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Chapter 11

Chi–square Tests

11.1 Introduction

In this chapter we will consider the use of chi–square tests (χ2–tests) to determine

whether hypothesized models are consistent with observed data. These tests are based

on the χ2–square statistic which serves as an index of discrepancy between a collection

of observed frequencies and a hypothesized collection of expected frequencies. The χ2–

statistic summarizes the differences between the values actually observed and the values we

would expect to see if the hypothesized model was correct; with a large χ2 value indicating

that the hypothesized model is not consistent with the observed data. The first step in

forming the χ2–statistic is to find the observed frequencies with which each possible value

occurs in the data and the expected frequencies with which each possible value should occur

according to the hypothesized model. For each value the difference between the observed

frequency and the expected frequency is computed, this difference is then squared and this

squared difference is divided by the corresponding expected frequency. These standardized

squared differences are then added yielding the χ2–statistic

χ2 =
∑ (observed frequency − expected frequency)2

expected frequency
,

where the sum is over all of the possible values. Large values of this χ2–statistic indicate

evidence that, at least some of, the observed frequencies do not agree with the hypothesized

expected frequencies and thus that the hypothesized model may not be correct. That is,

large values of the χ2–statistic indicate that the observed data are not consistent with the

hypothesized model.

The χ2 distributions are skewed to the right with density curves which are positive

only for positive values of the variable. Density curves for representative χ2 distributions

are provided in Figure 1. The χ2 distributions for 1 and 2 degrees of freedom have their

mode at zero; for larger degrees of freedom (d.f.) the mode of the χ2 distribution is located

at d.f. − 2. Notice that the variability in the χ2 distribution increases as the degrees of

freedom increases. For the χ2–tests discussed in this chapter a large value of the χ2–

statistic constitutes evidence against the null hypothesis and the P–values for these tests

are areas under the appropriate χ2 density curve to the right of the observed value χ2

calc

of the χ2–statistic.

The χ2–tests and associated P–values discussed in this chapter are based on large

sample approximations which require reasonably large expected frequencies. One rule of
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thumb regarding this requirement says that no more than 20% of the expected frequencies

should be less than 5 and all of the expected frequencies should be at least 1. If these

conditions are not satisfied, you can combine some categories (values of the variable) to

increase the expected frequencies which are too small.

Figure 1. Chi–square distribution density curves.
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We will consider three different applications of χ2–tests in this chapter. In Section

11.2 we will consider χ2–tests for goodness of fit. These goodness of fit tests can be viewed

as extensions of the Z–test for H0 : p = p0 versus H1 : p 6= p0 of Chapter 5 to populations

with more than two possible classifications. In Section 11.3 we will consider χ2–tests for

homogeneity. These tests of homogeneity can be viewed as extensions of the Z–test for

H0 : p1 = p2 versus H1 : p1 6= p2 of Chapter 6 to two or more populations with two or more

possible classifications. Finally in Section 11.4 we will consider χ2–tests for independence.

These tests for independence are used to examine the relationship between two or more

classification factors.

Throughout this chapter we will provide details of the computations involved in com-

puting χ2–statistics. This does not indicate that you should compute these statistics by

hand; however, if you choose to do so be sure to avoid rounding at intermediate stages.

Some calculators and most statistical programs will compute χ2–statistics, associated P–

values, and other relevant information.

11.2 Chi–square Tests for Goodness of Fit

A χ2–test for goodness of fit is used to determine whether the outcomes predicted

by a hypothesized model are consistent with observed data. The hypothesized model is

used to determine the outcomes we would expect to observe and the χ2–statistic is used

to quantify the agreement between the observed outcomes and the expected outcomes. A
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small value of the χ2–statistic indicates that the observed outcomes are in agreement with

the outcomes predicted by the hypothesized model (the data are consistent with the model)

and a large value indicates inconsistency between the observed data and the hypothesized

model.

