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Chapter 3

Descriptive Statistics II: Numerical Summary Values

3.1 Numerical summary values for quantitative data

For many purposes a few well–chosen numerical summary values (statistics) will suffice

as a description of the distribution of a quantitative variable. A statistic is a numerical

characteristic of a sample. More formally, a statistic is a numerical quantity computed

from the values of a variable, or variables, corresponding to the units in a sample. Thus

a statistic serves to quantify some interesting aspect of the distribution of a variable in

a sample. Summary statistics are particularly useful for comparing and contrasting the

distribution of a variable for two different samples.

If we plan to use a small number of summary statistics to characterize a distribution or

to compare two distributions, then we first need to decide which aspects of the distribution

are of primary interest. If the distributions of interest are essentially mound shaped with

a single peak (unimodal), then there are three aspects of the distribution which are often

of primary interest. The first aspect of the distribution is its location on the number line.

Generally, when speaking of the location of a distribution we are referring to the location of

the “center” of the distribution. The location of the center of a symmetric, mound shaped

distribution is clearly the point of symmetry. There is some ambiguity in specifying the

location of the center of an asymmetric, mound shaped distribution and we shall see that

there are at least two standard ways to quantify location in this context. The second aspect

of the distribution is the amount of variability or dispersion in the distribution. Roughly

speaking, we would say that a distribution exhibits low variability if the observed values

tend to be close together on the number line and exhibits high variability if the observed

values tend to be more spread out in some sense. The third aspect is the shape of the

distribution and in particular the degree of skewness in the distribution.

As a starting point consider the minimum (smallest observed value) and maximum

(largest observed value) as statistics. We know that all of the data values lie between

the minimum and the maximum, therefore, the minimum and the maximum provide a

crude quantification of location and variability. In particular, we know that all of the

values of the variable are restricted to the interval from the minimum to the maximum;

however, the minimum and the maximum alone tell us nothing about how the data values

are distributed within this interval. If the distribution is reasonably symmetric and mound

shaped, then the midrange, defined as the average of the minimum and the maximum,

may provide a suitable quantification of the location of the center of the distribution. The

median and mean, which are defined below, are generally better measures of the center of

a distribution.
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The range, defined as the distance from the minimum to the maximum can be used to

quantify the amount of variability in the distribution. Note that the range is the positive

number obtained by subtracting the minimum from the maximum. When comparing two

distributions the distribution with the larger range will generally have more variability than

the distribution with the smaller range; however, the range is very sensitive to extreme

observations so that one or a few unusually large or small values can lead to a very large

range.

We will now consider an approach to the quantification of the shape, location, and

variability of a distribution based on the division of the histogram of the distribution into

sections of equal area. This is equivalent to dividing the data into groups, each containing

the same number of values. We will first use a division of the histogram into halves. We

will then use a division of the histogram into fourths.

The median is used to quantify the location of the center of the distribution. In terms

of area, the median is the number (point on the number line) with the property that the

area in the histogram to the left of the median is equal to the area to the right of the

median. Here and in the sequel we will use a lower case n to denote the sample size, i.e., n

will denote the number of units in the sample. In terms of the n observations, the median

is the number with the property that at least n/2 of the observed values are less than or

equal to the median and at least n/2 of the observed values are greater than or equal to

the median.

A simple procedure for finding the median, which is easily generalized to fractions

other that 1/2, is outlined below.

1. Arrange the data (observations) in increasing order from the smallest (obs. no. 1) to

the largest (obs. no. n). Be sure to include all n values in this list, including repeats

if there are any.

2. Compute the quantity n/2.

3a. If n/2 is not a whole number, round it up to the next largest integer. The observation

at the location indicated by the rounded–up value in the ordered listing of the data

is the median.

3b. If n/2 is a whole number, then we need to average two values to get the median. The

two observations to be averaged are obs. no. n/2 and the next observation (obs. no.

n/2 + 1) in the ordered listing of the data. Find these two observations and average

them to get the median.

We can use the distance between the minimum and the median and the distance

between the median and the maximum to quantify the amount of skewness in the distri-

bution. The distance between the minimum and the median is the range of the lower (left)

half of the distribution, and the distance between the median and the maximum is the

range of the upper (right) half of the distribution. If the distribution is symmetric, then
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these two distances (median – minimum) and (maximum – median) will be equal. If the

distribution is skewed, then we would expect to observe a larger range (indicating more

variability) for the half of the distribution in the direction of the skewness. Thus if the

distribution is skewed to the left, then we would expect (median – minimum) to be greater

than (maximum – median). On the other hand, if the distribution is skewed to the right,

then we would expect (maximum – median) to be greater than (median – minimum).

Example. Weed seeds (revisited). Recall that this example is concerned with the

number of weed seeds found in n = 98 quarter–ounce batches of grass. Since 98/2 = 49,

the median for this example is the average of observations 49 and 50. Referring to Table 6

of Chapter 2 we find that the minimum number of weed seeds is 0, the maximum is 7, and

the median is 1, since observations 49 and 50 are each 1. The range for this distribution is

7−0 = 7. Notice that the range of the right half of this distribution (maximum – median)

= 7−1 = 6 is much larger than the range of the left half (median – minimum) = 1−0 = 1

confirming our observation that this distribution is strongly skewed to the right.

Example. Vole reproduction (revisited). Recall that this example is concerned

with the number of babies in n = 170 litters of voles. Since 170/2 = 85, the median for this

example is the average of observations 85 and 86. Referring to Table 7 of Chapter 2 we find

that the minimum number of babies is 1, the maximum is 11, and the median is 6, since

observations 85 and 86 are each 6. The range for this distribution is 11− 1 = 10. Notice

that the range of the right half of this distribution (maximum – median) = 11 − 6 = 5

is equal to the range of the left half (median – minimum) = 6 − 1 = 5 confirming our

observation that this distribution is symmetric.

A more detailed quantification of the shape and variability of a distribution can be

obtained from a division of the distribution into fourths. In order to divide a distribution

into fourths, we need to specify three numbers or points on the number line. These statistics

are called quartiles, since they divide the distribution into quarters. In terms of area,

the first quartile, denoted by Q1 (read this as Q sub one), is the number (point on the

number line) with the property that the area in the histogram to the left of Q1 is equal to

one fourth and the area to the right of Q1 is equal to three fourths. The second quartile,

denoted by Q2, is the median. The third quartile, denoted by Q3, is the number (point

on the number line) with the property that the area in the histogram to the left of Q3 is

equal to three fourths and the area to the right of Q3 is equal to one fourth. In terms of

the n observations, Q1 is the number with the property that at least n/4 of the observed

values are less than or equal to Q1 and at least 3n/4 of the observed values are greater

than or equal to Q1. Similarly, Q3 is the number with the property that at least 3n/4 of

the observed values are less than or equal to Q3 and at least n/4 of the observed values

are greater than or equal to Q3.
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The method for finding the median given above is readily modified for finding the

first and third quartiles. For Q1, we simply replace n/2 by n/4 and replace the words

‘the median’ by Q1. To find Q3, use exactly the same method but count down from

the largest value instead of counting up from the smallest value. Some calculators and

computer programs use variations of the methods given above for finding Q1 and Q3.

