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Chapter 12

Comparing Two or More Means

12.1 Introduction

In Chapter 8 we considered methods for making inferences about the relationship

between two population distributions based on the relationship between the means of

these distributions. In many situations interest centers on the relationship among more

than two population distributions. Therefore, in this chapter we consider methods of

inference for comparing two or more population distributions based on the relationships

among the corresponding population means.

We will restrict our attention to situations where the population distributions (density

curves) of k ≥ 2 continuous variables, Y1, Y2, . . . , and Yk, are identical except for their lo-

cations on the number line. This generalizes the shift assumption of the two population

problem to the k ≥ 2 population problem. Under this shift assumption inferences for com-

paring the k population distributions reduce to inferences for comparing the k population

means. As in the two population case, when the shift assumption is not valid we must be

careful about how we interpret an inference about the relationships among the population

means.

We will restrict our attention to methods which are appropriate when the data com-

prise k independent random samples: a random sample of size n1 from a population with

population mean µ1 (the Y1 sample); a random sample of size n2 from a population with

population mean µ2 (the Y2 sample); . . . , and a random sample of size nk from a population

with population mean µk (the Yk sample). The assumption that these random samples

are independent basically means that the method used to select the random sample from

a particular population is not influenced by the method used to select the random sample

from any other population.

We will use the following small example to clarify the definitions and computations

introduced in this chapter. You should use a suitable calculator or computer program to

perform these computations.

Example. Potato leafhopper survival. D. L. Dahlman (M.S. thesis, Iowa State

University, 1963) studied the survival and behavioral responses of the potato leafhopper

Empoasca Fabae (Harris) on synthetic media. The data given in Table 1 are survival times

(in days) defined as the number of days until 50% of the insects in a cage were dead. This

study was conducted using a completely randomized experiment design with two cages

(units) assigned to each of four treatment groups (n1 = n2 = n3 = n4 = 2). That is,

the 8 cages were randomly assigned to the 4 treatments so that there were two cages in

each treatment group. The treatments consisted of four modifications of the basic 2%
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agar synthetic feeding medium. The treatments were a control (2% agar), 2% agar plus

fructose, 2% agar plus glucose, and 2% agar plus sucrose, respectively.

Table 1. Potato Leafhopper Data.

treatment survival time

control 2.3
control 1.7
fructose 2.1
fructose 2.3
glucose 3.0
glucose 2.8
sucrose 3.6
sucrose 4.0

We can define the four population means by imagining what would have happened if all

of the eight cages were assigned to a particular treatment group. For example, we can

define the control population mean µ1 = µC as the mean survival time we would have

observed if all 8 cages had been assigned to the control group; we can define the fructose

population mean µ2 = µF as the mean survival time we would have observed if all 8 cages

had been assigned to the fructose group; and so on. The notation we will use in the sequel

is summarized in Table 2.

Table 2. Potato Leafhopper Population Means.

treatment: control fructose glucose sucrose
population mean: µC µF µG µS

12.2 Comparing the means of k normal populations

In this section we consider inferences about the relationships among k normal means.

First we discuss the analysis of variance (ANOVA) and the overall F–test; then we con-

sider the sequential use of F–tests for comparing nested models; and finally we discuss

simultaneous confidence interval estimates for linear combinations of means.

12.2a Assumptions, notation, and the overall F–test

In order to develop inferential methods we need to make an assumption about the

form of the population distributions of the Y ′s. We will assume that the k population

distributions are normal distributions with a common population variance σ2 (common

population standard deviation σ). Thus, the population distribution of Y1 is a normal
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distribution with population mean µ1 and population variance σ2; the population distri-

bution of Y2 is a normal distribution with population mean µ2 and population variance

σ2; . . ., and the population distribution of Yk is a normal distribution with population

mean µk and population variance σ2. As stated in the introduction, we will assume that

the data comprise k independent random samples. Notice that we are assuming that the

k population variances are equal which, together with the normality assumption, implies

that the shift assumption is valid.

First consider the question of whether the k means µ1, . . . , µk are all equal. We

can address this question by performing a hypothesis test for the null hypothesis H0 :

µ1 = · · · = µk versus the alternative hypothesis that at least two of the k means are

different (H1 : it is not true that µ1 = · · · = µk). Notice that this alternative hypothesis

specifies that the k means are not all equal, it does not specify how the means differ and,

in particular, it does not specify that there are k distinct means. We will motivate the

method used to perform this hypothesis test about the k means as a comparison of two

estimators of the common population variance σ2.

To make the notation clear we will need to use double subscripts on the observations.

As indicated in Table 3, we will let Yij denote the jth observation in the ith group (ith

sample), for i = 1, 2, . . . , k and j = 1, 2, . . . , ni, and we will let Y i denote the sample mean

for the ith group.

