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Chapter 1

Introduction

1.1 Basic ideas

Statistical methods deal with properties of groups or aggregates. In many applications

the entity of primary interest is an actual, physical group (population) of objects. These

objects may be animate (e.g., people or animals) or inanimate (e.g., farm field plots, trees,

or days). We will refer to the individual objects that comprise the group of interest as

units. In certain contexts we may refer to the unit as a population unit, a sampling unit,

an experimental unit, or a treatment unit.

In order to obtain information about a group of units we first need to obtain infor-

mation about each of the units in the group. A variable is a measurable characteristic

of an individual unit. Since our goal is to learn something about the group, we are most

interested in the distribution of the variable, i.e., the way in which the possible values

of the variable are distributed among the units in the group.

When the units are actual, physical objects we define the population as the collec-

tion of all of the units that we are interested in. In most applications it is unnecessary

or undesirable to examine the entire population. Thus we define a sample as a subset or

part of the population for which we have or will obtain data. The collection of observed

values of one or more variables corresponding to the individual units in the sample consti-

tute the data. Once the data are obtained we can use the distributions of the variables

among the units in the sample to characterize the sample itself and to make inferences

or generalizations about the entire population, i.e., inferences about the distributions of

these variables among the units in the population.

When discussing the distribution of a variable we need to consider the structure pos-

sessed by the possible values of the variable. This leads to the following classification of

variables into four basic types.

A qualitative variable (categorical variable) classifies a unit into one of several possi-

ble categories. The possible values of a qualitative variable are names for these categories.

We can distinguish between two types of qualitative variables. A qualitative variable is

said to be nominal if there is no inherent ordering among its possible values. The sex of a

person (female or male) and the color of a person’s eyes (blue, brown, etc.) are examples

of nominal qualitative variables. If there is an inherent ordering of the possible values

of a qualitative variable, then it is said to be ordinal. The classification of a student

(freshman, sophomore, junior, or senior), the ranking of a unit with respect to several size

classes (small, medium, or large), and the degree to which a person agrees with a statement
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(recorded as strongly disagree, disagree, neutral, agree, or strongly agree) are examples of

ordinal qualitative variables.

A quantitative variable (numerical variable) assigns a meaningful numerical value

to a unit. Because the possible values of a quantitative variable are meaningful numerical

quantities, they can be viewed as points on a number line. Therefore, it makes sense to

talk about where the values of a quantitative variable are located on the number line,

whether one value is larger than another, and how far apart two values are. If the possible

values of a quantitative variable correspond to isolated points on the number line, then

there is a discrete jump between adjacent possible values and the variable is said to be

a discrete quantitative variable. The most common example of a discrete quantitative

variable is a count such as the number of babies in a litter of animals or the number of

plants in a field plot. If there is a continuous transition from one value of the variable

to the next, then the variable is said to be a continuous quantitative variable. For a

continuous quantitative variable there is always another possible value between any two

possible values, no matter how close together the values are. In practice all quantitative

variables are discrete in the sense that the observed values are rounded to a reasonable

number of decimal places. Thus the distinction between a continuous quantitative variable

and a discrete quantitative variable is often more conceptual than real. If a value of the

variable represents a measurement of the size of a unit, such as height, weight, or length,

or the amount of some quantity, then it is reasonable to think of the possible values of the

variable as forming a continuum of values on the number line and to view the variable as

continuous.

The values of ordinal variables are often recorded using numerical codes (ranks) such

as 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, or 5:strongly agree. This sort of

coding of an ordinal variable does not make it quantitative. For example, the fact that

these rankings are equally spaced points on the number line does not necessarily mean

that the difference between 1:strongly disagree and 2:disagree is the same as the difference

between 4:agree and 5:strongly agree. Therefore, the common practice of treating such

ranking variables as quantitative must be used with caution and the fact that the values

of the variable are simply ranks must be taken into account when interpreting an analysis

of such a ranking variable.