These variations may give slightly different values for Q1 and Q3.

Example. Weed seeds (revisited). Since 98/4 = 24.5, the quartiles Q1 and Q3 for

this example are the observations located at position 25 counting up for Q1 and counting

down for Q3. Referring to Table 6 of Chapter 2 we find that Q1 = 0 and Q3 = 2. Notice

that the range of the lower three–fourths of this distribution, Q3 – minimum, is 2 while

the range of the upper fourth, maximum – Q3 is 5. This indicates that 75% (a large

proportion) of the batches of grass have relatively few weed seeds, and the skewness in this

distribution is due to the high amount of variability among the numbers of weed seeds in

the 25% of the batches with between 2 and 7 weed seeds.

Previously we introduced the range as a measure of variability. An alternative measure

of variability is provided by the interquartile range. The interquartile range (IQR) is the

distance between the first quartile Q1 and the third quartile Q3, i.e., the interquartile range

is the positive number obtained by subtracting Q1 from Q3. Notice that the interquartile

range is the range of the middle half of the distribution. The interquartile range is less

sensitive to the presence of a few extreme observations in the data than is the range. For

example, if there are one or two unusually large or unusually small values, then these values

may have the effect of making the range much larger than it would be if these unusual

values were not present. In such a situation, we might argue that the range is too large

to be deemed an appropriate overall measure of the variability of the distribution. The

interquartile range is not affected by a few unusual values, since it only depends on the

middle half of the data. We could use the range of a larger part of the middle of the

distribution, say the middle 75% or 90%, as a compromise between the range and the

interquartile range.

The five summary statistics: the minimum (min), the first quartile (Q1), the median

(med), the third quartile (Q3), and the maximum (max), constitute the five number

summary of the distribution. Each of these five statistics provides a quantification of a

particular aspect of the distribution. They quantify where the distribution begins, where

the first quarter of the distribution ends, and so on. Furthermore, the distances between

these five statistics can be used to quantify the shape (skewness) of the distribution.

The four distances: (Q1 – min), (med – Q1), (Q3 – med), and (max – Q3), are the

ranges of the first, second, third, and fourth quarters of the distribution, respectively.

These distances can be used to quantify the amount of variability in the corresponding

parts of the distribution. Comparisons of appropriate pairs of these distances provide



3.1 Numerical summary values for quantitative data 39

indications of certain aspects of the shape of the distribution. The relationship between

(med – Q1) and (Q3 – med) can be used to quantify the shape (skewness) of the middle

half of the distribution. Since (Q1 – min) and (max – Q3) are the lengths of the tails

(lower and upper fourths) of the distribution, the relationship between these numbers can

be used to quantify skewness in the tails of the distribution.

Example. Cholesterol levels in Guatemalans. This example is taken from

Devore and Peck, Statistics, 3 ed., (1997), Duxbury, p. 23. The original source is “The

Blood Viscosity of Various Socioeconomic Groups in Guatemala” in The American Journal

of Clinical Nutrition, Nov., 1964, 303–307. The Institute of Nutrition of Central America

and Panama measured the serum total cholesterol levels for a group of 49 adult, low–

income rural Guatemalans and for a group of 45 adult, high–income urban Guatemalans.

The serum total cholesterol levels (in mg/dL) are provided in Table 1 and stem and leaf

histograms are given in Figure 1.

Table 1. Guatemalan cholesterol data.

Rural group cholesterol levels (in mg/dL).

95 108 108 114 115 124 129 129 131 131
135 136 136 139 140 142 142 143 143 144
144 145 146 148 152 152 155 157 158 158
162 165 166 171 172 173 174 175 180 181
189 192 194 197 204 220 223 226 231

Urban group cholesterol levels (in mg/dL).

133 134 155 170 175 179 181 184 188 189
190 196 197 199 200 200 201 201 204 205
205 205 206 214 217 222 222 227 227 228
234 234 236 239 241 242 244 249 252 273
279 284 284 284 330

Before we compute any summary statistics consider the stem and leaf histograms

in Figure 1. Based on these histograms we can see that both of these cholesterol level

distributions are basically mound shaped with some skewness to the right. In the rural

group there are four individuals with somewhat high cholesterol levels (220 or more); there

is a gap of 16 separating the cholesterol levels of these individuals from the rest of the rural

group. It is this group of four observations which causes the rural distribution to appear

skewed to the right. The urban group has similar slightly unusual groups of cholesterol

levels; one group having somewhat low levels and one having somewhat high levels. There

is one unusually large value (330) in the urban group that we might consider an outlier,

since there is a gap of 46 between 330 and the next largest value. (An outlier is an

observation that is widely separated from the majority of a distribution.) We will need to
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consider the implications of this outlier in our analysis of this example. It is also apparent

that the people in the urban group tend to have higher cholesterol levels than the people

in the rural group. There appears to be more variability among the cholesterol levels for

the urban group. With the urban outlier there appears to be much more variability in

the cholesterol levels of the urban group, and without it there appears to be slightly more

variability in the urban group cholesterol levels. If we ignore the outlier, the urban group

distribution appears to be essentially symmetric.

Figure 1. Guatemalan cholesterol stem and leaf histograms.

The stem represents tens and the leaf represents ones. (mg/dL)

Rural Urban

9 5 9
10 88 10
11 45 11
12 499 12
13 115669 13 34
14 0223344568 14
15 225788 15 5
16 256 16
17 12345 17 059
18 019 18 1489
19 247 19 0679
20 4 20 001145556
21 21 47
22 036 22 22778
23 1 23 4469
24 24 1249
25 25 2
26 26
27 27 39
28 28 444
29 29
30 30
31 31
32 32
33 33 0

The five number summaries and the associated distances based on them are provided,

for the rural group, for the entire urban group, and for the urban group omitting 330, in

Table 2. The steps involving in computing the medians and quartiles, for the rural group
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and the entire urban group, are outlined below. For the rural group there are n = 49

observations so that

(1) 49/2 = 24.5, thus the median 152 is obs. no. 25, corresponding to the first 2 leaf in

the 15 stem.

(2) 49/4 = 12.25, thus the first and third quartiles are Q1 = 136, the 13th observation

counting up, corresponding to the second 6 leaf in the 13 stem, and Q3 = 174, the

13th observation counting down, corresponding to the second 4 leaf in the 17 stem.

For the urban group there are n = 45 observations so that

(1) 45/2 = 22.5, thus the median 206 is obs. no. 23, corresponding to the 6 leaf in the 20

stem.

(2) 45/4 = 11.25, thus the first and third quartiles are Q1 = 196, the 12th observation

counting up, corresponding to the 6 leaf in the 19 stem, and Q3 = 239, the 12th

observation counting down, corresponding to the 9 leaf in the 23 stem.

