100% of the time, and so on. For this reason

the population mean of X is often called the expected value of X and denoted µX = E(X)

with the understanding that expected value is short for long run average expected value.

The population variance σ2 = σ2
X of X (population variance of the distribution of X)

is defined as the weighted average of the squared deviations of the possible values of X
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from the mean µX with weights given by the corresponding probabilities. More formally,

we have

σ2
X = (x1 − µX)2p1 + · · ·+ (xk − µX)2pk =

k
∑

i=1

(xi − µX)2pi.

The population standard deviation σ = σX of X is the (positive) square root of the

population variance.

We can also define population quantiles or percentiles, such as the population median

and the population quartiles, as the points on the number line where the probabilities

(areas) in the probability histogram to the left and right of the point are equal to the

appropriate values.

Example. Tossing a fair die. Suppose we toss a fair (balanced) die once and let X

denote the number on the upturned face with possible values of 1, . . . , 6. Since the die is

balanced each of the six possible values of X is equally likely to appear when we toss the

die and the appropriate probability model is the uniform distribution on the set {1, . . . , 6}
which assigns probability 1/6 to each possible outcome. The corresponding population

mean and variance are µ = 7/2 and σ2 = 35/12; the population median is also 7/2, since

this distribution is symmetric.

In general, the discrete uniform distribution on the integers 1, . . . , k assigns probability

1/k to each of the k integers in this set of possible values. The population mean (and

median) of this uniform distribution is µ = (k + 1)/2 and the population variance is

σ2 = (k − 1)(k + 1)/12.

Example. Tossing a fair die, revisited. Now suppose we toss a fair (balanced) die

twice and let X denote the sum of the two numbers we obtain. Taking order into account,

there are 36 possible outcomes (36 combinations of the two numbers obtained) and, since

the die is fair, each of these outcomes is equally likely. Since these 36 combinations are

mutually exclusive we can add the probabilities corresponding to each distinct value of X

yielding the distribution given in Table 3 and Figure 1. This distribution is symmetric

so the population mean (and median) of the sum is µ = 7. It can be shown that the

population variance of the sum is σ2 = 35/6.

Figure 1. Probability histogram for the sum when a fair die is tossed twice.

2 3 4 5 6 7 8 9 10 11 12
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Table 3. Probability distribution for the sum when a fair die is tossed twice.

sum probability

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

4a.4 Probability models for counts

We will now consider three probability models for counts. The first two models, the

binomial and the hypergeometric, can be motivated by considering the distribution of the

number of successes in a sample, selected with or without replacement, from a dichotomous

population. A dichotomous population is a population of units which can be partitioned

into two distinct groups; the population success group and the population failure group.

Suppose that a simple random sample of size n is selected with replacement from a

dichotomous population with population success proportion p. We can view the results of

this sampling process as forming a sequence of n trials, where a trial is the selection of a

unit from the population. These trials possess two important properties.

1. For each trial the probability of success is p.

2. The outcomes of the trials are independent.

A sequence of trials with these properties is known as a sequence of independent Bernoulli

trials with success probability p.

The probability of observing a specified sequence of successes and failures as the out-

come of a sequence of independent Bernoulli trials is equal to the product of the probabil-

ities of success (S) and failure (F ) (as appropriate) on each trial. For example, with three

Bernoulli trials the probability of observing the sequence SFS, denoted P (SFS), is equal

to the product of the probabilities of the three outcomes, i.e., P (SFS) = P (S)P (F )P (S).

In the present context on each trial P (S) = p and P (F ) = 1− p and we have P (SFS) =

p(1− p)p = p2(1− p).

To determine the appropriate probability model for the number of successes X in a

sequence of n Bernoulli trials we need to determine the number of sequences of S ′s and

F ′s which give each possible value of X. First consider the case with n = 3 trials. The
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eight possible sequences of S ′s and F ′s and the associated probabilities and values of X

are given in Table 4.

Since the eight sequences in Table 4 are mutually exclusive, we can add the probabil-

ities corresponding to each distinct value of X to get the probability distribution in Table

5. This distribution of the number of successes in three Bernoulli trials is the binomial

distribution with parameters n = 3 and p.