We can also classify variables with respect to the roles they play in a statistical anal-

ysis. That is, we can distinguish between response variables and explanatory variables. A

response variable is a variable that measures the response of a unit to natural or exper-

imental stimuli. A response variable provides us with a measurement or observation that

characterizes a unit with respect to a characteristic of primary interest. An explanatory

variable is a variable that can be used to explain, in whole or in part, how a unit responds
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to natural or experimental stimuli. This terminology is clearest in the context of an ex-

perimental study. Consider an experiment where a unit is subjected to a treatment (some

combination of conditions) and the response of the unit to the treatment is recorded. A

variable that describes the treatment conditions is called an explanatory variable, since

it may be used to explain the outcome of the experiment. A variable that measures the

outcome of the experiment is called a response variable, since it measures the response of

the unit to the treatment. An explanatory variable may also be used to subdivide a group

so that the distributions of a response variable can be compared among subgroups.

In some applications, such as experimental studies, the population is best viewed as

a hypothetical population of values of one or more variables. For example, suppose that

we are interested in the effects of an alternative diet on weight gain in some population of

experimental animals. We might conduct an experiment by randomly assigning animals to

two groups; feeding one group a standard diet and the other group the alternative diet; and

then recording the weight gained by each animal over some fixed period of time. In this

example we can envision two hypothetical populations of weight gains: The population of

weight gains we would have observed if all of the animals were given the standard diet;

and, the population of weight gains we would have observed if all of the animals were given

the alternative diet.

Statistics is often defined as a collection of methods for collecting, describing, and

drawing conclusions from data. Methods for collecting data fall under the heading of sam-

pling and experimentation; we will discuss these topics in Chapter 4. Descriptive statistical

methods are used to describe the distributions of the values of variables among the units in

a sample, i.e., to gain insight about the sample. We will discuss univariate (one variable)

descriptive statistical methods in Chapters 2 and 3 and bivariate (two variables) descrip-

tive methods in Chapter 9. Inferential statistical methods are used to make inferences or

generalizations, based on the data from the sample, about the distributions of the values

of variables among the units in the population, i.e., to gain insight about the population

based on information obtained from the sample. Inferential methods are probabilistic in

the sense that they are based on probability models for the distributions of variables. The

majority of this book deals with inferential statistics; probability models are introduced in

Chapter 4a.

We will use the following simple example to clarify the concepts and definitions from

above. The data presented in Table 1 were collected on the first day of classes during

the Spring 1999 semester. These data provide information about the 67 students who

were present on the first day of classes for two sections of the statistics course Stat 214 at

the University of Louisiana at Lafayette. Aside from being grouped by section, the data are
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Table 1. Statistics 214 class data, spring 1999.

line section classification sex age height weight siblings BMI

1 1 senior male 21 69 170 1 25.10
2 1 junior male 25 71 165 3 23.01
3 1 junior female 25 62 160 2 29.26
4 1 freshman male 18 72 162 1 21.97
5 1 junior female 22 63 170 1 30.11
6 1 freshman female 18 64 110 2 18.88
7 1 freshman female 18 60 103 1 20.11
8 1 freshman female 18 68 135 3 20.52
9 1 sophomore female 19 62 105 5 19.20
10 1 freshman male 18 74 190 2 24.39
11 1 sophomore female 20 70 150 1 21.52
12 1 senior female 21 61 116 1 21.92
13 1 freshman female 18 65 150 3 24.96
14 1 freshman female 19 64 140 4 24.03
15 1 freshman male 18 68 130 2 19.76
16 1 freshman female 18 63 110 2 19.48
17 1 sophomore female 21 62 125 1 22.86
18 1 freshman female 18 63 115 2 20.37
19 1 freshman female 19 64 135 3 23.17
20 1 freshman female 18 69 155 1 22.89
21 1 sophomore female 20 65 110 2 18.30
22 1 sophomore female 19 68 140 1 21.28
23 1 freshman female 47 66 110 1 17.75
24 1 sophomore female 20 70 145 2 20.80
25 1 freshman female 20 61 140 5 26.45
26 1 freshman female 18 63 180 0 31.88
27 1 junior male 22 70 175 2 25.11
28 1 freshman female 18 63 120 1 21.25
29 1 senior female 22 68 170 2 25.85
30 1 freshman female 18 66 125 3 20.17
31 1 junior male 22 75 205 2 25.62
32 1 freshman female 18 67 110 1 17.23
33 1 senior male 22 68 135 1 20.52
34 1 senior female 22 64 185 2 31.75
35 1 freshman female 41 61 96 1 18.14
36 1 junior female 22 59 95 5 19.19