First consider the χ2–test for goodness of fit for situations where the hypothesized

model completely specifies the probabilities for each of the possible outcomes. More for-

mally, consider a situation where the population units can be categorized into k mutually

exclusive and exhaustive classifications and where the model completely specifies the prob-

abilities, p1, p2, . . . , pk, of belonging to these k classifications. The χ2–test of goodness of

fit is used to test the null hypothesis that the k probabilities specified by the model are

correct versus the alternative hypothesis that these probabilities are not all correct. The

χ2–test is most easily presented in terms of the observed frequencies (observed counts),

f1, f2, . . . , fk, of the k classifications and the hypothetical expected frequencies (expected

counts), F1, F2, . . . , Fk, predicted by the model. Assuming that the data correspond to a

random sample of size n, we can express the expected frequencies in terms of the model

probabilities as F1 = np1, F2 = np2, . . . , Fk = npk. We will develop the χ2–test in the

context of several examples.

Example. Inheritance in peas (flower color). In Section 5.3 we described a

simple Mendelian inheritance model for the color of pea plant flowers arising from crossing

two first generation plants. This model hypothesizes that the probability that a plant

has red flowers is pR = 3/4 and the probability that a plant has white flowers is pW =

1 − pR = 1/4. Mendel observed n = 929 pea plants arising from a cross of two first

generation plants of which 705 plants had red flowers and 224 plants had white flowers.

Under the hypothesized model we would expect to see red flowers 3/4 of the time and

white flowers 1/4 of the time. Thus, for Mendel’s experiment with a total of 929 plants

we would expect to see about 696.75 plants with red flowers and about 232.25 plants with

white flowers.

We can test the consistency of this model with the data by comparing the observed

frequencies of red and white flowered plants to the corresponding expected frequencies. The

first step in this comparison is to find the differences between the observed and expected

frequencies of plants for each of the two colors. In this example we have differences of

705 − 696.75 = 8.25 (red) and 224 − 232.25 = −8.25 (white.) These differences add to

zero, since both the observed and expected frequencies add to 929. The second step is

to square each difference and standardize it by dividing by the corresponding expected

frequency. This standardization gives 68.0625/696.75 = .0977 (red) and 68.0625/232.25 =

.2931 (white.) Adding these standardized squared differences gives the χ2–statistic χ2

calc =

.0977 + .2931 = .3908. These computations are summarized in Table 1.
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Table 1. Pea plant flower color example.

flower observed expected
color frequency frequency obs− exp (obs− exp)2/exp

red 705 696.75 8.25 .0977
white 224 232.25 -8.25 .2931

total 929 929 χ2

calc = .3908

A large value of the χ2–statistic indicates evidence against the null hypothesis that the

model is valid H0 : pR = 3/4 and pW = 1/4 and in favor of the alternative hypothesis that

the model is not valid H1 : it is not true that pR = 3/4 and pW = 1/4. We can determine

whether χ2

calc = .3908 is large by computing the relevant P–value. The P–value for this

χ2–test is the probability of observing a value of χ2 as large or larger than the calculated

value χ2

calc = .3908 computed using the appropriate χ2 distribution. In a situation like

the present example, where there are k categories or classifications and the model com-

pletely specifies the k corresponding probabilities, the appropriate χ2 distribution is the

χ2 distribution with k − 1 degrees of freedom. In this example there are k = 2 possible

classifications (red or white) and the model completely specifies the two corresponding

probabilities (pR = 3/4 and pW = 1/4), so the χ2 distribution with k − 1 = 1 degree of

freedom is used to compute the P–value. With χ2

calc = .3908 and one degree of freedom we

get the P–value P (χ2 ≥ .3908) = .5310. This P–value is quite large and we are not able

to reject the null hypothesis; therefore, we conclude that the observed data are consistent

with Mendel’s model.

In this example there are k = 2 classifications and pW = 1− pR, thus the hypotheses

specified in terms of pR and pW above can be written more simply as H0 : pR = 3/4 and

H1 : pR 6= 3/4. In section 5.3 we used the normal approximation to perform a Z–test for

these hypotheses. The χ2–test presented above is actually equivalent to this Z–test. To

see this equivalence consider the Z–test for H0 : p = p0 versus H1 : p 6= p0; for this test we

have

Z2 =
(p̂− p0)

2

p0(1− p0)/n
=

(np̂− np0)
2

np0(1− p0)

= [(1− p0) + p0]
(np̂− np0)

2

np0(1− p0)

=
(np̂− np0)

2

np0

+
(n[1− p̂]− n[1− p0])

2

n(1− p0)
= χ2;

and a value of Z which is far away from zero corresponds to a large value of Z2 = χ2.