Table 3. Notation for the k group (sample) problem.

group data sample mean population mean

group 1 Y11, Y12, . . . , Y1n1
Y 1 µ1

group 2 Y21, Y22, . . . , Y2n2
Y 2 µ2

. . . .

. . . .

. . . .
group k Yk1, Yk2, . . . , Yknk

Y k µk

The pooled estimator S2
p of the common variance σ2 for the model with k population

means µ1, . . . , µk is the natural extension of the pooled variance estimator of the two sample

case to k samples. That is, S2
p is the sum of the squared deviations of the observations

from their respective group sample means divided by the appropriate degrees of freedom

which is n − k = (n1 − 1) + · · · + (nk − 1), where n = n1 + · · · + nk is the total number

of observations. The numerator of S2
p , denoted by SS(within the k groups), is the sum of
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squares within the k groups (the sum of squared deviations of the observations within each

group from their respective group sample mean). In symbols we have

S2
p =

SS(within the k groups)

n− k
, with

SS(within the k groups) =
k∑

i=1

ni∑

j=1

(
Yij − Y i

)2

=

n1∑

j=1

(
Y1j − Y 1

)2
+ · · ·+

nk∑

j=1

(
Ykj − Y k

)2
.

The pooled variance estimator S2
p is a valid (unbiased) estimator of the common

variance σ2 when the k group means µ1, . . . , µk are distinct and also when some or all of

the means are equal. The computations for finding S2
p described above are illustrated for

the potato leafhopper data in Table 4.

Table 4. Potato leafhopper deviations from treatment means.

treatment observation treatment deviation squared deviation
mean from mean from mean

control 2.3 2.0 .3 .09
control 1.7 2.0 -.3 .09
fructose 2.1 2.2 -.1 .01
fructose 2.3 2.2 .1 .01
glucose 3.0 2.9 .1 .01
glucose 2.8 2.9 -.1 .01
sucrose 3.6 3.8 -.2 .04
sucrose 4.0 3.8 .2 .04

sum of squared deviations = .3
S2

p = .3/4 = .075

Under the null hypothesis H0 : µ1 = · · · = µk we can view the k random samples

as constituting one random sample of size n = n1 + · · · + nk from a normal population

with population variance σ2. Therefore, when H0 is true we can estimate the common

variance σ2 using the squared deviations of the observations from the overall sample mean

Y (Y is the average of all n observations and in terms of the k sample means, Y 1, . . . , Y k,

Y = (n1Y 1+· · ·+nkY k)/n). The variance estimator S2
0 is the sum of the squared deviations

of the observations from the overall sample mean divided by the appropriate degrees of

freedom which is n − 1. The numerator of S2
0 , denoted by SS(about the overall mean),
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is the sum of squares about the overall mean (the sum of the squared deviations of the

observations from the overall sample mean). In symbols we have

S2
0 =

SS(about the overall mean)

n− 1
, with

SS(about the overall mean) =
k∑

i=1

ni∑

j=1

(
Yij − Y

)2
,

and we see that S2
0 is simply the usual one sample estimator of the variance computed

ignoring the existence of the k groups.

The variance estimator S2
0 is a valid (unbiased) estimator of the common variance σ2

if, and only if, the null hypothesis H0 : µ1 = · · · = µk is true. If H0 : µ1 = · · · = µk is not

true, then S2
0 is positively biased as an estimator of the common variance σ2, i.e., if H0 is

not true, then S2
0 tends to systematically overestimate σ2. The computations for finding

S2
0 described above are illustrated for the potato leafhopper data in the Table 5.

Table 5. Potato leafhopper deviations from overall mean.

treatment observation overall deviation squared deviation
mean from mean from mean

control 2.3 2.725 -.425 .180625
control 1.7 2.725 -1.025 1.050625
fructose 2.1 2.725 -.625 .390625
fructose 2.3 2.725 -.425 .180625
glucose 3.0 2.725 .275 .075625
glucose 2.8 2.725 .075 .005625
sucrose 3.6 2.725 .875 .765625
sucrose 4.0 2.725 1.275 1.625625

sum of squared deviations = 4.275
S2

0 = 4.275/7 = .6107

We have defined two estimators S2
p and S2

0 of the common variance σ2. Both of these

estimators are unbiased estimators of σ2 when H0 : µ1 = · · · = µk is true. The estimator

S2
p is unbiased as an estimator of σ2 even when H0 is not true; but, S2

0 is positively biased

as an estimator of σ2 when H0 is not true. Therefore, we can view an observed value of

S2
0 which is sufficiently large relative to the observed value of S2

p as evidence against the

null hypothesis H0 : µ1 = · · · = µk.

