
5.1 Introduction 77

Chapter 5

Inference for a Proportion

5.1 Introduction

A dichotomous population is a collection of units which can be divided into two

nonoverlapping subcollections corresponding to the two possible values of a dichotomous

variable, e.g. male or female, dead or alive, pass or fail. It is conventional to refer to one

of the two possible values which dichotomize the population as “success” and the other as

“failure.” These generic labels are not meant to imply that success is good. Rather, we can

think of choosing one of the two possible classifications and asking “does the unit belong

to the subcollection of units with this classification?” with the two possibilities being yes

(a success) and no (a failure). Thus, generically, we can refer to the two subcollections of

units which comprise the dichotomous population as the success group and the failure

group. When a unit is selected from the population and the unit is found to be a member

of the success group we say that a success has occurred. Similarly, when a member of the

failure group is selected we say that a failure has occurred.

The proportion of units in the population that belong to the success group is the

population success proportion. This population success proportion is denoted by the

lower case letter p. The population success proportion p is a parameter, since it is a nu-

merical characteristic of the population. Notice that the population failure proportion

1− p is also a parameter.

The sample success proportion or observed proportion of successes in a sample

from a dichotomous population is denoted by p̂ (read this as p hat). The observed propor-

tion of successes in the sample p̂ is a statistic, since it is a numerical characteristic of the

sample.

We will consider two forms of inference about the population success proportion p of

a dichotomous population. In Section 5.2 we will consider the use of the observed success

proportion p̂ to estimate the value of the population success proportion p. In Section 5.3

we will consider the use of the observed success proportion p̂ to assess the support for

conjectures about the value of the population success proportion p.

The approach to inference that we will use here and in other contexts in the sequel

is based on the observed value of a statistic and the sampling distribution of the statistic.

The sampling distribution of a statistic is the distribution of the possible values of

the statistic that could be obtained from random samples. We can think of the sampling

distribution of a statistic as a theoretical relative frequency distribution for the possible

values of the statistic which describes the sample to sample variability in the statistic. The
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form of the sampling distribution of a statistic depends on the nature of the population

the sample is taken from, the size of the sample, and the method used to select the sample.

The mean and the standard deviation of the sampling distribution are of particular

interest. The mean of the sampling distribution indicates whether the statistic is biased as

an estimator of the parameter of interest. If the mean of the sampling distribution is equal

to the parameter of interest, then the statistic is said to be unbiased as an estimator of the

parameter. Otherwise, the statistic is said to be biased as an estimator of the parameter.

To say that a statistic is unbiased means that, even though the statistic will overestimate

the parameter for some samples and will underestimate the parameter for other samples,

it will do so in such a way that, in the long run, the values of the statistic will average

to give the correct value of the parameter. When the statistic is biased the statistic will

tend to consistently overestimate or consistently underestimate the parameter; therefore,

in the long run, the values of a biased statistic will not average to give the correct value

of the parameter. The standard deviation of the sampling distribution is known as the

standard error of the statistic. The standard error of the statistic provides a measure of

the sample to sample variability in the values of the statistic. The standard error of the

statistic can be used to quantify how close we can expect the value of the statistic to be

to the value of the parameter.

Note regarding formulae and calculations. Throughout this book selected for-

mulae and intermediate calculations are provided to clarify ideas and definitions. Some

readers may find it useful to reproduce these calculations; however, this is not necessary,

since a modern statistical calculator or computer statistics program will perform these

calculations and provide the desired answer.

5.2 Estimating a proportion

When sampling from a dichotomous population a primary goal is to estimate the

population success proportion p, i.e., to estimate the proportion of units in the population

success group. The observed proportion of successes in the sample p̂ is the obvious estimate

of the corresponding population success proportion p.

Clearly there will be some variability from sample to sample in the computed values

of the statistic p̂. That is, if we took several random samples from the same dichotomous

population, we would not expect the computed sample proportions, the p̂’s, to be exactly

the same. Two questions about p̂ as an estimator of p that we might ask are: (1) Can we

expect the sample success proportion p̂ to be close to the population success proportion p?

and (2) Can we quantify how close p̂ will be to p? The sampling distribution of p̂, which

describes the sample to sample variability in p̂, can be used to address these questions.

In the introduction to this chapter we mentioned that the sampling distribution of

a statistic depends on the way in which the sample is selected, as well as the nature
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of the population being sampled. Therefore, before we continue with our discussion of

the behavior of p̂ as an estimator of p we need to describe a model for sampling from a

dichotomous population. This model will be presented in terms of a sequence of n trials.

In this context a trial is a process of observation or experimentation which results in one

of two distinct outcomes (success or failure).

A sequence of n trials is said to constitute a sequence of n Bernoulli trials with

success probability p if the following conditions are satisfied.

1. There is a common probability of success p for every trial. That is, on every trial the

probability that the outcome of the trial will be a success is p.

2. The outcomes of the trials are independent of each other. That is, if we knew the out-

come of a particular trial or trials this would provide no additional information about

the probability of observing a success (or failure) on any other trial. For example, if

we knew that a success (or failure) occurred in the first trial, this would not change

the probability of success in any other trial.

The simple examples described below will help to clarify the definition of a sequence

of n Bernoulli trials and the connection between sampling from a dichotomous population

and Bernoulli trials.

Example. Tossing a fair die. Let a trial consist of tossing a fair (balanced) die and

observing the number of dots on the upturned face. Define a success to be the occurrence

of a 1, 2, 3, or 4. Since the die is fair, the probability of a success on a single trial is

p = 4/6 = 2/3. Furthermore, if the die is always tossed in the same fashion, then the

outcomes of the trials are independent. Therefore, with success defined as above, tossing

the fair die n times yields a sequence of n Bernoulli trials with success probability p = 2/3.

Example. Drawing balls from a box. Consider a box containing balls (the

population) of which 2/3 are red (successes) and 1/3 are green (failures). Suppose that a

simple random sample of size n is selected with replacement from this box. That is, a ball

is selected at random, its color is recorded, the ball is returned to the box, the balls in the

box are mixed, and this process is repeated until n balls have been selected. Thinking of

each selection of a ball as a trial we see that this procedure is abstractly the same as the die

tossing procedure described above. That is, the outcomes of the draws are independent,

and every time that a ball is drawn the probability of a success (drawing a red ball) is

p = 2/3. Therefore, selecting a simple random sample of n balls with replacement from

this collection of balls can be viewed as observing a sequence of n Bernoulli trials with

success probability p = 2/3. In general, taking a simple random sample of size n selected

with replacement from a population with success proportion p can be viewed as observing

a sequence of n Bernoulli trials with success probability p.
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Situations like the die tossing example above do not fit into the sample and population

setup that we have been using. That is, in the die tossing example there is not a physical

population of units from which a sample is obtained. In a situation like this we can think

of the outcomes of the n Bernoulli trials (the collection of successes and failures that make

up the sequence of outcomes of the n trials) as a sample of values of a variable. The

probability model specifies that the probability of success on a single trial is p and the

probability of failure is 1−p. This model describes the population of possible values of the

variable. Therefore, we can envision a dichotomous population of values (successes and

failures) such that the population success proportion is p; and we can think of the outcome

of a single trial as the selection of one value at random from this dichotomous population

of values. With this idea in mind, we see that the success probability p of this probability

model is a parameter and the observed proportion of successes in the n trials is a statistic.

Returning to our discussion of the sampling distribution of p̂ we first present two

important properties of this sampling distribution. The observed proportion of successes p̂

in a sequence of n Bernoulli trials with success probability p (or equivalently the observed

proportion of successes p̂ in a simple random sample selected with replacement from a

dichotomous population with population success proportion p) has a sampling distribution

with the following properties.

1. The mean of the sampling distribution of p̂ is the population success probability p.

Therefore, p̂ is unbiased as an estimator of p.

2. The population standard error of p̂, denoted by S.E.(p̂), is

S.E.(p̂) =

√
p(1− p)

n
.