Furthermore, it can be shown that the square of a standard normal variable follows the χ2

distribution with one degree of freedom; and thus these two approaches are equivalent.
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The χ2–test is of more interest when there are three or more classifications, since

there is no Z–test in these cases. The χ2–test for an example with k = 4 classifications is

developed below.

Example. Inheritance in peas (seed shape and color). We will now consider the

Mendelian inheritance model for two independently inherited characteristics. In particular

we will consider the characteristics seed shape, with possible shapes of round (R, dominant)

and wrinkled (r, recessive), and seed color, with possible colors of yellow (Y , dominant)

and green (y, recessive). If a RRY Y genotype plant with round yellow seeds is crossed

with a rryy genotype plant with wrinkled green seeds, the offspring will all have round

yellow seeds and genotype RrY y. If two of the resulting RrY y genotype plants with round

yellow seeds are crossed, there are 16 equally likely possible genotypes. The nine genotypes

RRY Y,RRY y,RRyY,RrY Y,RrY y,RryY, rRY Y, rRY y, rRyY yield round yellow seeds;

the three genotypes rrY Y, rrY y, rryY yield wrinkled yellow seeds; the three genotypes

RRyy,Rryy, rRyy yield round green seeds; and, the single genotype rryy yields wrinkled

green seeds. The facts that these 16 possible genotypes are equally likely and each plant

possesses only one genotype yield the probability distribution summarized in Table 2.

Table 2. Pea plant seed shape/color distribution.

shape/color probability

round yellow 9/16
wrinkled yellow 3/16

round green 3/16
wrinkled green 1/16

The results of one of Mendel’s experiments regarding seed shape and color, with

n = 556 plants, are summarized in Table 3. Table 3 also contains the expected frequencies,

computed using the distribution of Table 2, and the computations leading to the χ2 statis-

tic. In this example there are k = 4 classifications and the P–value P (χ2 ≥ .4700) = .9254

Table 3. Pea plant seed shape and color example.

observed expected
shape/color frequency frequency obs− exp (obs− exp)2/exp

round yellow 315 312.75 2.25 .0162
wrinkled yellow 101 104.25 -3.25 .1013

round green 108 104.25 3.75 .1349
wrinkled green 32 34.75 -2.75 .2176

total 556 556 χ2

calc = .4700
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for the χ2–test is computed using the χ2 distribution with k−1 = 3 degrees of freedom. In

this example, the P–value is quite large and we are not able to reject the null hypothesis;

therefore, we conclude that the observed data are consistent with Mendel’s model.

In both of the preceding examples the data are consistent with the hypothesized

model. The following example, which is also concerned with a Mendelian inheritance

model, illustrates a situation where the data are not consistent with the model.

Example. Inheritance in maize (leaf characteristics). This example is taken

from Snedecor and Cochran (1980), the original source is Lindstrom (1918) Cornell Agr.

Exp. Sta. mem. 13. Lindstrom crossed two types of maize (corn) plants and classified the

resulting plants into four categories based on the appearance of the leaves. The Mendelian

model for this example is analogous to the model of the pea plant seed shape and color

example with respective probabilities of 9/16, 3/16, 3/16, and 1/16. Thus the model pre-

dicts that the four leaf types should occur in a ratio of 9 : 3 : 3 : 1. The data and the

computations are summarized in Table 4.

Table 4. Maize leaf type example.

observed expected
leaf type frequency frequency obs− exp (obs− exp)2/exp

green 773 731.813 41.1875 2.3181
golden 231 243.938 -12.9375 0.6862

green–striped 238 243.938 -5.9375 0.1445
green–golden–striped 59 81.313 -22.3125 6.1226

total 1301 1301 χ2

calc = 9.2714

In this example χ2

calc = 9.2714 is large indicating disagreement between the model

and the data. The P–value .0259, computed using the χ2 distribution with 3 degrees of

freedom, is small enough to allow us to conclude that Lindstrom’s data are not consistent

with the Mendelian model which predicts frequencies in the ratio of 9 : 3 : 3 : 1.