Before we discuss a method for determining whether the observed value of S2
0 is large

relative to S2
p we consider a decomposition of the deviation of an observation from the

overall mean and a corresponding decomposition of the sum of squares about the overall

mean.
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The deviation of an observation Yij from the overall mean Y can be expressed as the

sum of the deviation of the observation from its group mean Y i and the deviation of its

group mean from the overall mean, i.e.,

Yij − Y =
(
Yij − Y i

)
+
(
Y i − Y

)
.

Furthermore, it can be shown that, there is a corresponding decomposition of the sum of

squares about the overall mean as the sum of the sum of squares within the k groups plus

the sum of squares among the k groups, i.e.,

SS(about the overall mean) = SS(within the k groups) + SS(among the k groups),

where

SS(among the k groups) =

k∑

i=1

ni∑

j=1

(
Y i − Y

)2
=

k∑

i=1

ni

(
Y i − Y

)2
.

This decomposition is often summarized in a tabular form known as an analysis of variance

table or ANOVA table as shown in Table 6.

Table 6. A basic ANOVA table.

source of degrees of sum of
variation freedom squares

among groups k − 1 SS(among the k groups)
within groups n− k SS(within the k groups)

total n− 1 SS(about the overall mean)

Notice that the ANOVA table also indicates the corresponding decomposition of the

total degrees of freedom, n−1, into the sum of the degrees of freedom among the k groups,

k−1, and the degrees of freedom within the k groups, n−k. You can think of these degrees

of freedom as indicating the “amount of information” contained in the corresponding sums

of squares. If we use the degrees of freedom to normalize the sum of squares, by dividing

the sum of squares by its degrees of freedom, the resulting “average” is known as a mean

square, denoted by MS.

From the ANOVA decomposition of the sum of squares about the overall mean we

can identify the sum of squares among the k groups, SS(among the k groups), as the term

which causes S2
0 to be positively biased as an estimator of σ2. Therefore we can determine

whether S2
0 is large relative to S2

p by determining whether SS(among the k groups) is large
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relative to SS(within the k groups). We will base this determination on the ratio of the

mean squares corresponding to these sums of squares. The relevant ratio is the F–statistic

Fcalc =
MS(among the k groups)

MS(within the k groups)

=
SS(among the k groups)/(k − 1)

SS(within the k groups)/(n− k)
.

When the null hypothesis H0 : µ1 = · · · = µk is true this F–statistic follows the F

distribution with numerator degrees of freedom k− 1 and denominator degrees of freedom

n−k. Sufficiently large values of Fcalc constitute evidence against H0 : µ1 = · · · = µk. The

P–value for this hypothesis test is the probability of observing a value of the F–statistic

as large or larger than the calculated value Fcalc, i.e., the P–value is

P–value = P (F ≥ Fcalc),

where F denotes a variable which follows the F distribution with k − 1 and n− k degrees

of freedom. (The F distributions are skewed to the right with density curves which are

positive only for positive values of the variable.)

The ANOVA for the potato leafhopper example (including mean squares) is given

in Table 7. In this example the calculated F–statistic is Fcalc = 1.325/.075 = 17.6667

and the P–value (computed using the F distribution with 3 and 4 degrees of freedom) is

P (F ≥ 17.6667) = .0090. Since the P–value .0090 is very small, we conclude that there is

very strong evidence that diet does have an effect on the survival time of potato leafhoppers

in the sense that at least two of the four treatment mean survival times are different.

Table 7. Potato leafhopper ANOVA table.

source of degrees of sum of mean
variation freedom squares square

among groups 3 3.975 1.325
within groups 4 .300 .075

total 7 4.275

12.2b F–tests for comparing nested models

The overall F–test, for H0 : µ1 = µ2 = · · · = µk, developed above is too general to

be of much use by itself. This overall F–test only allows us to conclude that either the k

group means are all equal or they are not all equal. In many situations, like the potato

leafhopper example, there is enough subject matter information to formulate more specific
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potential restrictions on the k group means. We will now discuss the use of F–tests for

sequential comparisons (hypothesis tests) of a nested sequence of candidate models for

k group means. We will develop this approach in the context of the potato leafhopper

example.

Some natural groupings of the means µC , µF , µG and µS of the potato leafhopper

example can be formed using the facts that fructose and glucose are 6–carbon sugars while

sucrose is a 12–carbon sugar. Consider the following sequence of four nested models for

the relationship among these means. These models are nested in the sense that each model

in the sequence is a special case (restricted version) of the model that precedes it in the

sequence. Thus model (2) is a special case (restricted version) of model (1); model (3) is

a special case of model (2); and, model (4) is a special case of model (3).

model (1): The full model with four separate means, µC , µF , µG and µS .

model (2): The reduced model with three means, µC , µS , and the 6-carbon sugar mean

µ6, corresponding to the assumption that there is no difference between the effects of

the two 6–carbon sugars in the sense that µF = µG.

model (3): The more reduced model with two means, µC , and the added sugar mean µA,

corresponding to the assumption that there is no difference between the effects of the

6–carbon sugars and the 12–carbon sugar in the sense that µS = µ6.

model (4): The most reduced model with one mean, µ, corresponding to the assumption

that there is no difference between the effects of the added sugar diets and the control

(no added sugar) diet in the sense that µC = µA.