Table 4. Outcomes of a simple random sample of size 3
selected with replacement.

sequence probability X

FFF (1− p)3 0
SFF p(1− p)2 1
FSF p(1− p)2 1
FFS p(1− p)2 1
SSF p2(1− p) 2
SFS p2(1− p) 2
FSS p2(1− p) 2
SSS p3 3

Table 5. Probability distribution for the number of successes
in 3 Bernoulli trials. (Binomial distribution)

sum probability
X P(X)

0 (1− p)3

1 3p(1− p)2

2 3p2(1− p)
3 p3

Notice that the probabilities in Table 5 are of the form cpx(1− p)n−x, where x is the

number of successes, n−x is the number of failures, and c is the number of ways to choose

locations for the x S′s in the sequence of n S′s and F ′s. The number c, usually denoted by
(

n
x

)

or Cn
x , is the binomial coefficient giving the number of combinations of n things taken

x at a time. In general, for x = 0, 1, . . . , n, the probability of observing X = x successes

in a sequence of n Bernoulli trials with success probability p is

P (X = x) =

(

n

x

)

px(1− p)n−x.

This probability function determines the binomial distribution with parameters n and p.

Most statistical software programs and some calculators will compute these probabilities
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or the cumulative probabilities P (X ≤ x). It can be shown that the mean of this binomial

distribution is µ = np and the variance is σ2 = npq = np(1− p).

Figure 2. Probability histograms for the number of successes.
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binomial (n = 10, p = .4, µ = 4, σ2 = 2.4) binomial (n = 10, p = .5, µ = 5, σ2 = 2.5)

Several binomial distributions are presented in Figure 2. Notice that the binomial

distribution is skewed right when p is small (near zero) and that, for p < .5, there is less

skewness as p increases with the distribution becoming symmetric when p = .5. If we

examined binomial distributions with p > .5 we would observe the analogous pattern with

skewness to the left and with less skewness for p near .5.

Now suppose that a simple random sample of size n is selected without replacement

from a dichotomous population with population success proportion p. As before we can

view the results of this sampling process as forming a sequence of n trials, where a trial

is the selection of a unit from the population. However, it is clear that neither of the two

properties of independent Bernoulli trials is satisfied when we sample without replacement.

To motivate the appropriate probability model for the number of successes X in a

sample chosen without replacement first consider the case with n = 3 trials. In this

situation the distribution of X depends on the number of population units which are

classified as successes M and the total number of units in the population N . Suppose that

there are N = 20 population units of whichM = 5 are successes. As before the probability

of observing a specified sequence of S ′s and F ′s is equal to the product of the probabilities

of the three outcomes; however, the probabilities of success and failure on a particular trial

depend on what has happened on the previous trials. For example, for the sequence SFS
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we write P (SFS) = P (S)P (F |S)P (S|SF ), where P (F |S) is the conditional probability of

a failure given that we have observed a success and P (S|SF ) is the conditional probability

of a success given that we have observed a success and a failure. With M = 5 population

success units and N−M = 15 population failure units we find that P (S) = 5/20, P (F |S) =
15/19, and P (S|SF ) = 4/18, so that P (SFS) = (5/20)(15/19)(4/18). The eight possible

sequences of S′s and F ′s and the associated probabilities and values of X are given in

Table 6.

Table 6. Outcomes of a simple random sample of size 3 selected
without replacement, when there are M=5 population
success units and N=20 population units.

sequence probability X

FFF (15 · 14 · 13)/(20 · 19 · 18) 0
SFF (5 · 15 · 14)/(20 · 19 · 18) 1
FSF (15 · 5 · 14)/(20 · 19 · 18) 1
FFS (15 · 14 · 5)/(20 · 19 · 18) 1
SSF (5 · 4 · 15)/(20 · 19 · 18) 2
SFS (5 · 15 · 4)/(20 · 19 · 18) 2
FSS (15 · 5 · 4)/(20 · 19 · 18) 2
SSS (5 · 4 · 3)/(20 · 19 · 18) 3

Table 7. Probability distribution for the number of successes in a simple
random sample of size 3 selected without replacement, when there
are M=5 population success units and N=20 population units.

sum probability
X P(X)