The population standard error of p̂ depends on n, which will be known, and p, which

will be unknown. Notice that the population standard error gets smaller when n gets

larger. That is, when sampling from a fixed dichotomous population, the variability in

p̂ as an estimator of p is smaller for a larger sample size than it is for a smaller sample

size. This property reflects the fact that a larger sample provides more information than a

smaller sample. The dependence of the population standard error of p̂ on the population

success probability p is more complicated. The quantity p(1 − p) attains its maximum

value of 1/4 when p = 1/2 and approaches zero as p approaches zero or one. Therefore,

for a fixed sample size n, there will be more variability in p̂ as an estimator of p when p

is close to 1/2 than there will be when p is close to zero or one. This behavior reflects

the fact that a dichotomous population is most homogeneous when p is near the extremes

p = 0 and p = 1, and is least homogeneous when p is close to 1/2.
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In many sampling situations the sample is not selected with replacement. For example,

in an opinion poll we would not allow the same person to respond twice. We will now

consider the effects of sampling without replacement.

Example. Drawing balls from a box (revisited). We will now consider how

the ball drawing example from above changes when the simple random sample is selected

without replacement. As before, let the box containing the balls (the population) be such

that 2/3 are red (successes) and 1/3 are green (failures). However, suppose that the simple

random sample of n balls is selected without replacement. That is, a ball is selected at

random and its color is recorded and this process is repeated, without returning the ball

to the box, until n balls have been selected. It is readily verified that the resulting simple

random sample of size n selected without replacement cannot be viewed as a sequence

of n Bernoulli trials. To see this suppose that the box contains 12 balls of which 8 are

red and 4 are green. The probability of selecting a red ball on the first draw, denoted by

P (red first), is P (red first) = 8/12 = 2/3. The probability that the second ball drawn is

red clearly depends on the color of the first ball that was drawn. If the first ball drawn

was red, then P (red second given red first) = 7/11. However, if the first ball drawn was

green, then P (red second given green first) = 8/11. Notice that these probabilities are

not the same and neither of them is equal to the population success proportion p = 2/3.

Therefore, when the sample is selected without replacement, the sampling process is not

the same as observing a sequence of Bernoulli trials, since the draws are not independent

(the probability of drawing a red ball (success) depends on what happened in the earlier

draws) and, as a consequence of this lack of independence, the probability of red (success)

is not the same on each draw (trial).

The sampling distribution of the observed success proportion p̂ is not the same when

p̂ is based on a sample selected without replacement as it is when p̂ is based on a sample

selected with replacement. In both sampling situations, the mean of the sampling distri-

bution of p̂ is the population success proportion p. Thus p̂ is unbiased as an estimator of p

whether the sample is selected with or without replacement. On the other hand, the stan-

dard error of p̂ is not the same when p̂ is based on a sample selected without replacement

as it is when p̂ is based on a sample selected with replacement. (The standard error of

p̂ is smaller when the sample is selected without replacement than it is when the sample

is selected with replacement.) More specifically, unlike the formula for the standard error

of p̂ when the sample is selected with replacement which does not depend on the size of

the population being sampled, when sampling without replacement the standard error of

p̂ depends on the size of the population. Fortunately, if the size of the population is very

large relative to the size of the sample, then, for practical purposes, the probability of
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obtaining a success is essentially constant, the outcomes of the draws are essentially inde-

pendent, and we can use the standard error formula based on the assumption of sampling

with replacement even though the sample was selected without replacement.

Remark. When p̂ is computed from a simple random sample of size n selected without

replacement from a dichotomous population of size N , the population standard error of

p̂, S.E.(p̂) =
√

fp(1− p)/n, is smaller than the population standard error for a sample

selected with replacement by a factor of
√
f , where f = (N − n)/(N − 1). The factor f is

known as the finite population correction factor and its effect is most noticeable when N is

small relative to n. If N is very large relative to n, then f ≈ 1 and the two standard errors

are essentially equal. Actually, if N is very large relative to n and the data correspond to a

simple random sample, then the sampling distribution of p̂ is essentially the same whether

the sample is selected with or without replacement.

The sampling distribution of p̂ can be represented in tabular form as a probability

distribution or in graphical form as a probability histogram. The probability distribu-

tion of p̂ is a theoretical relative frequency distribution which indicates the probability or

theoretical relative frequency with which each of the possible values of p̂ will occur. The

probability histogram of p̂ is the theoretical relative frequency histogram corresponding

to the probabilities (theoretical relative frequencies) in the probability distribution. It is

possible to determine the exact sampling distribution of p̂, in fact, it is even possible to

find a formula which gives the probabilities of each of the possible values of p̂. However,

for our purposes it is more convenient to work with an approximation to the sampling

distribution of p̂. (The exact sampling distributions of p̂ are discussed in Chapter 4a.)

Before we discuss this approximation, which is based on the standard normal distribution,

we need to briefly discuss the standard normal distribution.

The normal distribution is widely used as a model for the probability distribution of

a continuous variable. We will discuss normal distributions in general in more detail in

Chapter 7. Here we will restrict our attention to the standard normal distribution and its

use as an approximation to the sampling distribution of p̂.

Before we discuss the standard normal distribution we first need to briefly consider

the representation of a continuous probability model via a density curve. A density curve

is a nonnegative curve for which the area under the curve (over the x–axis) is one. We

can think of the density curve as a smooth version of a theoretical probability histogram

with the rectangles of the histogram replaced by a smooth curve indicating where the tops

of the rectangles would be. With a continuous variable it does not make sense to talk

about the probability that the variable would take on a particular value, after all if we

defined positive probabilities for the infinite collection (continuum) of possible values of

the variable these probabilities could not add up to one. It does, however, make sense to
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talk about the probability that the variable will take on a value in a specified range. Given

two constants a < b the probability that the variable will take on a value in the interval

from a to b is equal to the area under the density curve over the interval from a to b on

the x–axis. In this fashion the density curve gives the probabilities which a single value of

the variable, chosen at random from the infinite population of possible values, will satisfy.

When we use a continuous probability model to approximate the distribution of a

discrete statistic, such as p̂, we use the area under the density curve, over the appropriate

interval on the number line, to approximate the area in the discrete probability histogram

over the same interval. The idea here is that, if the density curve of the approximating

continuous distribution matches the discrete probability histogram well, then the area

under the density curve will provide a good approximation of the corresponding area in

the histogram.

We will now discuss the standard normal distribution which we will use to approximate

the sampling distribution of p̂. The standard normal distribution can be characterized by

its density curve which is the familiar bell shaped curve exhibited in Figure 1. The standard

normal distribution and its density curve are symmetric around zero, i.e., if we draw a

vertical line through zero in Figure 1, then the two sides of the density curve are mirror

images of each other. From Figure 1 it may appear that the standard normal density curve

ends at -3 and 3; however, this density curve is actually positive (above the x–axis) for all

possible values. The area under the standard normal density curve from -3 to 3 is .9974;

thus, there is a small but positive area under the density curve outside of the interval from

-3 to 3.

Figure 1. The standard normal density curve.

-4 -2 0 2 4

Z

We will use the upper case letter Z to denote a variable which behaves in accordance

with the standard normal distribution and we will refer to such a Z as a standard normal

variable. The probability that the standard normal variable Z will take on a value between

a and b, denoted by P (a ≤ Z ≤ b) (read this as the probability that Z is between a and

b), is the area under the standard normal density curve over the interval from a to b. A

probability of the form P (a ≤ Z ≤ b) is depicted, for particular values of a and b, as the

area of the shaded region in Figure 2.
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Figure 2. P (a ≤ Z ≤ b), drawn for a < 0 and b > 0.
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Computer programs and many calculators can be used to compute standard normal prob-

abilities or equivalently to compute areas under the standard normal density curve. These

probabilities can also be calculated using tables of standard normal distribution probabil-

ities. We will not need to perform such calculations here.

The inferential methods we will consider are based on a large sample size normal ap-

proximation to the sampling distribution of p̂. The normal approximation to the sampling

distribution of p̂, which is stated formally below, simply says that, for large values of n,

the standardized value of p̂ obtained by subtracting the population success proportion p

from p̂ and dividing this difference by the population standard error of p̂, behaves in ap-

proximate accordance with the standard normal distribution. That is, for large values of n

the quantity (p̂−p)/S.E.(p̂) behaves in approximate accordance with the standard normal

distribution.