Before we proceed with this example a brief discussion of the hypothesis testing ap-

proach to the comparison of a full model with a reduced model is in order. The reduced

model is simpler than the full model in the sense that it specifies fewer means. Therefore,

unless there is sufficient evidence to the contrary, we would prefer the simpler reduced

model over the more complicated full model. This suggests a test of the null hypothesis

H0 : The restrictions which define the reduced model are valid.

(The reduced model suffices and the full model is not needed.)

versus the alternative hypothesis

H1 : The restrictions which define the reduced model are not valid.

(The reduced model does not suffice and the full model is needed.)

If we find sufficient evidence to reject the null hypothesis, then we conclude that the full

model is needed and we abandon the reduced model. But, if we do not find sufficient
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evidence to reject the null hypothesis, then we conclude that we do not need the full model

and the simpler reduced model will suffice.

We will now outline the approach we will use for our analysis of the sequence of four

models for the potato leafhopper example.

Step 1: We will first consider a hypothesis test for comparing the full model (1) with

the reduced model (2). The full model (1) specifies that there are four means µC , µF , µG,

and µS . Since the reduced model (2) is obtained from model (1) by imposing the restriction

that µF = µG, our null hypothesis is

H0 : µF = µG

and our alternative hypothesis is

H1 : µF 6= µG.

Under H0 there is a common population mean survival time, µ6, for the two 6–carbon

sugar diets and our model only requires the three means µC , µS , and µ6. Under H1 there

are two 6–carbon sugar diet means µF and µG and our model specifies the four means

µC , µF , µG, and µS .

If we find sufficient evidence to reject H0, we will conclude that we cannot reduce the

four treatment means to three treatment means as indicated, since µF 6= µG and thus we

need four treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

two 6–carbon sugar treatment means (µF = µG) and we only need three treatment means

in our model µC , µS , and the 6-carbon sugar mean µ6. If this happens we will continue by

comparing model (2) (which now plays the role of the full model) with the reduced model

(3).

Step 2: If our comparison of model (1) and model (2) (step 1) results in the conclusion

that we do not need the four means of model (1), then we will consider a test for comparing

the current full model (2) with the reduced model (3). Model (2) specifies that there are

three means µC , µS , and µ6. Since the reduced model (3) is obtained from model (2) by

imposing the restriction that µS = µ6, our null hypothesis is

H0 : µS = µ6

and our alternative hypothesis is

H1 : µS 6= µ6.

Under H0 there is a common population mean survival time, µA, for the three added sugar

diets and our model only requires the two means µC and µA. Under H1 there are two
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added sugar diet means, µS and µ6, and our model specifies the three means µC , µS and

µ6.

If we find sufficient evidence to reject H0, we will conclude that we cannot reduce the

three treatment means to two treatment means as indicated, since µS 6= µ6, and thus we

need three treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

6–carbon sugar treatment mean and the sucrose treatment mean (µS = µ6) and we only

need two treatment means in our model µC and the added sugar mean µA. If this happens

we will continue by comparing model (3) (which now plays the role of the full model) with

the reduced model (4).

Step 3: If our comparison of model (2) and model (3) (step 2) results in the conclusion

that we do not need the three means of model (2), then we will consider a test for comparing

the current full model (3) with the reduced model (4). Model (3) specifies that there are

two means µC and µA. Since the reduced model (4) is obtained from model (3) by imposing

the restriction that µC = µA, our null hypothesis is

H0 : µC = µA

and our alternative hypothesis is

H1 : µC 6= µA.

Under H0 there is a common population mean survival time, µ, for all of the diets and our

model only requires the one mean µ. Under H1 there are two means, µC and µA.

If we find sufficient evidence to reject H0 we will conclude that we cannot reduce the

two treatment means to one treatment mean as indicated since, µC 6= µA, and thus we

need two treatment means in our model. If this happens we will stop.

If we are not able to reject H0 we will conclude that there is no difference between the

control (no added sugar) treatment mean and the added sugar treatment mean (µC = µA)

and we only need one treatment mean in our model. If this happens we will stop, since

this is the end of our sequence of models.