0 (15 · 14 · 13)/(20 · 19 · 18) = .3991
1 3(5 · 15 · 14)/(20 · 19 · 18) = .4605
2 3(5 · 4 · 15)/(20 · 19 · 18) = .1316
3 (5 · 4 · 3)/(20 · 19 · 18) = .0088

Since the eight sequences in Table 6 are mutually exclusive, we can add the prob-

abilities corresponding to each distinct value of X to get the probability distribution in

Table 7. This distribution of the number of successes in a simple random sample of size 3

selected without replacement from a dichotomous population of N = 20 population units

with M = 5 population success units is the hypergeometric distribution with parameters

M = 5, N = 20, and n = 3. Since only M population units are classified as successes and

only N −M are classified as failures, we must have x ≤M and n−x ≤ N −M . Subject to
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these restrictions the hypergeometric probabilities can be computed using the probability

function

P (X = x) =

(

M
x

)(

N−M
n−x

)

(

N
n

) .

Most statistical software programs and some calculators will compute these probabilities or

the cumulative probabilities P (X ≤ x). The hypergeometric distribution with parameters

M , N , and n has mean

µ = np = n

(

M

N

)

and variance

σ2 = n

(

M

N

)(

N −M

N

)(

N − n

N − 1

)

= npq

(

N − n

N − 1

)

,

where p =M/N is the population success proportion.

Notice that the mean number of successes µ = np is the same whether we sample

with replacement (the binomial (n, p) mean) or without replacement (the hypergeometric

(M,N, n) mean with p = M/N). However, the variance of the hypergeometric (without

replacement) distribution is smaller by a factor of f = (N −n)/(N − 1), i.e., the binomial

variance is npq and the hypergeometric variance is fnpq. The factor f is known as the

finite population correction factor and its effect is most noticeable when N is small relative

to n. If N is very large relative to n, then f ≈ 1 and the two variances are essentially equal.

Actually, ifN is very large relative to n, then the binomial and hypergeometric distributions

are essentially the same. The difference between the binomial and the hypergeometric

distributions is illustrated, for n = 5 and p = .5, by the probability histograms in Figure

3. All of the distributions of Figure 3 are symmetric with mean µ = 2.5, since we have

n = 5 trials and the population success proportion is p = .5. Notice that as the size of the

population increases the hypergeometric distributions become more similar to the binomial

distribution and, in particular, there is very little difference between the hypergeometric

distribution with M = 50 and N = 100 and the binomial distribution.

If X denotes the number of successes in a simple random sample of size n selected

from a dichotomous population with population success proportion p, then p̂ = X/n, the

proportion of successes in the sample, provides an obvious estimator of the population

success proportion p. The distribution of p̂ describes the variability (from sample to

sample) in p̂ as an estimator of p. The distribution of p̂ is also known as the sampling

distribution of p̂. The binomial and hypergeometric distributions can be used to determine

the respective distributions of p̂ when sampling with replacement and sampling without

replacement.



4a.4 Probability models for counts 307

Figure 3. Hypergeometric and binomial probability histograms, with p=.5.
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If X denotes the number of successes in a simple random sample of size n selected

with replacement from a dichotomous population with population success proportion p,

then the possible values of X are x = 0, 1, . . . , n and the corresponding possible values of

p̂ are x/n = 0, 1/n, 2/n, . . . , 1. Thus, when the sample is selected with replacement, the

probability that X = x is equal to the probability that p̂ = x/n, i.e., for x = 0, 1, . . . , n,

P
(

p̂ =
x

n

)

= P (X = x) =

(

n

x

)

px(1− p)n−x.

In this case, the mean of the sampling distribution of p̂ is E(p̂) = p (E(p̂) = E(X)/n)

and the variance of the sampling distribution of p̂ is var(p̂) = pq/n (var(p̂) = var(X)/n2).

Notice that this sampling distribution does not depend on the size of the population.

If X denotes the number of successes in a simple random sample of size n selected

without replacement from a dichotomous population with population success proportion

p, then the sampling distribution of p̂ depends on the size of the population. Let N denote

the size of the dichotomous population being sampled and let M denote the number of
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population units classified as successes. When the sample is selected without replacement,

for x = 0, 1, . . . , n, subject to the restrictions x ≤M and n− x ≤ N −M ,

P
(

p̂ =
x

n

)

= P (X = x) =

(

M
x

)(

N−M
n−x

)

(

N
n

) .