The normal approximation to the sampling distribution of p̂. Let p̂ denote the

observed proportion of successes in a sequence of n Bernoulli trials with success probability

p (or equivalently the observed proportion of successes in a simple random sample drawn

with replacement from a dichotomous population with population success proportion p)

and let a < b be two given constants. If n is sufficiently large, then the probability that

(p̂−p)/S.E.(p̂) is between a and b is approximately equal to the probability that a standard

normal variable Z is between a and b. In symbols, using ≈ to denote approximate equality,

the conclusion from above is that, for sufficiently large values of n,

P

(
a ≤ p̂− p

S.E.(p̂)
≤ b

)
≈ P (a ≤ Z ≤ b).

Remark. If the population being sampled is very large relative to the size of the sam-

ple, then, for practical purposes, this normal approximation to the sampling distribution

of p̂ may also be applied when p̂ is based on a simple random sample selected without

replacement.

If we apply this approximation with a = −k and b = k, then we find that the

probability that p̂ will take on a value within k population standard error units of p
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(within kS.E.(p̂) units of p) is approximately equal to the probability that a standard

normal variable Z will take on a value between −k and k, i.e.,

P
(
|p̂− p| ≤ kS.E.(p̂)

)
= P

(
p− kS.E.(p̂) ≤ p̂ ≤ p+ kS.E.(p̂)

)
≈ P (−k ≤ Z ≤ k).

The most commonly used choice of the constant k in this probability statement is k = 1.96.

The probability that the standard normal variable takes on a value between −1.96 and

1.96 is equal to .95, i.e., P (−1.96 ≤ Z ≤ 1.96) = .95; therefore, the probability that p̂

will take on a value within 1.96 population standard error units of p is approximately .95.

This probability is indicated graphically as the shaded region of area .95 in Figure 3. Two

other common choices of the constant k in this probability statement are k = 1.645 and

k = 2.576, which give probabilities (areas) of .90 and .99, respectively.

Figure 3. P (−1.96 ≤ Z ≤ 1.96) = .95
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We now return to our discussion of estimating the population success proportion. The

following discussion is under the assumption that the data come from a simple random

sample of size n drawn with replacement from a dichotomous population with population

success proportion p or equivalently that the data correspond to a sequence of n Bernoulli

trials with success probability p. For practical purposes, the confidence interval estimates

described below are also applicable when the data come from a simple random sample of

size n drawn without replacement, provided the population is very large.

Remark. The basic ideas underlying the inferential methods discussed in this chapter can

be used to formulate confidence intervals and hypothesis tests when the data correspond

to more complex types of random samples. However, the inferential methods discussed in

this chapter are not appropriate for most national opinion polls and sample surveys which

rely on complex stratified and/or cluster sampling.

The observed proportion of successes in our sample p̂ provides a single number estimate

of the population success probability p. We can think of p̂ as our “best guess” of the value

of p. From the sampling distribution of p̂ we know that p̂ is unbiased as an estimator of

p; therefore, on the average in the long run (under repeated sampling) we know that p̂

provides a good estimate of the unknown parameter p. This unbiasedness, however, does
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not guarantee that the observed value of p̂, based on a single sample, will be close to the

true, unknown value of p.

Instead of reporting a single estimate of the unknown population success proportion p

it would be more useful to report a range or interval of plausible values for p. In particular,

given the data we would like to be able to say, with a reasonable level of confidence, that

the true value of p is between two particular values. A confidence interval estimate of

p consists of two parts. There is an interval of plausible values for p and a corresponding

level of confidence. The confidence level indicates our confidence that the unknown

p actually belongs to the corresponding interval. We will adopt the usual convention of

using a confidence level of 95%. A 95% confidence interval estimate of p is an interval

of plausible values for p constructed using a method which guarantees that 95% of such

intervals will actually contain the unknown proportion p. That is, a 95% confidence interval

is an interval constructed using a method of generating such intervals with the property

that this method will work, in the sense of generating an interval that contains p, for 95%

of all possible samples.

The starting point for using the normal approximation to the sampling distribution

of p̂ to construct a 95% confidence interval estimate of p is the approximate probability

statement

P
[
|p̂− p| ≤ 1.96S.E.(p̂)

]
≈ .95.

This probability statement indicates that the probability that the statistic p̂ is within

1.96S.E.(p̂) units of the parameter p is approximately .95. In other words, when we take

a simple random sample and compute p̂ the value we get will be within 1.96S.E.(p̂) of the

true p approximately 95% of the time. This is equivalent to saying that the probability

that the parameter p is within 1.96S.E.(p̂) units of the statistic p̂ is approximately .95,

which is exactly the type of statement we are looking for. Unfortunately, this interval of

values is not computable, since it involves the population standard error S.E.(p̂) which

depends on the unknown parameter p and is, therefore, also unknown.

We will consider two methods of forming a confidence interval for p. For ease of no-

tation and greater generality we will let C denote the desired confidence level and k the

corresponding cutoff point for the standard normal distribution, i.e., C and k are chosen

such that P (−k ≤ Z ≤ k) = C, where Z denotes a standard normal variable. (Some

common choices of C and k are: C = .95 and k = 1.96 for 95% confidence, C = .90

and k = 1.645 for 90% confidence, and C = .99 and k = 2.576 for 99% confidence.) In

terms of these symbols the starting point for using the normal approximation to the sam-

pling distribution of p̂ to construct a confidence interval estimate of p is the approximate

probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C.
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The first confidence interval estimate we consider is the Wilson interval. This

interval estimate is obtained by re–expressing the basic inequality

|p̂− p| ≤ kS.E.(p̂)

as an interval of values for p. The Wilson confidence interval is given by

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k),

(read p̃k as p tilde sub k) where

p̃k =
np̂+ k

2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2

determines the length of the interval.

If we use k = 1.96 in these expressions, then we can claim that we are 95% confident

that the population success proportion p is between p̃k−M.E.(p̃k) and p̃k+M.E.(p̃k). There

is some chance for confusion about what this statement actually means. The important

thing to remember is that it is the statistic p̃k and the margin of error M.E.(p̃k) that vary

from sample to sample. The population proportion p is a fixed, unknown parameter which

does not vary. Therefore, the 95% confidence level applies to the method used to generate

the confidence interval estimate. That is, the method (obtain a simple random sample

and compute the numbers p̃−M.E.(p̃) and p̃+M.E.(p̃)) used to generate the limits of the

confidence interval is such that 95% of the time it will yield a pair of confidence interval

limits which bracket the population success proportion p. Therefore, when we obtain a

sample, compute the confidence interval, and say that we are 95% confident that this

interval contains p what we mean is that we feel “pretty good” about claiming that p is

in this interval, since the method works for 95% of all possible samples and so it probably

worked for our sample.

Derivation of the Wilson interval. Since |p̂− p| ≥ 0 and S.E.(p̂) =
√

p(1− p)/n, we

can square each side of the basic inequality to get the equivalent inequality

(p̂− p)2 ≤ k2

n
(p− p2).

Straightforward algebra allows us to re–express this inequality as the following quadratic

inequality in p

(n+ k2)p2 − 2(np̂+
k2

2
)p+ np̂2 ≤ 0.
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Treating this inequality as an equality and solving for p gives the two values

p̃k ±M.E.(p̃k),

where p̃k =
np̂+ k

2

2

n+ k2
and M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2
.

Thus the original probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C.

is equivalent to the probability statement

P
[
p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k)

]
≈ C.

The endpoints of this interval, which are functions of n, p̂, and k, are computable. There-

fore, the Wilson confidence interval is given by

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k).

It is somewhat tedious to compute the Wilson interval by hand; but it is easy to pro-

gram a calculator or computer to do the computations. An easy to compute approximation

(the Agresti–Coull interval) to the Wilson 95% confidence interval is described after

the following examples.

Example. Insects in an apple orchard. The manager of a large apple orchard is

concerned with the presence of a particular insect pest in the apple trees in the orchard.