This table is continued on the next page.
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Table 1. Statistics 214 class data (continuation).

line section classification sex age height weight siblings BMI

37 2 junior female 20 66 110 1 17.75
38 2 junior male 20 72 180 1 24.41
39 2 junior female 21 66 120 1 19.37
40 2 sophomore female 21 61 105 3 19.84
41 2 freshman female 18 68 134 7 20.37
42 2 freshman female 28 66 130 4 20.98
43 2 sophomore female 26 64 135 4 23.17
44 2 sophomore female 19 64 117 1 20.08
45 2 freshman female 20 66 140 4 22.59
46 2 junior female 20 64 130 1 22.31
47 2 senior female 48 66 140 3 22.59
48 2 junior female 22 67 115 2 18.01
49 2 sophomore female 19 66 170 2 27.44
50 2 freshman male 18 66 190 3 30.66
51 2 sophomore female 21 67 135 4 21.14
52 2 freshman female 20 68 140 2 21.28
53 2 sophomore female 19 62 115 2 21.03
54 2 sophomore female 20 60 110 2 21.48
55 2 freshman male 18 72 185 3 25.09
56 2 senior male 23 72 190 2 25.77
57 2 senior male 24 69 170 4 25.10
58 2 junior male 21 72 140 3 18.98
59 2 junior female 20 65 112 2 18.64
60 2 junior female 21 62 130 1 23.77
61 2 freshman female 18 64 120 1 20.60
62 2 sophomore female 25 66 145 2 23.40
63 2 junior male 19 65 156 6 25.96
64 2 freshman female 18 67 125 0 19.58
65 2 junior female 44 66 165 4 26.63
66 2 sophomore male 19 71 155 3 21.62
67 2 sophomore female 19 62 133 2 24.32

presented in no particular order. These data correspond to a convenience sample of stu-

dents which may or may not be representative of some larger population of students.

Values are provided for eight variables: the section the student was registered in (1 or 2);

the classification of the student (freshman, sophomore, junior, or senior); the sex of the

student (female or male); the age of the student (in years); the height of the student (in

inches); the weight of the student (in pounds); the number of siblings the student had

(0, 1, 2, . . .); and the body mass index (BMI) of the student. The derived or constructed
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variable BMI (in kg/m2) is the weight of the student (in kilograms) divided by the square

of the student’s height (in meters).

The sex of a student (with possible values of female and male) and the section the

student was registered in (with possible values 1 and 2) are nominal qualitative variables.

The classification of a student (with possible values of freshman, sophomore, junior, and

senior) is an ordinal qualitative variable. The other variables are quantitative. The number

of siblings that the student had (with possible values of 0, 1, 2, . . .) is inherently discrete.

The other quantitative variables, age (in years), height (in inches), weight (in pounds),

and BMI (in kg/m2) can be viewed as continuous variables.

The section that the student was registered in was included as a potentially interesting

explanatory variable which could be used to divide these students into two subgroups so

that the distributions of the other variables for these subgroups could be compared. For an

initial analysis of these data we would probably view all of the other variables as response

variables. That is, a first analysis might consist of examination of the distributions of these

response variables for the entire group or comparisons of these distributions by section.

After looking at the overall distributions of the variables we might also want to group the

students by sex (treat the sex of a student as an explanatory variable) and compare the

distributions of height, weight, and BMI for the two sexes.

1.2 Some examples

This section contains a collection of examples which will be used in exercises and as

examples in the sequel.

Example. DiMaggio and Mantle. Joe DiMaggio and Mickey Mantle were two

well known baseball players. DiMaggio played center field for the New York Yankees for

13 years and was succeeded by Mantle who played center field for 18 years. There has

been some argument about which of these two players was better at hitting home runs.

The data given in Table 2 are the numbers of home runs hit by the player during each of

the seasons he played. For each player these numbers of home runs are listed in order by

the seasons he played.

Table 2. Home run data.