In this case, the mean and variance of the sampling distribution of p̂ are

E(p̂) = p =

(

M

N

)

and

var(p̂) =

(

M

N

)(

N −M

N

)(

N − n

n(N − 1)

)

=
pq

n

(

N − n

N − 1

)

,

where p = M/N is the population success proportion. Note that, as before, E(p̂) =

E(X)/n and var(p̂) = var(X)/n2.

We will now consider the Poisson distribution which provides a realistic model for

counts of “rare events” in many practical settings. Consider a sequence of events occurring

randomly in time or space and a count such as the number of radioactive particle emissions

per unit time, the number of meteorites that collide with a satellite during a single orbit,

the number of defects per unit length of some material, or the number of weed seeds per

unit volume in a large batch of wheat seeds. We can picture the time (or location) of

each occurrence as a point on the positive part of the number line. Consider the following

assumptions about the times (locations) of these occurrences:

1) The probability of exactly one occurrence in a small interval of length t is approx-

imately νt, where ν > 0 is the mean rate at which events occur per unit time (the

mean rate of occurrence).

2) The probability of more than one occurrence in a small interval of length t is

negligible compared to the probability of exactly one occurrence in a small interval of

length t.

3) The numbers of occurrences in non–overlapping intervals are independent in the

sense that information concerning the number of events in one interval reveals nothing

about the number of events in the other interval.

If we let X denote the number of occurrences in a period of length t, then these three

assumptions imply that X follows the Poisson distribution with parameter λ = νt. The

possible values of X are 0, 1, . . ., with no theoretical upper bound on the value, and for

λ > 0 the Poisson probabilities can be computed using the probability function

P (X = x) =
λx

x!
e−λ,
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where e ≈ 2.718 is the base of the natural logarithm and x! = x(x− 1) · · · 1 is x factorial.

The mean and variance of the Poisson distribution with parameter λ are both equal to λ.

Example. Radioactive disintegrations. This example is taken from Feller (1957),

p. 149 and Cramér (1946) p. 436. In a famous experiment by Rutherford, Chadwick, and

Ellis (Radiations from Radioactive Substances, Cambridge, 1920) a radioactive substance

was observed during 2608 consecutive time intervals of length t = 7.5 seconds each. The

number of particles reaching a counter was recorded for each period. The results are

summarized in Figure 4 and Table 8. (In Table 8 the observations greater than or equal to

10 are grouped together. The data actually contain 10 tens, 4 elevens, and 2 twelves.) The

last column of Table 8 contains expected relative frequencies (probabilities) computed using

a Poisson model with λ estimated from these data. These Poisson probabilities appear to

match the observed relative frequencies fairly well. A formal test of the goodness of fit

of this Poisson model to these data, which is discussed in Chapter 11, indicates that the

model does fit well (χ2 = 12.885, 9 d.f., P–value .17).

Table 8. Relative frequency distribution for
radioactive disintegrations.

observed expected
observed relative relative

number frequency frequency frequency

0 57 .0219 .0209
1 203 .0778 .0807
2 383 .1469 .1562
3 525 .2013 .2015
4 532 .2040 .1949
5 408 .1564 .1509
6 273 .1047 .0973
7 139 .0533 .0538
8 45 .0173 .0260
9 27 .0104 .0112

≥ 10 16 .0051 .0065

total 2608 .9991 .9999
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Figure 4. Histogram for radioactive disintegrations (with ≥ 10 expanded).
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Example. Bacteria counts. This example is taken from Feller (1957), p.153. The

original source is T. Matuszewsky, J. Supinska, and J. Neyman (1936), Zentralblatt für

Bakteriologie, Parasitenkunde und Infektionskrankrankheiten, II Abt., 95. A Petri dish

with bacteria colonies was examined under a microscope. The dish was divided into small

squares and the number of bacteria colonies, visible as dark spots, was recorded for each

square. In this example t is the area the square within which the count is determined and

we will take this area to be one. If the bacteria colonies were randomly distributed over

the Petri dish, without being clustered together, then the Poisson model should hold. The

results for one of several experiments are summarized in Figure 5 and Table 9. The last

column of Table 9 contains expected relative frequencies (probabilities) computed using a