An insecticide that controls this particular insect pest is available. However, application

of this insecticide is rather expensive. It has been determined that the cost of applying

the insecticide is not economically justifiable unless more than 20% of the apple trees in

the orchard are infested. The manager has decided to assess the extent of infestation in

the orchard by examining a simple random sample of 200 apple trees. In this example a

unit an apple tree and the target population is all of the apple trees in this orchard. We

will assume that the simple random sample is selected from all of the apple trees in the

orchard so that the sampled population is the same as the target population. We will also

assume that the 200 trees in the sample form a small proportion of all of the trees in the

entire orchard so that we do not need to worry about whether the sample is chosen with

or without replacement. An appropriate dichotomous variable is whether an apple tree is

infested with possible values of yes (the tree is infested) and no (the tree is not infested).

Since we are interested in the extent of the infestation we will view a tree that is infested
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as a success. Thus, the population success proportion p is the proportion of all of the apple

trees in this orchard that are infested.

Two (related) questions of interest in this situation are:

(1) What proportion of all of the trees in this orchard are infested? (What is p?)

(2) Is there sufficient evidence to justify the application of the insecticide? (Is p > .20?)

We will consider four hypothetical outcomes for this scenario to demonstrate how a 95%

confidence interval estimate can be used to address these questions.

Case 1. Suppose that 35 of the 200 apple trees in the sample are infested so that

p̂ = .175. In this case we know that 17.5% of the 200 trees in the sample are infested

and we can conjecture that a similar proportion of all of the trees in the entire orchard

are infested. However, we need a confidence interval estimate to get a handle on which

values of the population success proportion p are plausible when we observe 17.5% infested

trees in a sample of size 200. Using the Wilson method with k = 1.96 we get p̃k = .1811

and a 95% confidence interval ranging from .1286 to .2336. Thus we can conclude that

we are 95% confident that between 12.86% and 23.36% of all of the trees in this orchard

are infested. Notice that this confidence interval does not exclude the possibility that

more than 20% of the trees in the entire orchard are infested, since the upper limit of the

confidence interval 23.36% is greater than 20%. In other words, even though less than 20%

of the trees in the sample were infested when we take sampling variability into account we

find that it is possible that more than 20% (as high as 23.36%) of the trees in the entire

orchard are infested.

Case 2. Suppose that 26 of the 200 apple trees in the sample are infested so that

p̂ = .13. In this case we know that 13% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .1370 and a 95% confidence interval ranging

from .0903 to .1837. Thus we can conclude that we are 95% confident that between 9.03%

and 18.37% of all of the trees in this orchard are infested. In this case the entire confidence

interval is below 20% excluding the possibility that more than 20% of the trees in the

entire orchard are infested. Therefore, in this case we have sufficient evidence to conclude

that less than 20% of the trees in the entire orchard are infested, i.e., that p < .20.

Case 3. Suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. In this case we know that 22.5% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .2302 and a 95% confidence interval ranging

from .1726 to .2877. Thus we can conclude that we are 95% confident that between 17.26%

and 28.77% of all of the trees in this orchard are infested. Notice that this confidence

interval does not exclude the possibility that less than 20% of the trees in the entire

orchard are infested, since the lower limit of the confidence interval 17.26% is less than

20%. In other words, even though mores than 20% of the trees in the sample were infested
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when we take sampling variability into account we find that it is possible that less than

20% of the trees in the entire orchard are infested.

Case 4. Suppose that 54 of the 200 apple trees in the sample are infested so that

p̂ = .27. In this case we know that 27% of the 200 trees in the sample are infested. Using

the Wilson method with k = 1.96 we get p̃k = .2743 and a 95% confidence interval ranging

from .2132 to .3354. Thus we can conclude that we are 95% confident that between 21.32%

and 33.54% of all of the trees in this orchard are infested. In this case the entire confidence

interval is above 20% excluding the possibility that less than 20% of the trees in the entire

orchard are infested. Therefore, in this case we have sufficient evidence to conclude that

more than 20% of the trees in the entire orchard are infested, i.e., that p > .20.

Example. Opinions about a change in tax law. Consider a public opinion poll

conducted to assess the support for a proposed change in state tax law among the taxpayers

in a particular metropolitan area. The target population is the group of approximately

200,000 taxpayers in the particular metropolitan area. Suppose that the opinion poll is

conducted as follows: first a simple random sample of 100 taxpayers in the metropolitan

area is obtained, restricting the sample to taxpayers who have telephones, then these 100

taxpayers are contacted by telephone and each person is asked to respond to the question

“Do you favor or oppose the proposed change in state tax law?” In this example we will

define a unit to be an individual taxpayer in this metropolitan area. (Note that, technically,

a unit is a household, since more than one taxpayer may share the same telephone number.)

The variable is the response of the taxpayer to the indicated question with possible values

of: “I favor the change,” “I oppose the change,” and “I do not have an opinion regarding

the change.” We will dichotomize this variable (and the population) by recording the

responses as either “I favor the change” or “I do not favor the change.” Notice that in

this example the target and sampled populations are not the same. Since there might

well be a relationship between having a telephone and opinion about the proposed tax law

change, we will restrict our attention to the sampled population of all taxpayers in this

metropolitan area who have telephones. The parameter of interest is the proportion p of

all taxpayers in this metropolitan area who have a telephone who favor the proposed tax

law change at the time of the survey. In this example the random sample would be selected

without replacement. However, since the size of the population, approximately 200,000, is

much larger than the sample size n = 100, we can use the confidence interval estimation

procedure as described above.

Suppose that the poll was conducted and 55 of the 100 taxpayers in the sample

responded that they favor the tax law change. The observed proportion who favor the

change is thus p̂ = .55, i.e., 55% of the 100 taxpayers in the sample favored the change.

Using the Wilson method with k = 1.96 we get p̃k = .5482 and a 95% confidence interval

ranging from .4524 to .6438. Therefore, we are 95% confident that the actual proportion
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of taxpayers in this metropolitan area (who have telephones) who favored the proposed

change in state tax law at the time of the survey is between 45.24% and 64.38%. Notice

that this confidence interval contains values for p that are both less than .5 and greater than

.5. Therefore, based on this outcome of the opinion poll there is not sufficient evidence

to conclude that more than half of the taxpayers in this metropolitan area (who have

telephones) favored the proposed tax law change at the time of this poll.

Now suppose that the poll was conducted and 64 of the 100 taxpayers in the sample

responded that they favor the tax law change. The observed proportion who favor the

change is thus p̂ = .64, i.e., 64% of the 100 taxpayers in the sample favored the change.

Using the Wilson method with k = 1.96 we get p̃k = .6348 and a 95% confidence interval

ranging from .5424 to .7273. Therefore, we are 95% confident that the actual proportion

of taxpayers in this metropolitan area (who have telephones) who favored the proposed

change in state tax law at the time of the survey is between 54.24% and 72.73%. In this

case all of the values for p in the confidence interval are greater than .5. Therefore, based

on this outcome of the opinion poll there is sufficient evidence to conclude that more than

half of the taxpayers in this metropolitan area (who have telephones) favored the proposed

tax law change at the time of this poll. However, we would also note that, based on

this confidence interval, the actual percentage in favor of the change might be as small as

54.24%.

In the preceding analysis of this opinion poll example we dichotomized the responses

to the question by combining the “oppose” and “no opinion” responses as “do not favor”.

As an alternative we might prefer to restrict our attention to only those people who are

willing to express a definite opinion by restricting our inference to the subpopulation of

taxpayers who would have been willing to respond “I favor the change” or “I oppose the

change” at the time of the survey. Thus we redefine the population success proportion

p as the proportion of all taxpayers in this metropolitan area (who have a telephone and

have reached an opinion at the time of the survey) who favor the proposed tax law change

at the time of the survey. To implement this approach we simply ignore the part of the

sample for which the respondents did not express an opinion, redefine the sample size as

n∗ the number who responded “favor” or “oppose”, and compute the confidence interval

conditional on the reduced sample size n∗. For example, if n = 100 and if 64 taxpayers

favor the change, 26 taxpayers oppose the change, and 10 taxpayers have no opinion, then

we restrict our attention to the n∗ = 64 + 26 = 90 taxpayers who expressed an opinion.

For this sample the observed proportion who favor the change is p̂ = 64/90 = .7111. Using

the Wilson method with k = 1.96 (and n∗ = 90) we get p̃k = .7025 and a 95% confidence

interval ranging from .6104 to .7946. Therefore, we are 95% confident that the actual

proportion of taxpayers in this metropolitan area (who have telephones and have reached
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an opinion) who favored the proposed tax law change at the time of this poll is between

61.04% and 79.46%.