Examination of the four terms we added to get χ2

calc indicates that the green–golden–

striped term 6.1226 is large relative to the other terms. Thus the evidence against the

model seems to be due to the fact that the observed frequency of green–golden–striped

plants 59 is much smaller than the expected frequency 81.313. Lindstrom argued that this

discrepancy could be explained by “the weakened condition of the last three classes due

to their chlorophyll abnormality”. In particular, he noted that the plants in the green–

golden–striped class were not very vigorous (did not grow well). This suggests that the

evidence against the model may be due to the fact that some of the green–golden–striped

plants did not survive long enough to be counted. Therefore, we might wonder whether
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our rejection of the 9 : 3 : 3 : 1 model can be attributed to the poor survivorship of the

green–golden–striped plants. We will now perform an exploratory analysis to address this

question.

First consider the 1242 plants in the first three classifications. According to the

model the frequencies for these three classifications should be in the ratio 9 : 3 : 3. The

computations for a χ2 test for this subset of the original data are demonstrated in Table

5. For this subset of the original data we have χ2

calc = 2.6914 with 3 − 1 = 2 degrees of

freedom which gives a P–value of .2604. Therefore, there is evidence that the frequencies

in the first three classes are consistent with the predicted ratio of 9 : 3 : 3.

Table 5. Maize leaf type example, 9:3:3 model.

observed expected
leaf type frequency frequency obs− exp (obs− exp)2/exp

green 773 745.2 27.8 1.0371
golden 231 248.4 -17.4 1.2188

green–striped 238 248.4 -10.4 0.4354

total 1242 1242 χ2

calc = 2.6914

This test and the fact that the observed frequency of green–golden–striped plants is

much smaller than expected suggest that the reason that the original data do not agree

with the model may be poor survivorship of the green–golden–striped plants, since the

data for the other classes do agree with the model.

In some situations, like the two examples which follow, the hypothesized model does

not completely specify the probabilities for the k possible outcomes and it is necessary to

estimate these probabilities before performing the χ2 goodness of fit test.

Example. Radioactive disintegrations. This example is taken from Feller (1957),

p. 149 and Cramér (1946) p. 436. In a famous experiment by Rutherford, Chadwick, and

Ellis (Radiations from Radioactive Substances, Cambridge, 1920) a radioactive substance

was observed during 2608 consecutive time intervals of length 7.5 seconds each. The

number of particles reaching a counter was recorded for each period giving the results

summarized in Table 6.

The Poisson distribution, as discussed in Chapter 4a, provides a plausible model for

the number of particles, X, observed in this experiment. Therefore, we will perform a χ2

goodness of fit test to see whether a Poisson distribution is suitable as a model for the

distribution of the observed number of particles in this experiment. The Poisson model

places no upper bound on the number of particles which could be observed; so, for this
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test, we will use “10 or more particles” as the largest possible “value” of the variable. The

Poisson distribution with parameter λ specifies probabilities of the form

P (X = x) =
λx

x!
e−λ

for x = 0, 1, 2, . . . Notice that this probability function does not completely specify the

Table 6. Radioactive disintegrations data.

observed
number frequency

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27
10 10
11 4
12 2

total 2608

probabilities of the possible values of X, since there is an unknown parameter λ in the

formula. Therefore, to perform the χ2–test we first need to use the data to estimate λ.

Since λ is the mean of the Poisson distribution, we can use the sample mean 3.8704 as

an estimate of λ and use the formula from above to determine the expected frequencies.