Table 2. Five number summaries with distances.

Rural group. (mg/dL) n=49

min: 95
Q1− min: 41

Q1: 136 med - min: 57
med - Q1: 16

med: 152
Q3− med: 22

Q3: 174 max - med: 79
max - Q3: 57

max: 231

Urban group (all). (mg/dL) n=45

min: 133
Q1− min: 63

Q1: 196 med - min: 73
med - Q1: 10

med: 206
Q3− med: 33

Q3: 239 max - med: 124
max - Q3: 91

max: 330

Urban group (omit 330). (mg/dL) n=44

min: 133
Q1− min: 60

Q1: 193 med - min: 72.5
med - Q1: 12.5

med: 205.5
Q3− med: 32

Q3: 237.5 max - med: 78.5
max - Q3: 46.5

max: 284

Before we continue with our discussion of this example we will introduce a simple

graphical display corresponding to the information in Table 2. We can use the five number

summary values to form a simple graphical representation of a distribution known as a
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box plot or a box and whiskers plot. A box plot does not convey as much information as

a stem and leaf histogram but it does give a useful graphical impression of the shape of the

distribution as well as its location and variability. Simple box plots for the Guatemalan

cholesterol example are provided in Figure 2.

Figure 2. Box plots for cholesterol level.

Rural

95 136 152 174 231

Urban (all)

133 196 206 239 330

Urban (omit 330)

133 193 205.5 237.5 284

Notice that each box plot has five vertical marks indicating the locations of the five

number summary values. The box which extends from the first quartile to the third quar-

tile and is divided into two parts by the median gives an impression of the distribution

of the values in the middle half of the distribution. In particular, a glance at this box

indicates whether the middle half of the distribution is skewed or symmetric and indi-

cates the magnitude of the interquartile range (the length of the box). The line segments

(whiskers) which extend from the ends of the box to the extreme values (the minimum

and the maximum) give an impression of the distribution of the values in the tails of the

distribution. The relative lengths of the whiskers indicate the contribution of the tails of

the distribution to the symmetry or skewness of the distribution.

Returning to the cholesterol example first consider the shapes of the cholesterol dis-

tributions. We can use the distances, based on the five number summary, given in Table

2 to quantify the degree of skewness in these distributions. Comparing the distances for

the rural group we find that max – med = 79 > 57 = med – min, Q3 – med = 22 > 16 =

med – Q1, and Max – Q3 = 57 > 41 = Q1 – min. All of these comparisons support our

contention that the cholesterol distribution for the rural group is skewed right. For the

urban group, including the outlier, we have max – med = 124 > 73 = med – min, Q3

– med = 33 > 10 = med – Q1, and Max – Q3 = 91 > 63 = Q1 – min. All of these

comparisons support our contention that the cholesterol distribution for the urban group

is skewed right. If we omit the outlier (330) from the urban group we find that max –
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med = 78.5 is only slightly larger than med – min = 72.5 suggesting that without the

outlier the cholesterol distribution for the urban group is reasonably symmetric. Without

the outlier the middle half of the distribution is still somewhat skewed right, since Q3 –

med = 32 > 12.5 = med – Q1; but, the range of the left tail (lower fourth) Q1 – min = 60

is now larger than the range of the right tail (upper fourth) Max – Q3 = 46.5.

The fact that the median 152 for the rural group is much smaller than the median 206

(with the outlier) or 205.5 (without the outlier) of the urban group supports our contention

that the people in the urban group tend to have higher cholesterol levels than the people

in the rural group.

With the outlier the range 197 for the urban group is much larger than the range

137 for the rural group. If we omit the outlier, then the range for the urban group is

151 which is still larger than 137 but not by so much. On the other hand, if we consider

the interquartile ranges, 38 for the rural group and 43 (44.5 without the outlier) for the

urban group, we find that there is a similar amount of variability in the middle halves of

these distributions. Hence, our contention that there is much more variability among the

cholesterol levels of the urban Guatemalans depends very heavily on the cholesterol level

of one individual. Whether we include this individual or not, we are justified in claiming

that there is more variability among the cholesterol levels of the urban Guatemalans.

Based on our analysis of these cholesterol level distributions we might propose several

hypotheses or conjectures about why these distributions differ as they do. First we might

conjecture that the rural Guatemalans are probably more physically active and eat food

which is lower in fat than the urban Guatemalans. This would cause the rural Guatemalans

to tend to have lower cholesterol levels. Second, we might argue that there is less variability

in the cholesterol levels of the rural Guatemalans because their lifestyles and eating habits

are probably quite similar.

The approach that we have been using to form summary statistics is to select a

single representative value from the observed values of the variable (or the average of two

adjacent observed values) to quantify a particular aspect of the distribution. We have also

considered statistics that are distances between two such representative values.

An alternative approach to forming a summary statistic is to combine all of the ob-

served values to get a suitable statistic. The first statistic of this type that we consider is

the mean. The mean, which is the simple arithmetic average of the n data values, is used

to quantify the location of the center of the distribution. You could compute the mean by

adding all n data values together and dividing this sum by n; however, it is better to use

a calculator or a computer.

The sample mean is often denoted by the symbol X (read this as X bar). This is

a convenient place for us to introduce some standard notation. It is standard practice

to use a letter, such as X , to denote a variable and the values of the variable. You are
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free to choose a letter with mnemonic value instead of the generic letter X ; however, you

should not use S or Z as these letters are reserved for special uses. If X denotes the

variable of interest, then we will use X to denote the mean of the distribution of X . If

we used a different letter, say Y , to denote the variable, then we would use Y to denote

the corresponding mean. We will use function notation to denote the other statistics we

defined above. That is, if X denotes the variable, then min(X), Q1(X), med(X), Q3(X),

max(X), range(X), and IQR(X) denote the minimum, the first quartile, the median, the

third quartile, the maximum, the range, and the interquartile range, respectively. You

should read these symbols as follows: read min(X) as the minimum of X , Q1(X) as the

first quartile of X , and so on.

Recall that the median is the number (point on the number line) with the property

that the area in the histogram to the left of the median is equal to the area to the right

of the median. The mean is the number (point on the number line) where the histogram

would balance. To understand what we mean by the balance point, imagine the histogram

as being cut out of a piece of cardboard. The mean is located at the point along the

number line side of this cutout where the histogram cutout would balance. These geo-

metric characterizations of the mean and the median imply that when the distribution

is symmetric the mean will be equal to the median. Furthermore, if the distribution is

skewed to the right, then the mean (the balance point) will be larger than the median (to

the right of the median). Similarly, if the distribution is skewed to the left, then the mean

(the balance point) will be smaller than the median (to the left of the median).