Remark. When a confidence interval for a proportion p is based on a simple random

sample selected with replacement or a simple random sample selected without replacement

from a much larger population the precision of the confidence interval as an estimate of p

depends on the absolute size of the sample not the size of the sample relative to the size

of the population. For example, if a simple random sample of size n = 200 yields p̂ = .65

(and k = 1.96), then p̃k = .6472, M.E.(p̃k) = .0655, and we are 95% confident that p is

between .6472 − .0655 = .5817 and .6472 + .0655 = .7127. Any sample of size n = 200

for which p̂ = .65 yields this confidence interval; which has length 2(.0655) = .1310. Thus

if we were sampling from a population of 200,000 or a population of 2,000,000 and if we

obtained p̂ = .65, we would get the same confidence interval. Hence the precision of the

confidence interval, as measured by its length, depends on the sample size but does not

depend on what fraction of the population was sampled.

We will now consider a simpler method for computing a confidence interval for p.

This confidence interval estimate, known as the Wald interval, is in widespread use and

many calculators and computer programs will compute it. Unfortunately, this confidence

interval estimate has some undesirable properties and we do not recommend its use.

As we noted above (for C = .95 and k = 1.96), the probability statement

P
[
|p̂− p| ≤ kS.E.(p̂)

]
≈ C

is equivalent to the probability statement

P
[
p̂− kS.E.(p̂) ≤ p ≤ p̂+ kS.E.(p̂)

]
≈ C,

but this interval of values is not computable, since the population standard error S.E.(p̂) =√
p(1− p)/n depends on the unknown parameter p. The Wald interval is obtained by

replacing the unknown population standard error by an estimated standard error. The

estimated standard error of p̂

Ŝ.E.(p̂) =

√
p̂(1− p̂)

n

is obtained by replacing the unknown parameter p in the population standard error by the

observable statistic p̂. The Wald confidence interval is given by

p̂−M.E.(p̂) ≤ p ≤ p̂+M.E.(p̂), where M.E.(p̂) = kŜ.E.(p̂)

is the margin of error of p̂.
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Notice that the Wald interval is centered at p̂ and its length is determined by the

margin of error of p̂,

M.E.(p̂) = kŜ.E.(p̂).

As with the Wilson interval, if we use k = 1.96 in these expressions, then we can claim

that we are 95% confident that the population success proportion p is between p̂−M.E.(p̂)

and p̂+M.E.(p̂). With the same interpretation of “95% confident” as before.

We will now discuss the “undesirable properties” of this interval estimate and the

reason we do not recommend it. Even though p̂ performs well as a single number estimate

of p the Wald confidence interval estimate, based on p̂ and Ŝ.E.(p̂), does not perform

well. When we say that we are 95% confident that the population success proportion p is

between p̂−M.E.(p̂) and p̂+M.E.(p̂) we realize that our indicated 95% confidence level is

actually an approximation to the true confidence level. For this confidence interval estimate

the indicated 95% confidence level differs from the actual confidence level because of the

two approximations used to construct this interval, i.e., because of our use of the normal

approximation and our use of the estimated standard error. We would hope, at least for

reasonably large values of n, that the difference between the indicated 95% confidence level

of our interval estimate and its actual confidence level would be small. Unfortunately, this

is not necessarily the case and the actual confidence level of this confidence interval estimate

may be quite different from the indicated 95%. In particular, the actual confidence level of

this 95% confidence interval estimate may be much smaller than 95%. Furthermore, this

discrepancy between the indicated 95% confidence level and the actual confidence level is

not necessarily negligible even when the sample size n is quite large.

On the other hand, the Wilson confidence interval estimate, based on p̃k and M.E.(p̃k),

only requires one approximation (the normal approximation) and for this reason it performs

better than the Wald confidence interval.

We will now describe the easy to compute approximation (the Agresti–Coull inter-

val) to the Wilson 95% confidence interval. If we add 4 artificial observations to the data,

2 success and 2 failures, and then compute the Wald 95% confidence interval, it turns out

that we obtain a reasonably accurate approximation of the Wilson 95% confidence interval.

More formally, the Agresti–Coull interval is obtained by replacing the estimator p̂ and

its margin of error in the Wald interval by the alternate estimator p̃ (read this as p tilde)

and its margin of error. The estimator p̃ is obtained by adding 2 successes and 2 failures

to the data, i.e.,

p̃ =
the number of successes plus 2

the number of observations plus 4
=

np̂+ 2

n+ 4
.
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The corresponding 95% margin of error of p̃ is

M.E.(p̃) = 1.96

√
p̃(1− p̃)

n+ 4
,

which is analogous to the margin of error of p̂ with p̃ in place of p̂ and n + 4 in place of

the actual sample size n. The Agresti–Coull 95% confidence interval estimate of p,

is given by

p̃−M.E.(p̃) ≤ p ≤ p̃+M.E.(p̃),

where p̃ and M.E.(p̃) are as defined above. The reason that this works is that the value

of k for a 95% confidence interval is k = 1.96 which implies that k2/2 ≈ 2 and k2 ≈ 4 so

that p̃ ≈ p̃k (for k = 1.96) and M.E.(p̃) ≈ M.E.(p̃k) (for k = 1.96). If you have a calculator

or computer program which computes the Wald interval, then you can use this “add 2

successes / add 4 observations” trick to approximate the Wilson 95% confidence interval.

5.3 Testing for a proportion

The hypothesis testing procedures discussed in this section are based on the normal

approximation to the sampling distribution of p̂. Hence we will continue to assume that the

data form a simple random sample of size n, selected with replacement, from a dichotomous

population with population success proportion p, or equivalently, that the data correspond

to the outcomes of a sequence of n Bernoulli trials with success probability p. As before

if the population is very large, then these methods can also be used when the data form a

simple random sample of size n, selected without replacement.

A hypothesis (statistical hypothesis) is a conjecture about the nature of the popu-

lation. When the population is dichotomous, a hypothesis is a conjecture about the value

of the population success proportion p.

A hypothesis test (test of significance) is a formal procedure for deciding between

two complementary hypotheses. These hypotheses are known as the null hypothesis (H0 for

short) and the research (or alternative) hypothesis (H1 for short). The research hypothesis

is the hypothesis of primary interest, since the testing procedure is designed to address the

question: “Do the data support the research hypothesis?” The null hypothesis is defined as

the negation of the research hypothesis. The test begins by tentatively assuming that the

null hypothesis is true (the research hypothesis is false). The data are then examined to

determine whether the null hypothesis can be rejected in favor of the research hypothesis.

The probability of observing data as unusual (surprising) or more unusual as that actually

observed under the tentative assumption that the null hypothesis is true is computed. This

probability is known as the P–value of the test. (The P in P–value indicates that it is

a probability it does not refer to the population success proportion p.) A small P–value
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indicates that the observed data would be unusual (surprising) if the null hypothesis was

actually true. Thus if the P–value is small enough, then the null hypothesis is judged

untenable and the test rejects the null hypothesis in favor of the research (alternative)

hypothesis. On the other hand, a large (not small) P–value indicates that the observed

data would not be unusual (not surprising) if the null hypothesis was actually true. Thus

if the P–value is large (not small enough), then the null hypothesis is judged tenable and

the test fails to reject the null hypothesis.

There is a strong similarity between the reasoning used for a hypothesis test and the

reasoning used in the trial of a defendant in a court of law. In a trial the defendant is

presumed innocent (tentatively assumed to be innocent) and this tentative assumption

is not rejected unless sufficient evidence is provided to make this tentative assumption

untenable. In this situation the research hypothesis states that the defendant is guilty and

the null hypothesis states that the defendant is not guilty (is innocent). The P–value of

a hypothesis test is analogous to a quantification of the weight of the evidence that the

defendant is guilty with small values indicating that the evidence is unlikely under the

assumption that the defendant is innocent.