Joe DiMaggio: 29 46 32 30 31 30 21 25 20 39 14 32 12

Mickey Mantle: 13 23 21 27 37 52 34 42 31 40 54 30 15 35 19 23 22 18

Example. Weed seeds. C. W. Leggatt counted the number of seeds of the weed

potentilla found in 98 quarter–ounce batches of the grass Phleum praetense. This example

is taken from Snedecor and Cochran, Statistical Methods, Iowa State, (1980), 198; the

original source is C. W. Leggatt, Comptes rendus de l’association international d’essais de
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semences, 5 (1935), 27. The 98 observed numbers of weed seeds, which varied from 0 to

7, are summarized in Table 3.

Table 3. Weed seed
frequency distribution.

number frequency
of seeds

0 37
1 32
2 16
3 9
4 2
5 0
6 1
7 1

total 98

Example. Vole reproduction. An investigation was conducted to study repro-

duction in laboratory colonies of voles. This example is taken from Devore and Peck,

Statistics, (1997), 33; the original reference is the article “Reproduction in laboratory

colonies of voles”, Oikos, (1983), 184. The data summarized in Table 4 are the numbers

of babies in 170 litters born to voles in a particular laboratory.

Table 4. Vole baby
frequency distribution.

number frequency
of babies

1 1
2 2
3 13
4 19
5 35
6 38
7 33
8 18
9 8
10 2
11 1

total 170

Example. Wooly–bear caterpillar cocoons. A study was conducted to investi-

gate the relationship between air temperature and the temperature inside a wooly–bear
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caterpillar cocoon. It seems quite reasonable to expect the temperature inside a cocoon

to be higher than the air temperature (outside the cocoon). The data given in Table 5

are pairs of air and cocoon temperatures made on 12 days at a location in the high arctic

region. Each cocoon temperature is actually the average of two cocoon temperatures. This

example comes from Kevan, P.C., T.S. Jensen, and J.D. Shorthouse, “Body temperatures

and behaviorial thermoregulation of high arctic wooly–bear caterpillars and pupae (Gy-

naephora rossii, Lymantridae: Lepidoptera) and the importance of sunshine”, Arctic and

Alpine Research, 14, (1982).

Table 5. Wooly–bear temperature data.

Day Cocoon Air Day Cocoon Air
temp temp temp temp

1 15.1 10.4 7 3.6 1.7
2 14.6 9.2 8 5.3 2.0
3 6.8 2.2 9 7.0 3.0
4 6.8 2.6 10 7.1 3.5
5 8.0 4.1 11 9.6 4.5
6 8.7 3.7 12 9.5 4.4

Example. Homophone confusion and Alzheimer’s disease. A study was con-

ducted to investigate the relationship between Alzheimer’s disease and homophone spelling

confusion. A homophone pair is a pair of words with the same pronunciation having dif-

ferent meanings and spellings. Twenty patients with Alzheimer’s disease were asked to

spell 24 homophone pairs (given in random order) and the number of homophone confu-

sions, e.g. spelling doe given the context bake bread dough, was recorded for each patient.

One year later, the same patients were again asked to spell the same 24 homophone pairs

and the number of homophone confusions was again recorded. The data given in Table

6 are the numbers of homophone confusions at the two times of measurement for the 20

Alzheimer’s patients. This example comes from Neils, J., D.P. Roeltgen, and F. Con-

stantinidou, “Decline in homophone spelling associated with loss of semantic influence on

spelling in Alzheimer’s disease”, Brain and Language, 49, (1995).
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Table 6. Alzheimer’s homophone confusion data.

Patient Time 1 Time 2 Patient Time 1 Time 2

1 5 5 11 7 10
2 1 3 12 0 3
3 0 0 13 3 9
4 1 1 14 5 8
5 0 1 15 7 12
6 2 1 16 10 16
7 5 6 17 5 5
8 1 2 18 6 3
9 0 9 19 9 6
10 5 8 20 11 8

Example. Gear tooth strength. The data used in this example were published

by B. Gunter, “Subversive data analysis, Part II: More graphics, including my favorite

example”, Quality Progress, Nov., 1988, 77–78. This description is adapted from Wild and

Seber, Chance Encounters, Wiley, (2000), 118. These data concern gear blanks purchased

by the Ford Motor Company. Ford engineers found that the teeth on these gears were

breaking at too low a stress. The data given below are the impact strengths (in lb–ft)

required to break a gear tooth. Each gear had 12 equally spaced teeth. The position

numbers for these teeth begin with 1 at 12 o’clock and proceed in a clockwise direction.