Thus, for x = 0, 1, . . . , 9, we compute the expected frequencies using the formula

2608

(

3.8704x

x!
e−3.8704

)

and we subtract the sum of these expected frequencies from 2608 to find the expected

frequency for X ≥ 10. The observed and expected frequencies and the terms used to

calculate the χ2–statistic are summarized in Table 7. Because we estimated the parameter

λ of the hypothesized Poisson distribution we need to reduce the degrees of freedom for

the χ2–test by one. For this example we have χ2

calc = 12.8815 with k − 2 = 9 degrees of

freedom which gives a P–value of .1680. Since this P–value is not small we can conclude

that a Poisson model with λ = 3.8704 provides a reasonable model for the number of

radioactive disintegrations observed in this experiment.
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Table 7. Radioactive disintegrations.

observed expected
number frequency frequency obs− exp (obs− exp)2/exp

0 57 54.3769 2.6231 0.1265
1 203 210.4604 -7.4604 0.2645
2 383 407.2829 -24.2829 1.4478
3 525 525.4491 -.4491 0.0004
4 532 508.4244 23.5756 1.0932
5 408 393.5610 14.4390 0.5297
6 273 253.8730 19.1270 1.4410
7 139 140.3700 -1.3700 0.0134
8 45 67.9110 -22.9110 7.7294
9 27 29.2047 -2.2047 0.1664

≥ 10 16 17.0865 -1.0865 0.0691

total 2608 2608 χ2

calc = 12.8815

Example. Bacteria counts. This example is taken from Feller (1957), p.153. The

original source is T. Matuszewsky, J. Supinska, and J. Neyman (1936), Zentralblatt für

Bakteriologie, Parasitenkunde und Infektionskrankrankheiten, II Abt., 95.

Table 8. Bacteria counts data.

observed
number frequency

0 5
1 19
2 26
3 26
4 21
5 13
6 8

total 118

A Petri dish with bacteria colonies was examined under a microscope. The dish was

divided into small squares and the number of bacteria colonies, visible as dark spots,

was recorded for each square. The data are given in Table 8. If the bacteria colonies

were randomly distributed over the Petri dish, without being clustered together, then the

Poisson model should hold. The sample mean number of bacteria colonies is 2.9322 and,

as in the preceding example, we can use this sample mean to estimate the parameter λ of

the Poisson model.
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Table 9. Bacteria counts.

observed expected
number frequency frequency obs− exp (obs− exp)2/exp

0 5 6.2870 -1.2870 .2635
1 19 18.4347 .5653 .0173
2 26 27.0272 -1.0272 .0390
3 26 26.4164 -.4164 .0066
4 21 19.3645 1.6354 .1381
5 13 11.3562 1.6438 .2380
≥ 6 8 9.1140 -1.1141 .1362

total 118 118 χ2

calc = .8386

The observed and expected frequencies and the terms used to calculate the χ2–statistic

are summarized in Table 9. Again, since we estimated the parameter λ of the hypothesized

Poisson distribution, we need to reduce the degrees of freedom for the χ2–test by one. For

this example we have χ2

calc = .8386 with k − 2 = 5 degrees of freedom which gives a P–

value of .9745. Since this P–value is very large, we can conclude that a Poisson model with

λ = 2.9322 provides a reasonable model for the number of bacteria colonies as observed in

this experiment. This indicates that the conjecture that the bacteria colonies are randomly

distributed over the Petri dish, without being clustered together, is consistent with the

observations.

11.3 Chi–square Tests for Homogeneity

We will now consider χ2–tests for the homogeneity of two or more population dis-

tributions. These tests can be viewed as generalizations of the Z–test of equality of two

population proportions of Section 6.2 to allow for more than two populations or more than

two possible classifications.

A probability distribution for a qualitative variable with k possible values corre-

sponding to k mutually exclusive classifications can be represented by a collection p =

(p1, p2, . . . , pk) of k probabilities which sum to one. Givenm such probability distributions,

we have m collections of probabilities p1 = (p11, p12, . . . , p1k), p2 = (p21, p22, . . . , p2k), . . .,

and pm = (pm1, pm2, . . . , pmk) as shown in Table 10. The null hypothesis of homogeneity

of these m distributions, H0 : p1 = p2 = · · · = pm, specifies that the probability of ob-

serving a unit in a particular classification is the same for all m of the populations, i.e.,

for each classification j = 1, 2, . . . , k, we have p1j = p2j = · · · = pmj .
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Table 10. Notation for m populations and k classifications.