Example. Insects in an apple orchard (revisited). Recall that the manager of

a large apple orchard examined a simple random sample of 200 apple trees to gauge the

extent of insect infestation in the orchard. The manager has determined that applying the

insecticide is not economically justifiable unless more than 20% of the apple trees in the

orchard are infested. Since the manager does not want to apply the insecticide unless there

is evidence that it is needed, the question of interest here is: “Is there sufficient evidence

to justify application of the insecticide?” In terms of the population success proportion

p (the proportion of all of the apple trees in this orchard that are infested) the research

hypothesis is H1 : p > .20 (more than 20% of all the trees in the orchard are infested);

and the null hypothesis is H0 : p ≤ .20 (no more than 20% of all the trees in the orchard

are infested). A test of the null hypothesis H0 : p ≤ .20 versus the research hypothesis

H1 : p > .20 begins by tentatively assuming that no more than 20% of all the trees in the

orchard are infested. Under this tentative assumption it would be surprising to observe a

proportion of infested trees in the sample p̂ that was much larger than .20. Thus the test

should reject H0 : p ≤ .20 in favor of H1 : p > .20 if the observed value of p̂ is sufficiently

large relative to .20.

Case 1. Suppose that 52 of the 200 apple trees in the sample are infested so that

p̂ = .26. In this case we know that 26% of the 200 trees in the sample are infested and

we need to decide whether this suggests that the proportion of all the trees in the orchard

that are infested p exceeds .20. More specifically, we need to determine whether observing

52 or more infested trees in a simple random sample of 200 trees would be surprising if

in fact no more than 20% of all the trees in the orchard were infested. Assuming that
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exactly 20% of all the trees in the orchard are infested, we find that the probability of

observing 52 or more infested trees in a sample of 200 trees (seeing p̂ ≥ .26), is .0169 (this

is the P–value of the test). In other words, if no more than 20% of all the trees in the

orchard were infested, then a simple random sample of 200 trees would give p̂ ≥ .26 about

1.69% of the time. Therefore, observing 52 infested trees in a sample of 200 would be

very surprising if no more than 20% of all the trees in the orchard were infested and we

have sufficient evidence to reject the null hypothesis H0 : p ≤ .20 in favor of the research

hypothesis H1 : p > .20. In the case we would conclude that there is sufficient evidence to

contend that more than 20% of all the trees in the orchard are infested and, in this sense,

application of the insecticide is justifiable.

Case 2. Next suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. Assuming that exactly 20% of all the trees in the orchard are infested, we find

that the probability of observing 45 or more infested trees in a sample of 200 trees (seeing

p̂ ≥ .225), is .1884 (this is the P–value of the test). In other words, if no more than 20% of

all the trees in the orchard were infested, then a simple random sample of 200 trees would

give p̂ ≥ .225 about 18.84% of the time. Therefore, observing 45 infested trees in a sample

of 200 would not be very surprising if no more than 20% of all the trees in the orchard were

infested and we do not have sufficient evidence to reject the null hypothesis H0 : p ≤ .20

in favor of the research hypothesis H1 : p > .20. In the case we would conclude that there

is not sufficient evidence to contend that more than 20% of all the trees in the orchard are

infested and, in this sense, application of the insecticide not is justifiable.

The research hypothesis in the apple orchard example is a directional hypothesis of

the form H1 : p > p0, where p0 = .20. We will now discuss the details of a hypothesis

test for a directional research hypothesis of this form. For the test procedure to be valid

the specified value p0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.

Let p0 denote the hypothesized value (with 0 < p0 < 1) which we wish to compare

with p. The research hypothesis states that p is greater than p0 (H1 : p > p0). The

null hypothesis is the negation of H1 : p > p0 which states that p is no greater than p0
(H0 : p ≤ p0). The research hypothesis H1 : p > p0 specifies that the population is one

of the dichotomous populations for which the population success proportion p is greater

than p0. The null hypothesis H0 : p ≤ p0 specifies that the population is one of the

dichotomous populations for which the population success proportion p is no greater than

p0. Notice that this competing pair of hypotheses provides a decomposition of all possible

dichotomous populations into the collection of dichotomous populations where p > p0 and

the research hypothesis is true and the collection of dichotomous populations where p ≤ p0

and the null hypothesis is true. Our goal is to use the data to decide which of these two
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collections of dichotomous populations contains the actual population we are sampling

from.

Since a hypothesis test begins by tentatively assuming that the null hypothesis is true,

we need to decide what constitutes evidence against the null hypothesis H0 : p ≤ p0 and

in favor of the research hypothesis H1 : p > p0. The relationship between the observed

proportion of successes in the sample p̂ and the hypothesized value p0 will be used to

assess the strength of the evidence in favor of the research hypothesis. Generally, we would

expect to observe larger values of p̂ more often when the research hypothesis H1 : p > p0

is true than when the null hypothesis H0 : p ≤ p0 is true. In particular, we can view the

observation of a value of p̂ that is sufficiently large relative to p0 as constituting evidence

against the null hypothesis H0 : p ≤ p0 and in favor of the research hypothesis H1 : p > p0.

Deciding whether the observed value of p̂ is “sufficiently large relative to p0” is based on

the corresponding P–value, which is defined below.

The P–value for testing the null hypothesis H0 : p ≤ p0 versus the research hypothesis

H1 : p > p0 is the probability of observing a value of p̂ as large or larger than the value

of p̂ that we actually do observe. The P–value quantifies the consistency of the observed

data with the null hypothesis and may be interpreted as a, somewhat indirect, measure

of the strength of the evidence in the data in favor of the research hypothesis and against

the null hypothesis. Because the P–value is computed under the assumption that the null

hypothesis is true (and the research hypothesis is false), the smaller the P–value is, the

less consistent the observed data are with the null hypothesis. Therefore, since one of

the hypotheses must be true, when we observe a small P–value we can conclude that the

research hypothesis is more consistent with the observed data than is the null hypothesis.

The P–value is computed under the assumption that the research hypothesis H1 : p >

p0 is false and the null hypothesis H0 : p ≤ p0 is true. Because the null hypothesis only

specifies that p ≤ p0, we need to choose a particular value of p (that is no larger than p0) in

order to compute the P–value. It is most appropriate to use p = p0 for this computation.

(Recall that in the apple orchard example we used p0 = .20 to compute the P–value.)

Using p = p0, which defines the boundary between p ≤ p0, where the null hypothesis is

true, and p > p0, where the research hypothesis is true, provides some protection against

incorrectly rejecting H0 : p ≤ p0.

To compute the P–value we need to know how much variability there is in the sampling

distribution of p̂ when p = p0. When p = p0 the standard error of p̂, which provides a

suitable measure of the variability in p̂, is

S.E.(p̂) =

√
p0(1− p0)

n
.
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To use the normal approximation to the sampling distribution of p̂ to compute the P–

value we first need to determine the calculated Z statistic or Z score corresponding to the

observed value of p̂. This calculated Z statistic, denoted by Zcalc, is

Zcalc =
p̂− p0
S.E.(p̂)

,

where the standard error S.E.(p̂) is as defined above. Recall that the P–value for testing

the null hypothesisH0 : p ≤ p0 versus the research hypothesisH1 : p > p0 is the probability

of observing a value of p̂ as large or larger than the value of p̂ that we actually do observe,

computed assuming that p = p0. Using the normal approximation, this P–value is equal

to the probability that a standard normal variable takes on a value at least as large as

Zcalc. This P–value is

P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, i.e., this P–value is the area under the

standard normal density curve to the right of Zcalc, as shown in Figure 4. Notice that the

P value (the area to the right of Zcalc) is small when Zcalc is far to the right of zero which

is equivalent to p̂ being far to the right of p0.

Figure 4. P–value for H0 : p ≤ p0 versus H1 : p > p0.

0 Zcalc

Once the P–value has been computed we need to decide whether the P–value is small

enough to justify rejecting the null hypothesis in favor of the research hypothesis. In the

apple orchard example we argued that observing 52 infested trees in a sample of 200 would

be very surprising if no more than 20% of all the trees in the orchard were infested, since

the corresponding P–value of .0169 was very small. We also argued that observing 45

infested trees in a sample of 200 would not be very surprising if no more than 20% of all

the trees in the orchard were infested, since the corresponding P–value of .1884 is fairly

large. Deciding whether a P–value is small enough to reject a null hypothesis requires a

subjective judgment by the investigator in the context of the problem at hand.