The primary use of the mean, like the median, is to quantify the location of the center

of a distribution and to compare the locations (centers) of two distributions. Since both the

mean and the median can be used to quantify the location of the center of a distribution,

it seems reasonable to ask which is more appropriate. If the distribution is approximately

symmetric, then the mean and the median will be approximately equal. On the other

hand, if the distribution is not symmetric, then the median is likely to provide a better

indication of the center of the distribution. For example, if the distribution is strongly

skewed to the right, then the mean may be much larger than the median and the mean

may not be a good indication of the center of the distribution. For a specific problem it

is a good idea to mark the locations of the mean and the median on a histogram of the

distribution and consider which seems more reasonable as an indicator of the center of the

distribution.

If the mean X is deemed suitable as a measure of the center of the distribution of

X , then the deviations (X −X) of the observed values of X from their mean X contain

information about the amount of variability in the distribution. If there is little variability

(the observed values of X are close together and they are close to the mean X), then the

deviations (X − X) will tend to be small in magnitude (absolute value). On the other
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hand, if there is a lot of variability (at least some of the observed values of X are far apart

and they are not all close to the mean X), then the deviations (X−X) will tend to be large

in magnitude. It is this observation which suggests that a summary statistic based on the

distances between each of the observed values of the variable and their mean can be used

to measure the variability in the distribution. The standard deviation is one such statistic.

The standard deviation is the square root of the “average” of the squared deviations of

the observed values of the variable from their mean. A formula for the standard deviation is

given below; however, you should not use this formula to compute the standard deviation.

Instead you should use a calculator or a computer to compute the standard deviation. In

symbols, the standard deviation of the distribution of the variable X , denoted by SX

(read this as S sub X), is

SX =

√

Σ(X −X)2

n− 1

In this formula the capital Greek letter sigma, Σ, represents the statement “the sum of ”,

and (X−X)2 denotes the square of the distance from the observed value X to the mean X.

Therefore, the expression under the square root sign in the formula is the “average” of the

squared deviations of the observed values of the variable from their mean as mentioned

above. The reason for the square root is so that the standard deviation of X and the

variable X are in the same units of measurement.

The standard deviation is positive, unless there is no variability at all in the data.

That is, unless all of the observations are exactly the same, the standard deviation is a

positive number. The standard deviation is a very widely used measure of variability.

Unfortunately, the standard deviation does not have a simple, direct interpretation. The

important thing to remember is that larger values of the standard deviation indicate that

there is more variability in the data. A closely related measure of variability is the variance

which is simply the square of the standard deviation, i.e., the variance of the distribution

of X is S2

X
=

∑

(X −X)2/(n− 1).

There are quotation marks around the word average in the definition of the standard

deviation because we divided by n − 1 even though there are n squared deviations in the

average. The reason for this is that, in a sense, there are only n − 1 individual pieces of

information contained in the collection of n deviations from the mean. It is readily verified

that the sum of the deviations from the mean (not the sum of their squares) is equal to

zero, i.e., Σ(X − X) = 0. This is the algebraic version of the fact that the mean is the

balance point of the distribution. Because of this fact, if we know the values of any n− 1

of the deviations, then we can determine the value of the remaining deviation. This is

the sense in which there are only n − 1 individual pieces of information contained in the

collection of n deviations from the mean; and is the reason that we divide by n− 1.
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The means, medians, standard deviations, ranges, and interquartile ranges for the

Guatemalan cholesterol level distributions are given in Table 3. Because all three of these

distributions are somewhat skewed to the right, we find that in all three cases the mean

is larger than the median. Notice the effects of excluding the outlier from the urban

group on these statistics. First consider the mean and the median; excluding this outlier

has essentially no effect on the median but has an appreciable effect on the mean. This

illustrates the sensitivity of the mean to extreme observations. Next consider the three

measures of variability. As we noted above, excluding the outlier has a large effect on the

range but little effect on the interquartile range. As with the mean, excluding the outlier

has an appreciable effect on the standard deviation. This illustrates that, like the mean,

the standard deviation is also sensitive to extreme observations.

In this example, if we base our comparisons of the location and the amount of vari-

ability in these distributions on the mean and standard deviation we reach essentially the

same conclusions as we did when using the five number summary.

Table 3. Summary statistics for the cholesterol example.

group mean median std. dev. range IQR

rural 157.02 152 31.75 137 38
urban (all) 216.87 206 39.92 197 43

urban (omit 330) 214.30 205.5 36.42 151 42

Example. EPA mileage values for subcompact cars. Table 4 contains the

EPA mileage values and some related information for 56 subcompact car model/engine

combinations. This information was obtained from the June 2000 edition of the model

year 2000 fuel economy guide provided on the DOT/EPA web site www.fueleconomy.gov.

If there were two or more listings for the same car model/engine combination, then only

one value was included. In particular, if mileage values were provided for a particular car

model/engine combination with both automatic and manual transmissions, then only the

mileage value for the manual transmission was included. The car models listed in the EPA

fuel economy guide are grouped into size classes based on the combined passenger and

cargo volume of the car. For example, subcompact cars have combined volumes between

85 and 99 cubic feet and compact cars have combined volumes between 100 and 109 cubic

feet. For this example we will consider the two mileage values (city and highway) as

response variables. The other variables in Table 4 might serve as potentially interesting

explanatory variables. In this example a car model/engine combination is a unit and we

have a pair of responses, city mileage and highway mileage, for each car model. We will

first consider the distributions of city and highway mileage values separately, ignoring the

fact that we have pairs of mileage values for each model.
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Table 4. Model year 2000 subcompact car EPA mileage values.

city denotes city mileage in miles per gallon
hiwy denotes highway mileage in miles per gallon
trans denotes transmission type (automatic or manual) and number of gears
displ denotes engine displacement in liters
cyl denotes number of cylinders
drv denotes front, rear, or all wheel drive