classification probabilities

population 1 2 . . . k sum

1 p11 p12 . . . p1k 1
2 p21 p22 . . . p2k 1
. . . . . .
. . . . . .
. . . . . .
m pm1 pm2 . . . pmk 1

Suppose that m independent random samples of sizes n1, n2, . . . , and nm are obtained

from these m population distributions and let fij denote the observed frequency of units

in classification j for the sample from population i as shown in Table 11. Under the

null hypothesis we would expect the m collections of k observed frequencies in each row

(sample) of Table 11 to be the same (no difference from row to row).

We can use the combined observed frequencies F1, F2, . . . , Fk in the last line of Table

11, obtained by adding the corresponding frequencies in the respective columns, and the

combined sample size n = n1 + n2 + · · · + nm to form estimates of the frequencies we

would expect to observe under the null hypothesis of homogeneity. We first compute the

estimates p̂1 = F1/n, p̂2 = F2/n, . . . , and p̂k = Fk/n of the assumed common classification

probabilities p1, p2, . . . , and pk and then we multiply this collection of p̂′s by the respective

sample sizes to get the expected frequencies for each population (row of the table). The

P–value for the resulting χ2–statistic, which is based on the m× k observed and expected

frequencies, is obtained from the χ2 distribution with (m− 1)(k − 1) degrees of freedom.

Table 11. Data for m populations and k classifications.

population observed frequencies sample
1 2 . . . k size

1 f11 f12 . . . f1k n1

2 f21 f22 . . . f2k n2

. . . . . .

. . . . . .

. . . . . .
m fm1 fm2 . . . fmk nm

combined F1 F2 . . . Fk n

We will first apply this χ2–test of homogeneity to an example withm = 2 dichotomous

(k = 2) populations.
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Example. Cocaine addiction. This example is based on a study of D.M. Barnes

(1988), Science, 241, 1029–1030, as described in Moore (1995). This study was conducted

to compare two antidepressants as treatments for cocaine addiction. In particular, the

researchers wanted to compare the effects of the antidepressant desipramine with the effects

of lithium (a standard treatment for cocaine addiction.) A group of 48 chronic cocaine

users was randomly divided into two groups of 24. One group was treated with desipramine

and the other was treated with lithium. The subjects were tracked for three years and the

number of subjects who relapsed into cocaine use during this period was recorded. The

data are summarized as observed frequencies in Table 12.

Table 12. Cocaine example: observed and expect frequencies.

observed frequency expected frequency

relapsed relapsed
treatment yes no total treatment yes no total

desipramine 10 14 24 desipramine 14 10 24
lithium 18 6 24 lithium 14 10 24

combined 28 20 48

For this example we can view the data as independent random samples of size 24

from dichotomous populations with population success probabilities pD and pL, where pD

is the probability that one of these 48 cocaine users would relapse into cocaine use if all

48 users were treated with desipramine and pL is the analogous probability assuming that

all 48 users were treated with lithium. We can use a χ2–test to test the null hypothesis

H0 : pD = pL that the probability of relapse is the same for both treatments versus the

alternative hypothesis H1 : pD 6= pL of different probabilities of relapse. Under the null

hypothesis we would expect to observe the same relapse proportions under each treatment;

furthermore, since 28 of the 48 users suffered a relapse we can use the combined sample

relapse proportion p̂ = 28/48 as our estimate of the common relapse probability we would

expect to observe under the null hypothesis. The expected frequencies in Table 12 were

computed using this p̂ as the estimated common relapse probability and the sample sizes,

which are both 24. The differences between the observed and expected frequencies and

the four components of the χ2–statistic are given in Table 13.