The following general remarks regarding the use of P–values to assess the evidence

against a null hypothesis and in favor of a research hypothesis apply to hypothesis tests

in general, not just hypothesis tests for a proportion.
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One approach to hypothesis testing is to use a fixed cutoff value to decide whether

the P–value is “large” or “small”. The most common application of this approach is

to conclude that there is sufficient evidence to reject the null hypothesis in favor of the

research hypothesis only when the P–value is less than .05. When a fixed cutoff value like

.05 (5%) is used to decide whether to reject the null hypothesis in favor of the research

hypothesis this cutoff value is known as the significance level of the test. Hence, if we

adopt the rule of rejecting the null hypothesis in favor of the research hypothesis only

when the P–value is less than .05, then we are performing a hypothesis test at the 5%

level of significance. In accordance with this terminology, the P–value is also known as

the observed significance level of the test and if the P–value is less than the prescribed

significance level, then the results are said to be statistically significant.

To perform a hypothesis test at the 5% level of significance we compute the appropriate

P–value and compare it to the fixed significance level .05. If the P–value is less than .05,

then we conclude that there is sufficient evidence, at the 5% level of significance, to reject

the null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is less

than .05, then the data do support H1. If the P–value is not less than .05, then we

conclude that there is not sufficient evidence, at the 5% level of significance, to reject the

null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is not less

than .05, then the data do not support H1.

Instead of, or in addition to, using a fixed significance level like 5% we can use the

P–value as a measure of the evidence (in the data) against the null hypothesis H0 and in

favor of the research hypothesis H1. Some guidelines for deciding how strong the evidence

is in favor of the research hypothesis H1 are given below.

Guidelines for interpreting a P–value:

1. If the P–value is greater than .10, there is no evidence in favor of H1.

2. If the P–value is between .05 and .10, there is suggestive but very weak evidence in

favor of H1.

3. If the P–value is between .04 and .05, there is weak evidence in favor of H1.

4. If the P–value is between .02 and .04, there is moderately strong evidence in favor of

H1.

5. If the P–value is between .01 and .02, there is strong evidence in favor of H1.

6. If the P–value is less than .01, there is very strong evidence in favor of H1.

Whether you choose to use a fixed significance level or the preceding guidelines based

on the P–value you should always report the P–value since this allows someone else to

interpret the evidence in favor of H1 using their personal preferences regarding the size of

a P–value.
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In the U.S. legal system there is a similar set of guidelines for assessing the level of

proof or weight of the evidence against the null hypothesis of innocence and in favor of

the research hypothesis of guilt. The weakest level of proof is “the preponderance of the

evidence” (this is similar to a reasonably small P–value), the next level of proof is “clear

and convincing evidence” (this is similar to a small P–value), and the highest level of proof

is “beyond a reasonable doubt” (this is similar to a very small P–value).

We now return to our discussion for the particular research hypothesis H1 : p > p0.

The steps for performing a hypothesis test for

H0 : p ≤ p0 versus H1 : p > p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂− p0)/S.E.(p̂), and S.E.(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the right of Zcalc, as shown in Figure 4.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p > p0 over H0 : p ≤ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is greater than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p > p0 over H0 : p ≤ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is greater than p0.

The procedure for testing the null hypothesis H0 : p ≤ p0 versus the research hypoth-

esis H1 : p > p0 given above is readily modified for testing the null hypothesis H0 : p ≥ p0
versus the research hypothesis H1 : p < p0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population success proportion p is less than the

particular, hypothesized value p0, i.e., consider a situation where the research hypothesis

is H1 : p < p0 and the null hypothesis is H0 : p ≥ p0. For these hypotheses values of the

observed success proportion p̂ that are sufficiently small relative to p0 provide evidence in

favor of the research hypothesis H1 : p < p0 and against the null hypothesis H0 : p ≥ p0.

Therefore, the P–value for testing H0 : p ≥ p0 versus H1 : p < p0 is the probability of

observing a value of p̂ as small or smaller than the value actually observed. As before, the

P–value is computed under the assumption that p = p0. The calculated Z statistic Zcalc

is defined as before; however, in this situation the P–value is the area under the standard
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normal density curve to the left of Zcalc, since values of p̂ that are small relative to p0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : p ≥ p0 versus H1 : p < p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≤ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂− p0)/S.E.(p̂), and S.E.(p̂) =√
p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the left of Zcalc as shown in Figure 5.

Figure 5. P–value for H0 : p ≥ p0 versus H1 : p < p0.

Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p < p0 over H0 : p ≥ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is less than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p < p0 over H0 : p ≥ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is less than p0.

Example. Acceptance sampling for electronic devices. A large retailer receives

a shipment of 10,000 electronic devices from a supplier. The supplier guarantees that no

more than 6% of these devices are defective. In fact, if more than 6% of the devices in

the shipment are defective, then the supplier will allow the retailer to return the entire

shipment, provided this is done with 10 days of receiving the shipment. Therefore, the

retailer needs to decide between accepting the shipment and returning the shipment to the

supplier. This decision will be based on the information provided by examining a simple

random sample of electronic devices selected from the shipment.

In this example one of these electronic devices is a unit and the collection of 10,000

units constituting the shipment is the population. Notice that, in this example, the target

population and the sampled population are the same (each is the shipment of 10,000
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devices). A suitable variable for the indicated objective is whether an electronic device

is defective with the two possible values: yes (it is defective) and no (it is not defective).

A relevant parameter is the proportion p of defective devices in the shipment of 10,000

devices. The corresponding statistic p̂ is the proportion of defective devices in the sample

of devices that is examined.

The boundary between the null and research hypotheses is clearly p0 = .06, since

we need to decide whether the population proportion of defective devices p exceeds .06.

Assuming that the supplier is trustworthy, it would seem to be a reasonable business

practice to accept the shipment of electronic devices unless we find sufficient evidence,

by examining the sample of devices, to conclude that more than 6% of the devices in

the shipment are defective. Hence, we will use a hypothesis test to determine whether

there is sufficient evidence to conclude that the population defective proportion p exceeds

.06. More formally, our research hypothesis is H1 : p > .06 and our null hypothesis is

H0 : p ≤ .06.

To continue with this example we need to know the sample size n and the results

of the examination of the sample of electronic devices. Suppose that the simple random

sample contains n = 200 electronic devices. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .06 is

S.E.(p̂) =

√
(.06)(.94)

200
= .0168.

Case 1. Suppose that 16 of the 200 devices in the sample are defective so that p̂ = .08.

In this case we know that 8% of the 200 devices in the sample are defective and we need

to decide whether this suggests that more than 6% of all the devices in the shipment are

defective. The calculated Z statistic is

Zcalc =
p̂− p0
S.E.(p̂)

=
.08− .06

.0168
= 1.1910

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 1.1910) = .1168.

Since this P–value is large there is not sufficient evidence to reject the null hypothesis

p ≤ .06 in favor of the research hypothesis p > .06. Therefore, if we observe 16 defective

devices in a random sample of n = 200 devices, then we should accept the shipment of

devices, since there is not sufficient evidence to conclude that more than 6% of the shipment

of 10,000 devices is defective.
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Case 2. Now suppose that 20 of the 200 devices in the sample are defective so that

p̂ = .10. In this case

Zcalc =
p̂− p0
S.E.(p̂)

=
.10− .06

.0168
= 2.3820

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 2.3820) = .0086.

This P–value is very small indicating that we have strong evidence against the null hypoth-

esis p ≤ .06 and in favor of the research hypothesis p > .06. Therefore, if we observe 20

defective devices in a random sample of n = 200 devices, then we are justified in returning

the shipment of devices, since there is strong evidence that more than 6% of the shipment

of 10,000 devices is defective.

In both of the cases described above, in addition to the conclusion of the hypothesis

test the retailer might also wonder exactly what proportion of devices in the shipment of

10,000 devices are defective. We can use a 95% confidence interval estimate of p to answer

this question.

In the first case there are 16 defective devices in the sample of n = 200 giving an

observed proportion of defective devices of p̂ = .08. The confidence interval estimate is

based on p̃k = .0879 and the 95% margin of error M.E.(p̃k) = .0381. Therefore, we are

95% confident that the actual proportion of defective devices in the shipment of 10,000 is

between .0879− .0381 = .0498 and .0879 + .0381 = .1260. As expected, since we did not

reject the tentative assumption that p ≤ .06, we see that this confidence interval includes

proportions that are both less than .06 and greater than .06.