manufacturer model city hiwy trans displ cyl drv

Acura Integra 25 31 (M5) 1.8 4 F
Acura Integra(DOHC/VTEC) 25 30 (M5) 1.8 4 F
Bentley Azure 11 16 (A4) 6.8 8 R
Bentley Continental SC 11 16 (A4) 6.8 8 R
Bentley Continental T 11 16 (A4) 6.8 8 R
BMW 323CI 20 29 (M5) 2.5 6 R
BMW 328CI 21 29 (M5) 2.8 6 R
Chevrolet Camaro 19 30 (M5) 3.8 6 R
Chevrolet Camaro 18 27 (M6) 5.7 8 R
Chevrolet Cavalier 24 34 (M5) 2.2 4 F
Chevrolet Cavalier 23 33 (M5) 2.4 4 F
Chevrolet Metro 39 46 (M5) 1 3 F
Chevrolet Metro 36 42 (M5) 1.3 4 F
Ferrari Ferrari 456 MGT/MGTA 10 16 (M6) 5.5 12 R
Ford Escort ZX2 25 33 (M5) 2 4 F
Ford Mustang 20 29 (M5) 3.8 6 R
Ford Mustang 17 25 (M5) 4.6 8 R
Ford Mustang(4 Valve) 17 24 (M5) 4.6 8 R
Honda Civic 32 37 (M5) 1.6 4 F
Honda Civic(VTEC) 30 35 (M5) 1.6 4 F
Honda Civic(DOHC/VTEC) 26 31 (M5) 1.6 4 F
Honda Prelude 22 27 (M5) 2.2 4 F
Hyundai Tiburon 23 32 (M5) 2 4 F
Jaguar XK8 18 25 (A5) 4 8 R
Jaguar XKR 16 23 (A5) 4 8 R
Lexus SC 300/SC 400 19 23 (A4) 3 6 R
Lexus SC 300/SC 400 18 25 (A5) 4 8 R
Mercedes–Benz CLK320 21 29 (A5) 3.2 6 R
Mercedes–Benz CLK430 18 25 (A5) 4.3 8 R
Mitsubishi Eclipse 23 31 (M5) 2.4 4 F
Mitsubishi Eclipse 20 28 (M5) 3 6 F
Mitsubishi Mirage 33 40 (M5) 1.5 4 F
Mitsubishi Mirage 28 36 (M5) 1.8 4 F

This table is continued on the next page.
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Table 4. Model year 2000 subcompact car EPA mileage values
(continued from the preceding page).

manufacturer model city hiwy trans displ cyl drv

Pontiac Firebird/TransAm 19 30 (M5) 3.8 6 R
Pontiac Firebird/TransAm 18 27 (M6) 5.7 8 R
Pontiac Sunfire 24 34 (M5) 2.2 4 F
Pontiac Sunfire 23 33 (M5) 2.4 4 F
Rolls–Royce Corniche 11 16 (A4) 6.8 8 R
Saab Saab 9-3 Conv. 22 29 (M5) 2 4 F
Saab Saab 9-3 Viggen Conv. 20 29 (M5) 2.3 4 F
Saturn SC 28 40 (M5) 1.9 4 F
Saturn SC(DOHC) 27 38 (M5) 1.9 4 F
Subaru Impreza AWD 23 29 (M5) 2.2 4 A
Subaru Impreza AWD 21 28 (M5) 2.5 4 A
Suzuki Esteem 30 37 (M5) 1.6 4 F
Suzuki Esteem 28 35 (M5) 1.8 4 F
Suzuki Swift 36 42 (M5) 1.3 4 F
Toyota Solara Conv. 23 30 (A4) 2.2 4 F
Toyota Solara Conv. 19 26 (A4) 3 6 F
Toyota Celica 28 34 (M5) 1.8 4 F
Toyota Celica 23 32 (M6) 1.8 4 F
Volkswagen Cabrio 24 31 (M5) 2 4 F
Volkswagen New Beetle 25 31 (M5) 1.8 4 F
Volkswagen New Beetle 24 31 (M5) 2 4 F
Volvo C70 Conv. 20 26 (M5) 2.3 5 F
Volvo C70 Conv. 19 26 (A4) 2.4 5 F

The stem and leaf histograms of Figure 3 summarize the distributions of the EPA city

and highway gas mileage values for the n = 56 model year 2000 subcompact car models.

Notice that each of these distributions includes five unusually low mileage values. Five car

models have city mileage values of 10 or 11 mpg and five car models have highway mileage

values of 16 mpg. It turns out that the five car models with the lowest city mileage values

are also the five car models with the lowest highway mileage values. In both distributions

there is a large separation between the five low mileage values and the mileage values of

the 51 other subcompact car models. Before we proceed with our examination of this

example we need to look at the original data, including all relevant information about the

car models, to see why these five car models have such low mileage values.
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Figure 3. Stem and leaf histograms for model year
2000 subcompact car EPA mileage values.

The stem represents tens and the leaf represents ones. (mpg)
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From Table 4 we find that the five subcompact car models with the lowest city and

highway mileage values are: three Bentley models, one Ferrari model, and one Rolls–

Royce model. This group of car models contains four ultra–luxury models and one high

performance sports car. Since these five car models do not fit in with the usual conception

of a subcompact car, we will remove them from the data. Thus the remainder of this

discussion is restricted to the collection of n = 51 subcompact car models remaining after

removing the five car models discussed above.

We will first make some observations based on these stem and leaf histograms. The city

and highway mileage distributions both appear to be skewed to the right. This indicates

that, for both the city and highway mileage values, there tends to be more variability

among the larger mileage values than among the lower mileage values. Each of these

mileage histograms has a single peak. The peak in the city mileage histogram is located

near the lower end of the distribution while the peak in the highway mileage distribution

is more centrally located. The locations of these peaks and the mound shapes of these

distributions indicate that, for subcompact cars, the car mileage values tend to be clustered

around the low 20’s and the highway mileage values tend to be clustered around the upper
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20’s and lower 30’s. As we would expect, the highway mileage distribution is located higher

on the number line than is the city mileage distribution indicating that these subcompact

cars tend to get higher mileage on the highway than they do in the city.

Table 5. Subcompact car EPA mileage summary statistics,
excluding the five unusual car models.

statistic city highway
n 51 51

min 16 23
Q1 19 27

med 23 30
Q3 26 34

max 39 46

range 23 23
IQR 7 7

Q1− min 3 4
med −Q1 4 3
Q3− med 3 4
max −Q3 13 12

mean 23.53 31.12
std dev 5.27 5.18

We will now quantify and expand on our observations about the subcompact car

mileage distributions. Relevant summary statistics are given in Table 5. In the discussion

below, we will use C to denote the city mileage of a subcompact car model and H to

denote the highway mileage of a subcompact car model.

First consider the shapes of the subcompact car mileage distributions. For the city

mileage distribution we see that: max(C) − med(C) = 16 > 7 = med(C) − min(C),

max(C) − Q3(C) = 13 > 3 = Q1(C) − min(C), and C = 23.53 > 23 = med(C). All of

these comparisons support our contention that the city mileage distribution is skewed to the

right. Notice that Q3(C)−med(C) = 3 which is approximately equal to med(C)−Q1(C) =

4; this suggests that the middle half of this distribution is reasonably symmetric. For the

highway mileage distribution we see that: max(H) − med(H) = 16 > 7 = med(H) −

min(H), max(H)−Q3(H) = 12 > 4 = Q1(H)−min(H), and H = 31.12 > 30 = med(H).

All of these comparisons support our contention that the highway mileage distribution

is skewed to the right. Notice that Q3(H) − med(H) = 4 which is approximately equal

to med(H) − Q1(H) = 3; this suggests that the middle half of this distribution is also

reasonably symmetric.
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Next consider the locations of the subcompact car mileage distributions. The median

city mileage med(C) = 23 is less than the median highway mileage med(H) = 30 and the

mean city mileage C = 23.53 is less than the mean highway mileage H = 31.12. Both

of these comparisons support our contention that the city mileages of subcompact cars

tend to be lower than the highway mileages of subcompact cars. Notice that there is some

overlap of the city mileages and the highway mileages indicating that some subcompact

cars have city mileage values that are higher than the highway mileage values of some

subcompact cars and vice versa.