The P–value for χ2

calc = 192/35 = 5.487, computed using the χ2 distribution with

(2−1)(2−1) = 1 degrees of freedom, is P (χ2 ≥ 5.487) = 0.0192. This small P–value allows

us to reject the null hypothesis of homogeneity and conclude that pD 6= pL indicating that

the probability of relapse is not the same when a user is treated with desipramine as when

the user is treated with lithium. Since this example involves two dichotomous populations,

we could have used the Z–test of Section 6.2, which is equivalent to the χ2 test from above
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in this situation, to perform this test. More importantly, since we have two dichotomous

populations, we can use the Z–interval of Section 6.1 to quantify the size and direction of

the difference between pD and pL. The sample success proportions are p̂D = .4167 and

p̂L = .75 and the 95% confidence interval for pL− pD is (.0708, .5959). Hence, we are 95%

confident that treating one of these 48 cocaine users with desipramine instead of lithium

would reduce the probability of relapse by at least .0708 and as much as .5959.

Table 13. Cocaine example: chi–square computations.

obs - exp (obs - exp)2/ exp

relapsed relapsed
treatment yes no treatment yes no

desipramine -4 4 desipramine 16/14 16/10
lithium 4 -4 lithium 16/14 16/10

χ2

calc = 192/35 = 5.487

The next example with m = 3 populations and k = 3 categories will be used to

demonstrate the extension of the χ2–test of homogeneity to situations with three or more

populations and three or more categories.

Example. Attitudes of School Children. This example is based on a study

described by Chase and Dummer (1992), Research Quarterly for Exercise and Sport, 63,

418–424, as described in DeGroot and Schervish (2002). This study was conducted to

examine the attitudes of school–aged children in Michigan. Three independent random

samples of children were obtained. A sample of 149 children from rural areas, a sample of

151 children from suburban areas, and a sample of 178 children from urban areas. Each

child was asked which of the following was most important to them: good grades, athletic

ability, or popularity. The observed frequencies are given in Table 14 and the expected

frequencies, based on the combined probability estimates 247/478 = .5167, 90/478 = .1883,

and 141/478 = .2950 and the sample sizes 149, 151, and 178 are given in Table 15.

Table 14. Attitude example: observed frequencies.

sample good athletic sample
grades ability popularity size

rural 57 42 50 149
suburban 87 22 42 151

urban 103 26 49 178

combined 247 90 141 478
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Table 15. Attitude example: expected frequencies.

sample good athletic sample
grades ability popularity size

rural 76.9937 28.0544 43.9519 149
suburban 78.0272 28.4310 44.5418 151

urban 91.9791 33.5146 52.5063 178

The differences between the observed and expected frequencies and the nine compo-

nents of the χ2–statistic are given in Table 16. The P–value for χ2

calc = 18.8276, computed

using the χ2 distribution with (3− 1)(3− 1) = 4 degrees of freedom, is P (χ2 ≥ 18.8276) =

0.0008. This very small P–value indicates very strong evidence that the attitude distri-

butions (the three probabilities for the three choices given to these children) are not the

same for the three areas.

Table 16. Attitude example: chi–square computations.

obs - exp (obs - exp)2/exp

sample good athletic good athletic
grades ability popularity grades ability popularity

rural -19.9937 13.9456 6.0481 5.19197 6.93225 0.83227
suburban 8.9728 -6.4310 -2.5418 1.03184 1.45466 0.14505

urban 11.0209 -7.5146 -3.5063 1.32053 1.68493 0.23414

The two largest (obs - exp)2/exp terms, 5.19197 for the rural–good grades category

and 6.93225 for the rural–athletic ability category, are much larger than the other terms.

This fact and the observed relative frequencies given in Table 17 suggest that the attitude

distributions might be the same for the suburban and urban children but different for the

rural children.

Table 17. Attitude example: observed relative frequencies.

sample good athletic
grades ability popularity

rural .3826 .2819 .3356
suburban .5762 .1457 .2781

urban .5787 .1461 .2753

The χ2–statistic based on the data for suburban and urban children only is χ2

calc =

.0034 with (2−1)(3−1) = 2 degrees of freedom, which gives a P–value of .9983 and supports

the contention that the attitude distribution is the same for the suburban children as it is

for the urban children. Furthermore, if we combine the suburban sample and the urban
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sample to form a nonrural sample of size 329, the χ2–statistic for comparing the rural and

nonrural samples is χ2

calc = 18.8243 with (2 − 1)(3 − 1) = 2 degrees of freedom and the

P–value is less than .0001, confirming our conjecture that the attitude distribution for the

rural children is not the same as that for the nonrural children.