Poisson model, with λ estimated from these data. In this example the observed relative

frequency in the “≥ 6” line is for “exactly 6”, but, the expected relative frequency is for

all values greater than or equal to 6. These Poisson probabilities appear to match the

observed relative frequencies fairly well. Therefore, the evidence supports the contention

that the bacteria colonies are randomly distributed over the Petri dish. A formal test of

the goodness of fit of this Poisson model to these data, which is discussed in Chapter 11,

indicates that the model does fit well (χ2 = .8386, 5 d.f., P–value .9745).
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Figure 5. Histogram for bacteria counts.
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Table 9. Relative frequency distribution for
bacteria counts.

observed expected
observed relative relative

number frequency frequency frequency

0 5 .0424 .0533
1 19 .1610 .1562
2 26 .2203 .2290
3 26 .2203 .2239
4 21 .1780 .1641
5 13 .1102 .0962
≥ 6 8 .0678 .0772

total 118 1.0000 .9999

4a.5 Probability models for continuous quantitative variables

We will now consider probability models for the distribution of a continuous quanti-

tative variable. A probability model for the distribution of a continuous variable X can

be represented by a density curve. A density curve is a nonnegative curve for which

the area under the curve (over the x–axis) is one. We can think of the density curve as a

smooth version of a probability histogram with the rectangles of the histogram replaced by

a smooth curve indicating where the tops of the rectangles would be. With a continuous

variable X it does not make sense to talk about the probability that X would take on

a particular value, after all if we defined positive probabilities for the infinite collection

(continuum) of possible values of X these probabilities could not add up to one. It does,

however, make sense to talk about the probability that X will take on a value in a specified

interval or range of values. Given two constants a < b the probability that X takes on a
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value in the interval from a to b, denoted by P (a ≤ X ≤ b), is equal to the area under the

density curve over the interval from a to b on the x–axis. Areas of this sort based on the

density curve give the probabilities which a single value of X, chosen at random from the

infinite population of possible values of X, will satisfy.

Given a probability model for the distribution of a continuous variable X, i.e., given

a density curve for the distribution of the continuous variable X, we can define population

parameters which characterize relevant aspects of the distribution. For example, we can

define the population mean µ as the balance point of the unit mass bounded by the density

curve and the number line. We can also think of the population mean as the weighted

average of the infinite collection of possible values of X with weights determined by the

density curve. We can similarly define the population median M as the point on the

number line where a vertical line would divide the area under the density curve into two

equal areas (each of size one–half).

The most widely used continuous probability model is the normal probability model

or normal distribution. The normal distribution with mean µ and standard deviation σ

can be characterized by its density curve, which is the familiar bell shaped curve. The

normal density curve corresponds to the probability density function

f(x) =

(

1

σ
√
2π

)

exp

(−(x− µ)2

2σ2

)

.

The standard normal density curve, which has mean µ = 0 and standard deviation σ = 1,

is shown in Figure 6.

Figure 6. The standard normal density curve.
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The normal distribution with mean µ and its density curve are symmetric around µ,

i.e., if we draw a vertical line through µ, then the two sides of the density curve are mirror

images of each other. Therefore the mean of a normal distribution µ is also the median of

the normal distribution. The mean µ locates the normal distribution on the number line so

that if we hold σ constant and change the mean µ, the normal distribution is simply shifted
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along the number line until it is centered at the new mean. In other words, holding σ fixed

and changing µ simply relocates the density curve on the number line; it has no effect on

the shape of the curve. Figure 7 provides the density curves for normal distributions with

respective means µ = 0 and µ = 2 and common standard deviation σ = 1.

Figure 7. Normal distributions with common standard deviation one and
means of zero and two.
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Figure 8. Normal distributions with common mean zero and standard
deviations one–half, one, and two.
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The standard deviation σ indicates the amount of variability in the normal distribu-

tion. If we hold µ fixed and increase the value of σ, then the normal density curve becomes

flatter, while retaining its bell–shape, indicating that there is more variability in the distri-

bution. Similarly, if we hold µ fixed and decrease the value of σ, then the normal density

curve becomes more peaked around the mean µ, while retaining its bell–shape, indicating

that there is less variability in the distribution. Normal distributions with mean µ = 0

and respective standard deviations σ = .5, σ = 1, and σ = 2 are plotted in Figure 8.