Now that we have a plan of attack for our comparisons we need to know how to perform

an F–test to compare a full model with a reduced model. Consider a full model with a

group means and a reduced model with b group means (b < a) obtained by restrictions

which result in a reduction of the a groups (means) of the full model into the b groups

(means) of the reduced model. The sum of squares among the b groups in the reduced

model SS(among the b groups) = SS(reduced model) is actually part of the sum of squares

among the a groups in the full model SS(among the a groups) = SS(full model). The sum
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of squares due to the full model after the reduced model SS(full model | reduced model)

is defined as the difference,

SS(full model | reduced model) = SS(full model)− SS(reduced model)

= SS(among the a groups)− SS(among the b groups),

between the two model sums of squares. The degrees of freedom for this sum of squares is

the corresponding difference, df(full model)− df(reduced model) = a− b, between the two

model degrees of freedom. Partitioning the sum of squares among the a groups of the full

model into the sum of squares among the b groups of the reduced model and the sum of

squares for the full model after the reduced model yields the ANOVA of Table 8.

Table 8. ANOVA table for model comparison.

source of degrees of sum of
variation freedom squares

reduced model b− 1 SS(reduced model)
full model after reduced model a− b SS(full model | reduced model)

within the a groups of the full model n− a SS(within the a groups)

total n− 1 SS(about the overall mean)

The F–test for comparing these models can be viewed as a test of

H0 : the reduced model with b group means will suffice

versus

H1 : the full model with a group means is needed.

More formally, the null hypothesis specifies that the restrictions which reduce the a means

of the full model to the b means of the reduced model are valid. The F–statistic for this

comparison is

Fcalc =
MS(full model | reduced model)

MS(within the a groups of the full model)
.

If the P–value P (F ≥ Fcalc), where F denotes an F variable with a− b and n− a degrees

of freedom, is small enough, we reject H0 and conclude that the reduced model with b

group means is not appropriate and we need the full model with a group means. If the

P–value is not small enough, we fail to reject H0 and conclude that the reduced model

with b group means is appropriate and we do not need the full model with a group means.

We will now use this method to evaluate the sequence of four models proposed above

for the potato leafhopper example. The ANOVA’s for models (1) and (2) are given in

Tables 9 and 10.
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Table 9. ANOVA table for model (1).

source of degrees of sum of mean
variation freedom squares square

among the 4 groups 3 3.975 1.325
within the 4 groups 4 .300 .075

total 7 4.275

Table 10. ANOVA table for model (2).

source of degrees of sum of mean
variation freedom squares square

among the 3 groups 2 3.485 1.7425
within the 3 groups 5 .790 .1580

total 7 4.275

The ANOVA for comparing model (1) and model (2) provided in Table 11 can be

constructed from the information in the preceding ANOVA tables. The only computation

required is to subtract the reduced model among groups sum of squares from the full model

among groups sum of squares to get SS(full model | reduced model) = 3.975−3.485 = .49,

with 3− 2 = 1 degrees of freedom.

Table 11. ANOVA table for comparing model (1) and model (2).

source of degrees of sum of mean
variation freedom squares square

reduced model 2 3.485 1.7425
full model after reduced model 1 .490 .4900

within the 4 groups 4 .300 .0750

total 7 4.275

The calculated F–statistic for comparing model (1) and model (2) is Fcalc = .49/.075

= 6.5333 with a P–value of .0629. (This P–value is computed using the F distribution

with 1 and 4 degrees of freedom.) This P–value is not small enough to allow us to reject

the hypothesis that µF = µG so we conclude that the three means (µC , µS , µ6) of the

reduced model (2) will suffice and we do not need the four means of the full model (1). We

now proceed to compare the current full model (2) to the reduced model (3). The ANOVA

for model (3) is given in Table 12.
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Table 12. ANOVA table for model (3).

source of degrees of sum of mean
variation freedom squares square

among the 2 groups 1 1.4017 1.4017
within the 2 groups 6 2.8733 .4789

total 7 4.275

We can produce the ANOVA for comparing model (2) and model (3) of Table 13 as

before. In this case we find that SS(full model | reduced model) = 3.485−1.4017 = 2.0833,

with 2− 1 = 1 degrees of freedom.

Table 13. ANOVA table for comparing model (2) and model (3).

source of degrees of sum of mean
variation freedom squares square

reduced model 1 1.4017 1.4017
full model after reduced model 1 2.0833 2.0833

within the 3 groups 5 .7900 .1580

total 7 4.275

The calculated F–statistic for comparing model (2) and model (3) is Fcalc =

2.0833/.158 = 13.1854 with a P–value of .0150. (This P–value is computed using the F

distribution with 1 and 5 degrees of freedom.) This P–value is small enough to allow us

to reject the hypothesis that µS = µ6 so we conclude that the three means (µC , µS , µ6)

of model (2) are needed in the sense that the reduced model (3) with two means (µC , µA)

does not suffice. We will stop at this point and base any further inferences about these

diets on the three means of model (2).