11.4 Chi–square Tests for Independence

A χ2–test for independence is used to determine whether two or more qualitative

classification factors are independent. In this section we will restrict our attention to

crossed classifications of units with respect to two qualitative classification factors. Two

classification factors, A and B, are said to be independent, if the conditional probabilities

for the levels of factor A (respectively, factor B), obtained by fixing the level of factor

B (factor A), are the same regardless of the level at which factor B (factor A) is fixed.

To avoid complex notation we will describe independence and develop the χ2–test for

independence in the context of the following example.

Example. Hawaiian blood types. This example uses data from A.E. Mourant, et

al., The Distribution of Blood Groups and Other Polymorphisms, Oxford University Press,

London, 1976. The Blood Bank of Hawaii cross classified 145,057 individuals according

to their blood type (A, AB, B, O) and their ethnic group (Hawaiian, Hawaiian–Chinese,

Hawaiian–White, White). The frequencies for each of the 16 combinations of the 4 levels

of these two qualitative classification factors are given in Table 18.

Table 18. Blood type and ethnic group observed frequencies.

ethnic group

blood Hawaiian Hawaiian– Hawaiian– White
type Chinese White total

A 2490 2368 4671 50008 59537
AB 99 243 236 5001 5579
B 178 568 606 16252 17604
O 1903 2206 4469 53759 62337

total 4670 5385 9982 125020 145057

The question we want to consider here is whether the distribution of blood types is

independent of the distribution of the ethnic groups. If the distribution of blood types is

the same for each of the four ethnic groups, then classification with respect to blood type

is independent of classification with respect to ethnic group. Furthermore, independence

of two factors is symmetric so that if the distribution of blood types is independent of the
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distribution of ethnic groups, then it also follows that the distribution of ethnic groups is

independent of the distribution of blood types.

Under the hypothesis of independence the theoretical conditional distributions of

blood type are the same for each ethnic group. The conditional distributions of blood

type for each ethnic group summarized in Figure 2 show some evidence that the distribu-

tions of blood type are not the same for these ethnic groups indicating dependence between

classification with respect to blood type and classification with respect to ethnic group.

Figure 2. Conditional distributions of blood type by ethnic group.

Hawaiian

A 53.32%

AB 2.12%

B 3.81%

O 40.75%

Hawaiian–Chinese

A 43.97%

AB 4.51%

B 10.55%

O 40.97%

Hawaiian–White

A 46.79%

AB 2.36%

B 6.07%

O 44.77%

White

A 40.00%

AB 4.00%

B 13.00%

O 43.00%

We can compute the expected frequencies for this example the same way we did for

the χ2–tests of homogeneity in Section 11.3. The deviations between the observed and

expected frequencies and the 16 terms which are summed to give the χ2–statistic are

given in Table 19. In this example several of the χ2 terms are large indicating where the

hypothesis of independence is not supported by these data. The χ2–statistic for testing the
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independence of blood type and ethnic group is χ2

calc = 1078.6036 with (4− 1)(4− 1) = 9

degrees of freedom and the P–value is less than .0001. Therefore, there is very strong

evidence against the null hypothesis of independence. We can conclude that the data

collected by the Blood Bank of Hawaii are clearly inconsistent with the hypothesis of

independence and that the distribution of blood types is not the same for these four ethnic

groups.

Table 19. Hawaiian blood type example chi–square information.

The first number is the deviation (obs - exp) and the number in
parentheses is the χ2 term (obs - exp)2/exp.

ethnic group

blood Hawaiian Hawaiian– Hawaiian– White
type Chinese White

A 573.25 157.79 574 -1305
(171.45) (11.265) (80.419) (33.191)

AB -80.61 35.889 -147.9 192.64
(36.179) (6.2189) (56.989) (7.7177)

B -388.7 -85.52 -605.4 1079.7
(266.65) (11.191) (302.56) (76.83)

O -103.9 -108.2 179.32 32.729
(5.3783) (5.055) (7.4962) (.0199)
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