Finally consider the variability in these subcompact car mileage distributions. The

facts that: range(C) = 23 = range(H), IQrange(C) = 7 = IQrange(H), and SC = 5.27

is approximately equal to SH = 5.18, all support the contention that the variability in

subcompact car city mileage values is about the same as the variability in subcompact car

highway mileage values.

In our comparison of the city and highway mileages for subcompact cars, we ignored

the fact that we actually have pairs of city and highway mileage values for each of the

51 car models. If we want to know how the highway mileage of a subcompact car model

relates to its city mileage, then we need to base our comparison on the paired city and

highway mileages. One way to do this is to consider the difference between the highway

mileage and the city mileage for a car model. For each car model we will determine this

difference value by subtracting its city mileage value from its highway mileage value. The

highway minus city mileage differences for the n = 51 subcompact car models are given

in Table 6. The 51 difference values in Table 6 are listed (reading across a row and then

going to the next row) in the same order as the 51 city and highway mileage values are

listed in Table 4, skipping the five unusual car models. A stem and leaf histogram for these

differences is given in Figure 4 and the difference summary statistics are given in Table 7.

In the discussion below, we will use D to denote the difference D = H − C between

the highway mileage of a subcompact car model and its city mileage. From the stem and

leaf histogram the shape of the subcompact car mileage difference distribution appears to

be mound shaped and slightly skewed to the right. The facts: max(D) −med(D) = 5 >

3 = med(D)−min(D), max(D)−Q3(D) = 3 > 2 = Q1(D)−min(D), Q3(D)−med(D) =

2 > 1 = med(D) − Q1(D), and D = 7.59 > 7 = med(D), all support our contention

that the mileage difference distribution is slightly skewed to the right. This distribution

has a single peak (mode) at 7 indicating that for these subcompact car models it is most

common for the highway mileage value to exceed the city mileage value by 7 mpg. For the

majority of these subcompact car models the mileage difference is fairly close to 7 mpg.

However, there are a few car models for which this mileage difference is a good bit larger.

For example, the car model with the largest highway minus city mileage difference is the

Saturn SC model without DOHC for which the mileage difference is 12 mpg.
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Table 6. Model year 2000 subcompact car EPA mileage differences
(highway - city,) excluding the five unusual car models.

6 5 9 8 11 9 10 10 7 6
8 9 7 8 5 5 5 5 9 7
7 4 7 8 7 8 8 7 8 11
9 10 10 7 9 12 11 6 7 7
7 6 7 7 6 9 7 6 7 6
7

Figure 4. Stem and leaf histogram for subcompact car
EPA mileage differences (highway - city), excluding
the five unusual car models.

The stem represents ones and the leaf represents tenths (mpg).
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Table 7. Subcompact car EPA mileage difference (highway - city)
summary statistics, excluding the five unusual car models.

min = 4 Q1−min = 2
Q1 = 6 med−Q1 = 1

med = 7 Q3−med = 2
Q3 = 9 max −Q3 = 3

max = 12

range = 8 mean = 7.59
IQR = 3 std dev = 1.80

Using the mean mileage difference D = 7.59, we conclude that, on the average, the

highway mileage of a subcompact car model is 7.59 mpg larger than its city mileage. Based

on the median mileage difference med(D) = 7, we would conclude that the highway mileage

of a subcompact car model is 7 mpg larger than its city mileage; with half of the models

having a difference less than 7 and half having a difference larger than 7.



3.2 Modified box plots 53

In this example, the difference between the highway and city mileage means, H−C =

31.12− 23.53 = 7.59, is equal to the mean mileage difference, D = 7.59; and the difference

between the highway and city mileage medians, med(H)−med(C) = 30− 23 = 7, is equal

to the median mileage difference, med(D) = 7. In paired data situations like this the

difference of the two means is always equal to the mean of the differences. On the other

hand, the difference between the two medians does not always equal the median of the

differences.

It is interesting to note that the five car models which we excluded as outliers due

to their unusually low city and highway mileage values would not be unusual in terms of

their mileage differences (one 6 and four 5’s).

3.2 Modified box plots.

In this section we will consider a modified box plot designed to provide more informa-

tion about the tails of the distribution. In the modified box plot a more complex method,

which provides an indication of extreme observations, is used to construct the whiskers.

The simple box plot defined in Section 3.1 has a box, which extends from the first

quartile Q1 to the third quartile Q3 divided into two parts by a line at the median,

representing the middle of the distribution, and two whiskers, extending from the ends of

the box to the most extreme values (the minimum and the maximum), representing the

tails of the distribution.

Observations located near the ends of a distribution are said to be extreme. The

whiskers in a simple box plot indicate the range of the lower and upper tails and the

locations of the most extreme values but do not provide details about the behavior of

observations near the extremes of the distribution. An extreme observation which is widely

separated from the majority of the observations is said to be an outlier. Outliers deserve

special consideration, since they may represent interesting exceptional cases or they may

represent errors made in recording the data. Note that, depending on the spacing of the

observations, extreme observations may or may not be considered outliers. Outliers are

easy to spot in a stem and leaf histogram but not in a simple box plot.

Before we can construct a modified box plot we need to quantify what we mean by an

extreme observation. We will use multiples of the interquartile range (IQR) to distinguish

between two types of extreme observations. First notice that the IQR is the range of the

middle half of the data and the length of the box in the box plot. An observation which

is much more than the IQR below the first quartile Q1 or much more than the IQR above

the third quartile Q3 might reasonably be classified as an extreme observation. We will

classify observations which are more than 1.5× IQR but less than 3× IQR below the first

quartile or above the third quartile as somewhat extreme. That is, an observation between

Q1−3× IQR and Q1−1.5× IQR or between Q3+1.5× IQR and Q3+3× IQR is said to be
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somewhat extreme. We will classify observations which are more than 3× IQR below the

first quartile or above the third quartile as very extreme. That is, an observation below

Q1 − 3× IQR or above Q3 + 3× IQR is said to be very extreme.

The quantities Q1 − 1.5× IQR and Q3 +1.5× IQR are known as the lower and upper

inner fences, and the quantities Q1 − 3× IQR and Q3 + 3 × IQR are known as the lower

and upper outer fences. To construct a modified box plot we first find the five number

summary values and the lower and upper fences. To construct the upper whisker we first

draw a line from the upper end of the box, Q3, extending to the largest observation which

is less than the upper inner fence Q3 + 1.5× IQR. We then indicate observations beyond

the upper inner fence using two symbols; one symbol, such as a 0, is used for observations

between the upper inner fence and the upper outer fence and another symbol, such as a *,

is used for observations beyond the upper outer fence. The lower whisker is constructed

in an analogous fashion.