The tooth positions are important since they are related to the position of the tooth in

the mold used to make the gear. Teeth 1 and 7 are distinguishable; but, teeth located

symmetrically about a line drawn through positions 1 and 7 are not, since these positions

depend on which face of the gear is upward. Thus, observations for pairs of teeth in a

symmetrical position about a line through position 1 and 7 are grouped in Table 7.
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Table 7. Gear tooth strength data.

gear position

1 2 & 12 3 & 11 4 & 10 5 & 9 6 & 8 7

1976 2425 2228 2186 2228 2431 2287
1916 2000 2347 2521 2180 2250 2275
2090 2251 2251 2156 2114 2311 1946
2000 2096 2222 2216 2365 2210 2150
2323 2132 1940 2593 2299 2329 2228
1904 1964 1904 2204 2072 2263 1695
2048 1750 1820 2228 2323 2353 2000
2222 2018 2012 2198 2449 2251 2006
2048 1766 2204 2150 2300 2275 1945
2174 2144 2311 2078 1958 2006
1976 2305 2102 2150 2185 2209
2138 2042 2138 2377 2216
2455 2120 1982 2108 1934
1886 2419 2042 2257 1904
2246 2162 2030 2383 1958
2287 2251 2216 2323 1964
2030 2222 2305 2246 2066
2210 2204 2251 2222
2084 2198 2156 2066
2383 2204 2419 1964
2132 2162 2329 2150
2210 2120 2198 2114
2222 2108 2269 2125
1766 2030 2287 2210
2078 2180 2330 1588
1994 2251 2329 2234
2198 2210 2228 2210
2162 2216 2156
1874 2168 2204
2132 2210 1641
2108 2341 2263
1892 2000 2120
1671 2132 2156

Example. Immigrants to the United States. The data concerning immi-

grants admitted to the United States summarized by decade as raw frequency distribu-

tions in Table 8 were taken from the 2002 Yearbook of Immigration Statistics, USCIS,
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(www.uscis.gov). Immigrants for whom the country of last residence was unknown are

omitted.

Table 8. Region of last residence for immigrants to USA.

period

region 1931–1940 1961–1970 1991–2000

Europe 347,566 1,123,492 1,359,737
Asia 16,595 427,692 2,795,672
North America 130,871 886,891 2,441,448
Caribbean 15,502 470,213 978,787
Central America 5,861 101,330 526,915
South America 7,803 257,940 539,656
Africa 1,750 28,954 354,939
Oceania 2,483 25,122 55,845

total 528,431 3,321,634 9,052,999

Example. Cholesterol levels in Guatemalans. This example is taken from

Devore and Peck, Statistics, 3 ed., (1997), Duxbury, p. 23. The original source is “The

Blood Viscosity of Various Socioeconomic Groups in Guatemala” in The American Journal

of Clinical Nutrition, Nov., 1964, 303–307. The Institute of Nutrition of Central America

and Panama measured the serum total cholesterol levels for a group of 49 adult, low–

income rural Guatemalans and for a group of 45 adult, high–income urban Guatemalans.

The serum total cholesterol levels (in mg/dL) are provided in Table 9.

Table 9. Guatemalan cholesterol data.

Rural group cholesterol levels (in mg/dL).

95 108 108 114 115 124 129 129 131 131
135 136 136 139 140 142 142 143 143 144
144 145 146 148 152 152 155 157 158 158
162 165 166 171 172 173 174 175 180 181
189 192 194 197 204 220 223 226 231

Urban group cholesterol levels (in mg/dL).

133 134 155 170 175 179 181 184 188 189
190 196 197 199 200 200 201 201 204 205
205 205 206 214 217 222 222 227 227 228
234 234 236 239 241 242 244 249 252 273
279 284 284 284 330
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1.3 Exercises

For each of the examples in Section 1.2 define or identify the following:

1. The unit.

2. The group(s) of interest.

3. The variable(s) and the possible values of the variable(s).

4. The type of variable(s) (nominal qualitative, ordinal qualitative, discrete quantitative,

or continuous quantitative).