Computer programs and many calculators can be used to compute normal probabilities

or equivalently to compute areas under the normal density curve. These probabilities can

also be calculated using tables of standard normal distribution probabilities such as Table
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10 at the end of this chapter. Recall that the standard normal distribution is the normal

distribution with mean µ = 0 and standard deviation σ = 1. The relationship between the

standard normal variable Z and the normal variable X, which has mean µ and standard

deviation σ, is

Z =
X − µ

σ
or equivalently X = µ+ Zσ.

This relationship implies that a probability statement about the normal variable X can

be re–expressed as a probability statement about the standard normal variable Z by re–

expressing the statement in terms of standard deviation units from the mean. Given

two constants a < b, observing a value of X between a and b (observing a ≤ X ≤ b)

is equivalent to observing a value of Z = (X − µ)/σ between (a − µ)/σ and (b − µ)/σ

(observing (a − µ)/σ ≤ (X − µ)/σ ≤ (b − µ)/σ). Furthermore, Z = (X − µ)/σ behaves

in accordance with the standard normal distribution so that the probability of observing

a value of X between a and b, denoted by P (a ≤ X ≤ b), is equal to the probability that

the standard normal variable Z takes on a value between (a− µ)/σ and (b− µ)/σ, which

is denoted by P [(a− µ)/σ < Z < (b− µ)/σ], i.e.,

P (a < X < b) = P

(

a− µ

σ
< Z <

b− µ

σ

)

.

In terms of areas this probability equality says that the area under the normal density

curve with mean µ and standard deviation σ over the interval from a to b is equal to the

area under the standard normal density curve over the interval from (a−µ)/σ to (b−µ)/σ.
Similarly, given constants c < d, we have the analogous result that

P (c < Z < d) = P (µ+ cσ < X < µ+ dσ).

Most tables of the standard normal distribution and many computer programs provide

cumulative standard normal probabilities of the form P (Z ≤ a) for selected values of a.

To use these cumulative probabilities to compute a probability of the form P (a ≤ Z ≤ b)

note that

P (a ≤ Z ≤ b) = P (Z ≤ b)− P (Z ≤ a)

and note that the symmetry of the normal distribution implies that

P (Z ≤ −a) = P (Z ≥ a) = 1− P (Z ≤ a).

Calculators will usually provide probabilities of the form P (a ≤ Z ≤ b) directly.
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Example. Heights of adult males. Consider the heights (in inches) of adult males

born in the United Kingdom (including the whole of Ireland) which are summarized in the

Table 8 of Section 3.3.

These height data provide a good illustration of the fact that normal distributions

often provide very good models for a population of physical measurements of individuals,

such as heights or weights. Figure 9 provides a histogram for this height distribution and

the density curve for a normal distribution chosen to model these data. You can see that

the normal distribution provides a very reasonable model for the heights of adult males

born in the United Kingdom.

Figure 9. Histogram and normal density curve for the UK height example.
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height
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Z

Probability

Table 10. Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

continued on next page
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Z

Probability

Table 10 (continuation). Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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DiMaggio and Mantle. 6

Weed seeds. 6, 23, 37, 38
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Homophone confusion and Alzheimer’s disease. 8
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Scotland coronary prevention study. 126
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Energy consumption. 187, 192
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Wheatear weight lifting and health status example. 253



320 Examples

Inheritance in peas (seed shape and color). 263, 299
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Bacteria counts. 267, 310

Cocaine addiction. 269

Attitudes of School Children. 271

Potato leafhopper survival. 277
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Index

analysis of variance (ANOVA) 278

association (also see correlation)

negative linear 217

nonlinear 219, 241

positive linear 217

Bernoulli model 298

Bernoulli trials 79

biased estimator 78

biased sample 64

binomial distribution 303

bivariate data 215

bivariate outlier 235

box (and whiskers) plot 42

modified box plot 53

inner fences 54

outer fences 54

Chebyshev’s rule 59

Chi–square

statistic 259

tests

for goodness of fit 260

for homogeneity 268

for independence 273

coefficient of determination 232

confidence interval estimate 86

Agresti–Coull interval for p 88

confidence level 86

confidence bound 108, 122, 162, 190

interval for p1 − p2 116

interval for median 178

interval for µ 156

interval for µ1 − µ2 187, 204, 211

interval for β 249

Wald interval for p 92

Wilson interval for p 87

control group 72

correlation (also see association)