Consider the urban cholesterol level distribution for the Guatemalan cholesterol ex-

ample. In this example we have Q1 = 196, Q3 = 239, IQR = 43, 1.5 × IQR = 64.5, and

3 × IQR = 129. The inner fences are 196 − 64.5 = 131.5 and 239 + 64.5 = 303.5. There

are no observed cholesterol levels below the lower inner fence but there is one observed

cholesterol level, 330 mg/dL, above the upper inner fence. The largest cholesterol level

between Q3 and the upper inner fence is 284 mg/dL. The outer fences are 67 and 368.

There are no observed cholesterol levels outside the outer fences. The modified box plot

for this cholesterol level distribution is given in Figure 5. In this example we would say

that the one cholesterol level (330) marked as somewhat extreme is an outlier, since it is

fairly widely separated from the other values.

Figure 5. Modified box plot for (all) urban cholesterol levels.
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3.3 Numerical measures of relative position

There are many situations when we might wish to quantify the position of a particular

value of a variable relative to a sample of values. For example, when presented with the

results of a standardized test, we would like to know where our score stands relative to the

scores of everyone else who took the test. We will discuss two different ways to quantify

the relative position of a particular value of a variable.

The first measure of the relative position of a particular value X is the percentile rank

of X which quantifies the location of X in an ordered listing of all of the values in the

sample. The percentile rank of a particular value X is the percentage of the values in
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the sample that are less than or equal to the particular value X . More specifically, if m of

the n observed values in the sample are less than or equal to the particular value, then the

percentile rank of the particular value is (m/n)100%. Reports of scores on standardized

tests often include the actual score and its percentile rank. The percentile rank of an

individual’s test score indicates how the individual performed on the test relative to the

group by providing the percentage of the group that scored no higher than the individual.

Notice that the five number summary values, the minimum, Q1, the median, Q3,

and the maximum, are the 0th, 25th, 50th, 75th, and 100th percentiles of the distribution.

Therefore, the use of the five number summary values to describe a distribution is an

example of the use of selected percentiles to describe a distribution.

Consider the relative standing, in the Guatemalan cholesterol example, of a hypothet-

ical individual with a cholesterol level of 210 mg/dL. Using Table 1 or Figure 1 we find

that: The percentile rank of 210 in the rural group is 91.84% (45/49 = .9184), since 45 of

the 49 rural Guatemalans have cholesterol levels of 210 or less; and, the percentile rank of

210 in the urban group is 51.11% (23/45 = .5111), since 23 of the 45 urban Guatemalans

have cholesterol levels of 210 or less. Almost all of the rural Guatemalans have cholesterol

levels of 210 or less; thus it is clearly unusual for a rural Guatemalan to have a Cholesterol

level which is higher than 210. On the other hand, roughly half of the urban Guatemalans

have cholesterol levels of 210 or less.

We can also use this percentile rank idea to quantify the difference in location between

these cholesterol level distributions. For example, 81.63% of the rural Guatemalans have

cholesterol levels of 188 or less, while 80% of the urban Guatemalans have cholesterol levels

above 188.

The second measure of the relative position of a particular value X is the Z–score of

X which quantifies the location of X relative to the mean X of the sample in terms of

the standard deviation SX of the sample. Since the Z–score is based on X and SX , the

Z–score is only appropriate when X and SX are appropriate measures of the center and

variability in the sample, respectively. We will develop the Z–score in two stages.

First, we need a measure of the location of X relative to the center of the distribution

as determined by the mean X. The deviation, X −X, of X from the mean X is such a

measure. The deviation X −X is the signed distance from the particular value X to the

meanX . IfX−X is negative, thenX is below (smaller than) the mean. IfX−X is positive,

then X is above (larger than) the mean. In summary, the sign of the deviation X − X

indicates the location of X relative to the mean X; and the magnitude of the deviation

|X − X| is the distance from X to the mean X , measured in the units of measurement

used for the observation X .

Second, we want a measure of the location of X relative to the mean X which takes

the amount of variability in the data into account. We will obtain such a measure by
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using the standard deviation SX of the sample to standardize the deviation X−X . Given

a particular value X , the sample mean X, and the sample standard deviation SX , the

Z–score corresponding to X is

Z =
X −X

SX

.

The sign of the Z–score indicates the location of X relative to the mean X and the

magnitude of the Z–score is the distance from X to the mean X in terms of standard

deviation units. For example, if Z = 2, then X is two standard deviation units above the

mean (X = X + 2SX), and, if Z = −2, then X is two standard deviation units below the

mean (X = X − 2SX).

Returning to the Guatemalan cholesterol example and the relative position of an

individual with a cholesterol level of 210, let R denote the cholesterol level of a rural

Guatemalan and let U denote the cholesterol level of an urban Guatemalan. The rural

cholesterol mean is R = 157.02 mg/dL and the rural cholesterol standard deviation is

SR = 31.75 mg/dL. The urban cholesterol mean is U = 216.87 mg/dL and the urban

cholesterol standard deviation is SU = 39.92 mg/dL. The raw deviation of a cholesterol

level of 210 from the rural mean is 210−R = 52.98 mg/dL. Since this quantity is positive,

we see that a cholesterol level of 210 mg/dL exceeds the rural mean by 52.98 mg/dL. The

raw deviation of a cholesterol level of 210 from the urban mean is 210−U = −6.87 mg/dL.

Since this quantity is negative, we see that a cholesterol level of 210 mg/dL is 6.87 mg/dL

below the urban mean.

Standardizing these raw deviations yields a Z–score of 52.98/31.75 = 1.67 for a ru-

ral cholesterol level of 210 mg/dL and a Z–score of −6.87/39.92 = −.17 for an urban

cholesterol level of 210 mg/dL. Notice that these Z–scores are unitless numbers (number

of standard deviation units from the mean) which are directly comparable. Therefore, a

rural cholesterol level of 210 mg/dL is 1.67 standard deviation units above the rural mean

cholesterol level and an urban cholesterol level of 210 mg/dL is .17 standard deviation

units below the urban mean cholesterol level. In terms of standard deviation units, we see

that 210 mg/dL is about 10 times as far away from the mean cholesterol level for the rural

group as it is for the urban group. In other words, when taking variability into account

we find that it is much more unusual for a rural Guatemalan to have a cholesterol level of

210 than it is for an urban Guatemalan to have a cholesterol level of 210.

The remainder of this section is devoted to two interesting results which establish a

connection between Z–scores and percentages. The first result, the 68% − 95% − 99.7%

rule, is an approximate rule not a mathematical fact. Strictly speaking, this rule only

applies to distributions that are unimodal (single peaked), mound shaped, and symmetric.