Remark: At each stage of our sequential comparison of models for the potato leafhop-

per example we arrived at the reduced model by combining two groups from the full model

which caused the degrees of freedom for the full model after the reduced model to be one

in each comparison. It is possible to compare models for which the degrees of freedom for

the full model after the reduced model is larger than one. We can demonstrate this by

supposing that it had not occurred to us to consider combining the two 6–carbon sugar

groups. That is, suppose that our initial comparison had been between model (1), with

four separate means, and model (3), with two means (µC and µA), one for the no added

sugar control diet group and one for the added sugar diet group. In this case the reduced

model is obtained from the full model by combining the three added sugar groups to get
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a single added sugar group and the corresponding null hypothesis is H0 : µF = µG = µS .

Thus, in this case the full model has 4 means (3 degrees of freedom), the reduced model

has 2 means (1 degree of freedom), and the sum of squares for the full model after the

reduced model has 3 − 1 = 2 degrees of freedom. For this comparison we would have

SS(full model | reduced model) = 3.975 − 1.4017 = 2.5733, with 3 − 1 = 2 degrees of

freedom, SS(within the 4 groups of the full model) = .3 with 4 degrees of freedom, and a

calculated F–statistic of Fcalc = (2.5733/2)/(.3/4) = 17.1553. If we were to perform this

test, the P–value would be computed using the F distribution with 2 and 4 degrees of

freedom.

12.2c Confidence intervals for linear combinations of means

A linear combination of the k population means µ1, . . . , µk is a quantity of the form

λ = c1µ1 + c2µ2 + · · ·+ ckµk,

where the coefficients, c1, . . . , ck, are suitably chosen constants. For example, if we take

all of the coefficients in this linear combination to be 1/k, we obtain the average of the

means (µ1 +µ2 + · · ·+µk)/k. If we take one coefficient to be 1, a second to be -1, and the

others to be 0, we obtain a difference of two means, e.g., taking c1 = −1, c2 = 1 and the

other ci = 0, yields µ2 − µ1.

The obvious estimate of the linear combination λ = c1µ1 + c2µ2 + · · · + ckµk is the

corresponding linear combination of the sample means

λ̂ = c1Y 1 + c2Y 2 + · · ·+ ckY k.

In the present context of k independent random samples of sizes n1, . . . , nk with a common

population variance σ2, the population standard error of this estimated linear combination

is

S.E.(λ̂) =

√
σ2

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)

which can be estimated, using the pooled estimator S2
p = MS(within) of the common

variance, by the sample standard error

Ŝ.E.(λ̂) =

√
S2

p

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)
.

A set of confidence intervals is said to form a set of simultaneous 95% confidence

intervals if the procedure which yields the set of confidence intervals is such that 95% of

the time all of the intervals will contain the corresponding parameters. We can use the



12.2c Confidence intervals for linear combinations of means 291

Scheffé method to form simultaneous 95% confidence intervals for linear combinations of

k population means. The basic idea of this method is to use a margin of error multiplier

which is large enough to insure that the collection of confidence intervals it produces for

all possible linear combinations of the k means form a set of simultaneous 95% confidence

intervals. The margin of error multiplier for Scheffé’s method when there are k means in

the model is
√

(k − 1)F(k−1,n−k)(.95), where F(k−1,n−k)(.95) is the 95th percentile of the

F distribution with k − 1 and n− k degrees of freedom. Thus the 95% Scheffé margin of

error for λ̂ = c1Y 1 + c2Y 2 + · · ·+ ckY k is

M.E.(λ̂) =

√
(k − 1)[F(k−1,n−k)(.95)]S2

p

(
c21
n1

+
c22
n2

+ · · ·
c2k
nk

)
.

We now return to our analysis of the potato leafhopper example for which we have

concluded that model (2) with the three means µC , µS , and µ6 is the appropriate model.

We now need to make some sort of inference about the relationship among these three

population mean survival times. We will use selected linear combinations and confidence

intervals to explore the relationship among these three population mean survival times.

The sample means for the three diet groups are Y C = 2 (based on the nC = 2

control diet observations), Y S = 3.8 (based on the nS = 2 sucrose diet observations), and

Y 6 = 2.55 (based on the n6 = 4 6–carbon sugar diet observations). The pooled estimate

of the population variance is S2
p = MS(within) = .158 with 5 degrees of freedom. For this

model we have k = 3 means and n = 8 observations; therefore, the Scheffé margin of error

multiplier is
√

2(5.7861) = 3.4018 (since the 95th percentile of the F distribution with 2

and 5 degrees of freedom is 5.7861).

We will begin our comparisons among the three means by estimating the three pairwise

differences, µS − µC , µ6 − µC , and µS − µ6. First note that given two sample means Y 1

and Y 2 based on n1 and n2 observations the estimated standard error of Y 1 − Y 2 is

ŜE(Y 1 − Y 2) =

√
S2

p

(
1

n1
+

1

n2

)
.

The estimates of the three pairwise differences and the corresponding standard errors and

simultaneous 95% margins of error are given in the Table 14.