correlation coefficient 218

direction of the correlation 219

linear correlation 218

no correlation 220

strength of the correlation 219

data 1

density curve 82, 139, 311

dichotomous population 77

distribution 1

frequency distribution 13

relative frequency distribution 13

experimental study 71

explanatory variable 2, 215

extrapolation 230

extreme value 53

F–tests 278, 284, 286

failure 77

failure group 77

failure probability 77

fences (see boxplot)

five number summary 38

graph

bar graph 14

frequency histogram 28

histogram 21

pie graph 14

probability histogram 139

relative frequency histogram 29

segmented bar graph 14

stem and leaf histogram 28

histogram (see graph)

hypergeometric distribution 305

hypothesis

directional hypothesis 105

null hypothesis 94

research hypothesis 94

hypothesis test 94
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influential point 236

interquartile range 38

joint distribution 215

least squares (see regression)

linear combinations of means 290

margin of error 87, 92, 130, 133,

156, 187, 204

maximum 35

mean

estimating 154

population 140, 312

sample 43

median (see also population median)

estimating 174

finding the sample median 36

population 174, 312

sample 36

midrange 35

minimum 35

mode 23

µ0 166

nested models 278

nonnormality 148

normal approximation

distribution of p̂ 84

distribution of p̂1 − p̂2 115

normal probability model 143

cumulative probabilities 146, 314

density curve 83, 139, 311

normal distribution 83, 143, 312

standardization 145, 314

normal probability plot 150

observational study 70

observed significance level 99

outlier 39, 53

P–value 98

interpretation of 99

parameter 63

percentile rank 54

point cloud 217

Poisson distribution 308

population 1, 63

sampled population 64

target population 64

population mean (see mean)

population median (also see median)

confidence interval 178

hypothesis test 174

prediction interval 253

probability model

for a continuous variable 139, 311

for a discrete variable 139, 297

proportion

population failure 77

population success 77

sample success 77

p̂ 77

p̃ 93

p̃k 87

p0 96

quartiles 37

finding quartiles 37

random digits 67

random number table 68

random sample 65, 142

simple random sample 66

selected with replacement 66

selected without replacement 66

stratified random sample 70

randomized comparative experiment 72

range 36

ranks 206

rank–sum test 206

ties 208

two–sample Mann–Whitney test 206

Wilcoxon rank–sum test 206
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regression

estimation of mean response 251

inference for slope 249

linear relationship 226

predicted value 230

prediction of response 252

residual value 230

residual plot 233

regression line

fitted 226, 245

intercept 227, 244

intercept and slope form 227, 244

mean and slope form 227, 244

population 244

slope 227, 244

response variable 2, 71, 215

sample 1, 63

sampling 63

sampling distribution 77

of p̂ 80, 306

of p̂1 − p̂2 113

of X 142

of X1 −X2 184

sampling frame 67

scatterplot 216

Scheffé method 291

shapes 22

direction of skewness 22

skewed 22

symmetric 22

shift assumption 183

significance level 99

simple linear regression 243

least squares estimates 246

simultaneous confidence intervals 290

skewness (see shape)

standard deviation

pooled sample 186

sample 45

standard error 78

of p̂ 80

of p̂1 − p̂2 115

of X 142, 155

of X1 −X2 186, 187, 204

standard normal distribution 83, 143, 312

statistic 35, 63

statistical hypothesis (see hypothesis)

stem and leaf histogram 28

splitting the stems 32

strata 70

Student’s t distribution 155

Student’s t test statistic 163, 190

subpopulation 69

success

success group 77

success probability 77

sum of squares 279

treatment 71

treatment group 72

unbiased estimate 78

uniform distribution 301

unimodal 57

unit 1

unusual point 222

variable

definition 1

discrete and continuous 2

explanatory variable 2, 215

indicator variable 15

nominal and ordinal 1

qualitative 1

quantitative 2

response variable 2, 71, 215

variance 45

Z–score 56

Chebyshev’s rule 59

the 68%-95%-99.7% rule 57