A formal statement of this rule is provided below.
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The 68%-95%-99.7% rule. For a distribution that is unimodal (has a single peak),

mound shaped, and reasonably symmetric:

i) Approximately 68% of the observed values will be within one standard deviation unit of

the mean. That is, approximately 68% of the observed values will have a Z–score that is

between -1 and 1.

ii) Approximately 95% of the observed values will be within two standard deviation units

of the mean. That is, approximately 95% of the observed values will have a Z–score that

is between -2 and 2.

iii) Approximately 99.7% of the observed values will be within three standard deviation

units of the mean. That is, approximately 99.7% of the observed values will have a Z–score

that is between -3 and 3. Notice that this indicates that almost all of the observed values

will be within three standard deviations of the mean.

When it is applicable, the 68% − 95% − 99.7% rule, can be used to determine the

relative position of a particular value of a variable based on the corresponding Z–score.

Notice that this rule indicates that a fairly large proportion (68%) of the sample will lie

within one standard deviation of the mean; a very large proportion (95%) of the sample

will lie within two standard deviations of the mean; and, almost all (99.7%) of the sample

will lie within three standard deviations of the mean.

The rural and urban cholesterol distributions are both unimodal, mound shaped, and

reasonably symmetric. For the rural group we find that 34 of the 49 cholesterol levels

(69.39%) are within one standard deviation of the mean; 46 of the 49 cholesterol levels

(93.88%) are within two standard deviation of the mean; and, all 49 cholesterol levels

(100%) are within three standard deviation of the mean. For the urban group we find that

34 of the 45 cholesterol levels (75.56%) are within one standard deviation of the mean; 42

of the 45 cholesterol levels (93.33%) are within two standard deviation of the mean; and,

all 45 cholesterol levels (100%) are within three standard deviation of the mean. Notice

that the 68%− 95%− 99.7% rule works better for the rural group cholesterol distribution,

since it is more symmetric than the urban group cholesterol distribution. We would get

better agreement of the urban group cholesterol levels with the 68%− 95%− 99.7% rule if

we excluded the outlier.

Example. Heights of adult males in the United Kingdom. The heights (in

inches) of 8585 adult males born in the United Kingdom (including the whole of Ireland)

are summarized in Table 8. This example is taken from Kendall and Stuart, The Advanced

Theory of Statistics, vol.1, Griffin, (1977), 8. The data are from the Final Report of the

Anthropometric Committee to the British Association, (1883), 256.

The histogram for the distribution of the 8585 heights of adult males for the United

Kingdom height example in Figure 6 is unimodal, mound shaped, and symmetric. The

sample mean height for this sample is 67.02 inches and the height standard deviation is
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2.57 inches. For this example we find that 5835 of the 8585 heights (67.97%) are within one

standard deviation of the mean height; 8307 of the 8585 heights (96.76%) are within two

standard deviation of the mean height; and, 8542 of the 8585 heights (99.5%) are within

three standard deviation of the mean height. Hence, the 68%− 95%− 99.7% rule is quite

accurate in its predictions for this UK height example.

Table 8. UK male heights.

height frequency

57 2
58 4
59 14
60 41
61 83
62 169
63 394
64 669
65 990
66 1223
67 1329
68 1230
69 1063
70 646
71 392
72 202
73 79
74 32
75 16
76 5
77 2

total 8585
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Figure 6. Histogram for UK heights.
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The second result, Chebyshev’s rule, is a mathematical fact that is true for any distri-

bution. Unfortunately, the universal applicability of Chebyshev’s rule forces its conclusions

to be of more theoretical than practical interest. That is, the conclusions of Chebyshev’s

rule are valid for any distribution; but, they are often so imprecise that they are of limited

practical use.

Chebyshev’s rule. For any distribution:

i) At least 75% of the observed values will be within two standard deviation units of the

mean. That is, at least 75% of the observed values will have a Z–score that is between -2

and 2.

ii) At least 89% of the observed values will be within three standard deviation units of the

mean. That is, at least 89% of the observed values will have a Z–score that is between -3

and 3.

iii) In general, given a number k > 1, at least [1 − (1/k2)]100% of the observed values

will be within k standard deviation units of the mean, i.e., at least this percentage of the

observed values will have a Z–score that is between -k and k.

3.4 Summary

In this chapter we introduced numerical summary values (statistics) and discussed

the use of such statistics to quantify certain aspects of a distribution and to compare two

distributions. Most of our attention focused on the shape of a distribution, the location

of the distribution on the number line, and the amount of variability in the distribution.

We began by defining the five number summary (minimum, Q1, median, Q3, maximum)

which partitions the distribution into fourths. We then demonstrated how the five number

summary and related statistics, such as the range and interquartile range, can be used
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to summarize a distribution and to compare and contrast two distributions. A simple

graphical representation of a distribution, the box plot, based on the five number summary

was also introduced. We also defined the mean (a measure of location) and the standard

deviation (a measure of variability).

Shape (skewness) Comparisons of the distances among the five number summary values

can be used to assess and quantify skewness in a distribution as indicated below.

1. To quantify overall skewness in the distribution: compare (median – minimum) to

(maximum – median).

2. To quantify skewness in the middle of the distribution: compare (median – Q1) to

(Q3 – median).

3. To quantify skewness in the tails of the distribution: compare (Q1 – minimum) to

(maximum – Q3).

Location The median and the mean are used to quantify the location of the center of a

distribution on the number line. Recall that the median indicates the point which divides

the distribution into halves (the histogram has equal area on each side of the median)

while the mean indicates the point at which the distribution balances (the histogram has

its center of gravity at the mean). If the distribution is symmetric, then the mean and the

median are equal and either will suffice as a measure of the center of the distribution. If

the distribution is heavily skewed, then the median is generally preferred over the mean as

a measure of the center of the distribution. When comparing two distributions which have

more or less the same shape either the median or the mean will suffice for comparing the

locations of the distributions. But, when comparing distributions with different shapes the

median is generally preferred over the mean for comparing the locations of the distributions.

Variability The range (maximum – minimum), interquartile range (Q3 −Q1), and stan-

dard deviation are used to quantify the variability in a distribution. For each of these

statistics a larger value indicates more variability.

In Section 3.3 we discussed the use of percentile ranks and Z–scores to quantify the

relative position of a particular value relative to the distribution of a sample. These ideas

and in particular the Z–score, which indicates the location of a value relative to the mean

in terms of standard deviation units, will reappear when we discuss inference in later

chapters.
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3.5 Exercises

For each of the examples in Section 1.2 which involve quantitative variables:

1. Determine the following summary statistics: the five number summary (minimum, Q1,

median, Q3, maximum), the range, the interquartile range, the mean, and the standard

deviation. (See the notes below for the examples with two or more groups.)

2. Discuss the distribution of the variable(s) using the summary statistics of question 1 to

lend quantitative support to your discussion.

Notes:

For the examples with two or more groups (DiMaggio and Mantle, gear tooth strength),

find the indicated summary statistics and compare and contrast the distributions of the

variable for the two (or more) groups.

For the paired data examples (wooly–bear cocoons, homophone confusions) find the differ-

ences for each pair of data values and find the indicated summary statistics and describe

the distribution of the differences.
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