Table 14. Estimates of the pairwise differences.

difference estimate standard error margin of error

µS − µC Y S − Y C = 1.8
√
.158

(
1
2 + 1

2

)
= .3975 3.4018(.3975) = 1.3522

µ6 − µC Y 6 − Y C = .55
√
.158

(
1
2 + 1

4

)
= .3442 3.4018(.3442) = 1.1709

µS − µ6 Y S − Y 6 = 1.25
√
.158

(
1
2 + 1

4

)
= .3442 3.4018(.3442) = 1.1709
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Adding and subtracting these margins of error from the corresponding estimates to get

confidence intervals we conclude that we are 95% confident that .4478 ≤ µS−µC ≤ 3.1522,

−.6209 ≤ µ6 − µC ≤ 1.7209, and .0791 ≤ µS − µ6 ≤ 2.4209. These confidence intervals

suggest that µ6 and µC are not different and that µS is larger than both of the other means.

Thus, a confidence interval for µS − (µC + µ6)/2 would be useful for indicating how much

larger µS is than the average of the other two means. Since this expression is a linear

combination of the three means we can add a confidence interval for this combination to

our set of confidence intervals and still have simultaneous confidence of 95%. Our estimate

of µS − (µC + µ6)/2 is Y S − (Y C + Y 6)/2 = 1.525 with standard error

ŜE

(
Y S −

Y C + Y 6

2

)
=

√
S2

p

[
1

nS

+
1

4nC

+
1

4n6

]

=

√
.158

[
1

2
+

1

8
+

1

16

]
= .3296

and margin of error 3.4018(.3296) = 1.1212. Thus we are 95% confident that

.4038 ≤ µS − (µC + µ6)/2 ≤ 2.6462 and − .6209 ≤ µ6 − µC ≤ 1.7209.

Based on these confidence intervals we can conclude that there is no difference between

the effects of adding a 6–carbon sugar to the diet or using the standard diet with no added

sugar in the sense that the data are consistent with the claim that µC = µ6. On the

other hand, we find that adding the 12–carbon sugar sucrose to the potato leafhopper diet

increases the mean survival time by something between .4038 and 2.6462 days over the

average of the mean survival times corresponding to a diet with no added sugar or with

an added 6–carbon sugar, i.e., we can conclude with 95% confidence that µS exceeds the

average (µC + µ6)/2 by at least .4038 days and as much as 2.6462 days.

We will now revisit the fruitfly fecundity example of Chapter 8 and consider an analysis

for this example using the methods of the present chapter.

Example. Fecundity of fruitflies (revisited). Sokal, R.R. and Rohlf, F.J. (1969)

Biometry, W.H. Freeman, p.232, discuss a study conducted to compare the fecundity of

three genetic lines of Drosophila melanogaster. The data, provided in Table 5 of Chapter

8, consist of per diem fecundities (number of eggs laid per female per day for the first 14

days of life) for 25 females of three lines of Drosophila melanogaster. Two of these genetic

lines were selected for resistance (RS) and susceptibility (SS) to DDT, the third line is

a nonselected control (NS). Recall that the investigator wanted to know if there was any

evidence that the population mean fecundities for the two selected lines (µRS and µSS)
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were different. The investigator also wanted to know how the population mean fecundity

µNS for the nonselected line related to the mean fecundities of the selected lines.

When we first considered this example, we found that the data was reasonably mod-

eled as consisting of three independent random samples, each of size 25, from normal

distributions with respective population mean fecundities µRS , µSS , and µNS and with

common population variance σ2. We can address the investigator’s question about the re-

lationship between the mean fecundities of the selected lines using the following sequence

of two nested models.

model (1): The full model with three separate means, µRS for the resistant line, µSS for

the susceptible line, and µNS for the nonselected line.

model (2): The reduced model with two means, µNS for the nonselected line and µS for

the selected lines corresponding to the assumption that there is no difference between

the mean fecundities for the two selected lines in the sense that µRS = µSS .

The ANOVA’s for models (1) and (2) are given in Tables 15 and 16 and the ANOVA

for comparing these models is given in Table 17.

Table 15. ANOVA table for the full model with 3 lines.

source of degrees of sum of mean
variation freedom squares square

among the 3 lines 2 1362.2115 681.1057
within the 3 lines 72 5659.0224 78.5975

total 74 7021.2339

Table 16. ANOVA table for reduced model with 2 lines.

source of degrees of sum of mean
variation freedom squares square

among the 2 lines 1 1329.0817 1329.0817
within the 2 lines 73 5692.1522 77.9747

total 74 7021.2339

Table 17. ANOVA table for comparing the models.

source of degrees of sum of mean
variation freedom squares square

2 line model 1 1329.0817 1329.0817
3 line model after 2 line model 1 33.1298 33.1298

within the 3 lines 72 5659.0224 78.5975

total 74 7021.2339

The calculated F–statistic for comparing model (1) and model (2) is Fcalc =

33.1298/78.5975 = .42 with a P–value of .5182. (This P–value is computed using the F
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distribution with 1 and 72 degrees of freedom.) This P–value is quite large indicating

that there is no evidence that µRS is different from µSS . We can conclude that the three

means (µRS , µSS , and µNS) of the full model (1) are not needed and we are justified in

adopting the simplified model (2) with mean fecundity µNS for the nonselected line and

mean fecundity µS for the selected lines. The remainder of our analysis will be in terms

of this reduced model.

Before we proceed with our analysis of this example it is instructive to compare the

ANOVA F–test we just used to test the null hypothesis H0 : µRS = µSS versus the

alternative hypothesis H1 : µRS 6= µSS with the t–test we used in Chapter 8 for this

same hypothesis test. The ANOVA F–test is equivalent to a t–test based on the difference

Y RS−Y SS = 1.628 and the pooled sample variance MS(within) = 78.5975 with 72 degrees

of freedom. This pooled sample variance has 72 degrees of freedom, since it is computed

using all three of the samples. The t–test we considered in Chapter 8 was based on

the difference Y RS − Y SS = 1.628 and the pooled sample variance S2
p with 48 degrees

of freedom based on the two samples from the selected lines. Thus, these two t–tests

differ because they use different estimated standard errors due to the way in which the

population variance is estimated. If the assumption of a common variance for all three

lines is reasonable, then the ANOVA F–test is better than the t–test of Chapter 8, since

it is based on a better (higher degrees of freedom) estimate of the population variance.

Since there are only two means in the reduced model we can use the overall F–

test to compare these means. The calculated F–statistic for testing the null hypothesis

H0 : µNS = µS is Fcalc = 1329.0817/77.9747 = 17.05 with a P–value that is less than

.0001. (This P–value is computed using the F distribution with 1 and 73 degrees of

freedom.) This very small P–value indicates that there is very strong evidence that the

mean fecundity for the nonselected line µNS is not the same as the mean fecundity µS for

the selected lines. This F–test for comparing these two means is equivalent to the t–test

we performed in Chapter 8 in these sense that these two tests give the same P–value. In

fact, for the present circumstance of comparing two means (using a model with only two

means) the square of the Student’s t–statistic is equal to the F–statistic. We can form

a 95% confidence interval for the difference µNS − µS between these mean fecundities to

determine which mean is larger and to get an estimate of the size of this difference. In

this example, we are 95% confident that µNS − µS is between 4.6192 and 13.241. That is,

we are 95% confident that the population mean fecundity (mean number of eggs laid per

day for the first 14 days of life) µNS for the nonselected line exceeds the population mean

fecundity µS for the selected lines by at least 4.6192 eggs per day and perhaps as much as

13.241 eggs per day.

In conclusion, we have found that the distributions of fruitfly fecundity for two selected

populations are identical (since we assumed a common variance and since we failed to reject



12.2c Confidence intervals for linear combinations of means 295

µRS = µSS); but, the distribution of fruitfly fecundity for the nonselected population differs

from the distribution for the selected population by having a larger (by 4.6192 to 13.241

eggs per day) population mean fecundity.

Before we leave this example we will consider one more approach to its analysis.

Suppose that we did not have enough a priori information to allow use to confidently

propose a reasonable sequence of nested models for our analysis. In this situation we

could perform an exploratory analysis by using the Scheffé method to form simultaneous

95% confidence intervals for interesting linear combinations of the three population mean

fecundities.

We begin our analysis by considering the three pairwise differences between the pop-

ulation mean fecundities. The estimates of the three pairwise differences and the simulta-

neous 95% confidence intervals are given in the Table 18.

Table 18. Estimates of the pairwise differences.

difference estimate confidence interval

µNS − µRS 8.116 (1.848, 14.384)

µNS − µSS 9.744 (3.476, 16.012)

µRS − µSS 1.628 (-4.640, 7.896)

Based on these simultaneous confidence intervals we can conclude that the population

mean fecundities µRS and µSS for the selected lines are not different and we can conclude

that the population mean fecundity for the nonselected line µNS is larger than each of

the other population mean fecundities. Since we have concluded that the selected line

means are not different it would be of interest to also consider a contrast between the

nonselected line population mean µNS and the average (µRS + µSS)/2. The estimate of

the contrast µNS − (µRS + µSS)/2 is 8.93 and the Scheffé method gives the confidence

interval (3.5020, 14.3581). Thus we can conclude, with 95% confidence that −4.640 ≤

µRS − µSS ≤ 7.896 and 3.5020 ≤ µNS − (µRS + µSS)/2 ≤ 14.3581. This allows us to

conclude that µRS = µSS and µNS exceeds (µRS +µSS)/2 by at least 3.5020 and as much

as 14.3581 eggs per day.
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