In the second case there are 20 defective devices in the sample of n = 200 giving

p̂ = .10, p̃k = .1075, and the 95% margin of error M.E.(p̃k) = .0419. Therefore, in this

case we are 95% confident that the actual proportion of defective devices in the shipment

of 10,000 is between .1075− .0419 = .0656 and .1075 + .0419 = .1494. As expected, since

we did reject the tentative assumption that p ≤ .06, we see that all of the values in this

confidence interval are greater than .06. Notice that in this case the P–value .0086 is quite

small indicating that there is very strong evidence that the proportion of defective devices

in the shipment is larger than .06. However, from the 95% confidence interval estimate

of p we find that this proportion of defective devices might actually be as small as .0656,

which is not much larger than .06. Thus, the small P–value indicates strong evidence that

p is greater than .06 but it does not necessarily indicate that p is a lot larger than .06. Of

course the 95% confidence interval estimate also indicates that p may be as large as .1494

which is a good bit larger than .06.

The scenario in the acceptance sampling example where there is strong evidence that

p > .06 (P–value .0086) but the lower limit of the 95% confidence interval .0656 is not
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much larger than .06 highlights the need for a confidence interval to estimate the value

of p in addition to a hypothesis test to clarify the practical importance of the result of

the test. Bear in mind that a hypothesis test addresses a very formal distinction between

two complementary hypotheses and that in some situations the results may be statistically

significant (in the sense that the P–value is small) but of little practical significance (in

the sense that p is not very different from p0).

Example. Machine parts. The current production process used to manufacture

a particular machine part is known (from past experience) to produce parts which are

unacceptable, in the sense that they require further machining, 35% of the time. A new

production process has been developed with the hope that it will reduce the chance of pro-

ducing unacceptable parts. Suppose that 200 parts are produced using the new production

process and that 54 of these parts are found to be unacceptable.

In this example we have a sequence of 200 dichotomous trials, where a trial consists

of producing a part with the new production process and determining whether it is unac-

ceptable. In this example p denotes the probability that a part produced using the new

production process will be unacceptable. We will model these 200 trials as a sequence of

n = 200 Bernoulli trials with population success probability p. This assumption is reason-

able provided: (1) the probability that a part is unacceptable is essentially constant from

part to part; and, (2) whether a specific part is unacceptable or not has no effect on the

probability that any other part is unacceptable.

In this example the boundary between the null and research hypotheses is clearly

p0 = .35. Since these data were collected to determine if the new production process

is better than the old process, we want to know whether there is sufficient evidence to

conclude that less than 35% of the parts produced using the new production process would

be unacceptable. Thus our research hypothesis is H1 : p < .35 and our null hypothesis is

H0 : p ≥ .35. Since 54 of the 200 parts in our sample are unacceptable we know that p̂ = .27

and we need to determine whether this is small enough to suggest that the corresponding

population probability p is also less than .35. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .35 is

S.E.(p̂) =

√
(.35)(.65)

200
= .0337.

The calculated Z statistic is

Zcalc =
p̂− p0
S.E.(p̂)

=
.27− .35

.0337
= −2.3739

and the P–value is

P–value = P (Z ≤ Zcalc) = P (Z ≤ −2.3739) = .0088.
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Since this P–value is very small, there is sufficient evidence to reject the null hypothesis

p ≥ .35 in favor of the research hypothesis p < .35. Hence, based on this sample of 200

parts there is very strong evidence that the new production process is superior in the sense

that the probability of producing an unacceptable part is less than .35.

Clearly this conclusion should be accompanied by an estimate of how much smaller

this probability is likely to be. Observing 54 unacceptable parts in the sample of n = 200

gives p̂ = .27, p̃k = .2743, and the 95% margin of error M.E.(p̃k) = .0611. Therefore,

we are 95% confident that the probability of a part produced using the new production

process being unacceptable is between .2743 − .0611 = .2132 and .2743 + .0611 = .3354.

As expected, since we did reject the tentative assumption that p ≥ .35, we see that all

of the values in this confidence interval are less than .35. The P–value .0088 is quite

small indicating that there is very strong evidence that the probability of producing an

unacceptable part is less than .35. However, from the 95% confidence interval estimate

of p we find that this probability might actually be as large as .3354 which is not much

smaller than .35. Of course the 95% confidence interval estimate also indicates that p may

be as small as .2132 which is a good bit smaller than .35.

The hypothesis tests we have discussed thus far are only appropriate when we have

enough a priori information, i.e., information that does not depend on the data to be

used for the hypothesis test, to postulate that the population success proportion p is on

one side of a particular value p0. That is, we have only considered situations where the

research hypothesis is directional in the sense of specifying either that p > p0 or that

p < p0. In some situations we will not have enough a priori information to allow us to

choose the appropriate directional research hypothesis. Instead, we might only conjecture

that the population success proportion p is different from some particular value p0. In a

situation like this our research hypothesis specifies that the population success proportion

p is different from p0, i.e., H1 : p 6= p0 and the corresponding null hypothesis specifies

that p is exactly equal to p0, i.e., H0 : p = p0. As we will see in the inheritance model

considered below, when testing to see whether p is equal to a specified value p0 the null

hypothesis H0 : p = p0 often corresponds to the validity of a particular theory or model

and the research hypothesis or alternative hypothesis specifies that the theory is invalid.

In order to decide between the null hypothesis H0 : p = p0 and the research hypothesis

H1 : p 6= p0, we need to decide whether the observed success proportion p̂ supports the

null hypothesis by being “close to p0”, or supports the research hypothesis by being “far

away from p0”. In this situation the P–value is the probability that the observed success

proportion p̂ would be as far or farther away from p0 in either direction as is the value

that we actually observe. In other words, the P–value corresponds to large values of the

distance |p̂ − p0| (the absolute value of the difference between p̂ and p0). The P–value is

computed under the assumption that p = p0 so that the null hypothesis is true. In this
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situation the calculated Z statistic Zcalc is the absolute value of the Z statistic that would

be used for testing a directional hypothesis. That is, the calculated Z statistic is

Zcalc =

∣∣∣∣
p̂− p0
S.E.(p̂)

∣∣∣∣ .

In terms of this Z statistic the P–value is the probability that the absolute value of a

standard normal variable Z would take on a value as large or larger than Zcalc assuming

that p = p0. This probability is the sum of the area under the standard normal density

curve to the left of −Zcalc and the area under the standard normal density curve to the

right of Zcalc. We need to add these two areas (probabilities) since we are finding the

probability that the observed success proportion p̂ would be as far or farther away from

p0 in either direction as is the value that we actually observe, when p = p0.

The steps for performing a hypothesis test for

H0 : p = p0 versus H1 : p 6= p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|Z| ≥ Zcalc) =

P (Z ≤ −Zcalc) +P (Z ≥ Zcalc), where Z denotes a standard normal variable, Zcalc =

|(p̂− p0)/S.E.(p̂)|, and S.E.(p̂) =
√
p0(1− p0)/n. This P–value is the sum of the area

under the standard normal density curve to the left of −Zcalc and the area under the

standard normal density curve to the right of Zcalc as shown in Figure 6.

Figure 6. P–value for H0 : p = p0 versus H1 : p 6= p0.

Zcalc-Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p 6= p0 over H0 : p = p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is different from p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p 6= p0 over H0 : p = p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is different from p0.
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Example. Inheritance in peas (flower color). In his investigations, during the

years 1856 to 1868, of the chromosomal theory of inheritance Gregor Mendel performed

a series of experiments on ordinary garden peas. One characteristic of garden peas that

Mendel studied was the color of the flowers (red or white). When Mendel crossed a plant

with red flowers with a plant with white flowers, the resulting offspring all had red flowers.

But when he crossed two of these first generation plants, he observed plants with white as

well as red flowers. We will use the results of one of Mendel’s experiments to test a simple

model for inheritance of flower color. Mendel observed 929 pea plants arising from a cross

of two of these first generation plants. Of these 929 plants he found 705 plants with red

flowers and 224 plants with white flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers

(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (ordered combinations) RR,Rr, rR,

and rr. The three genotypes RR,Rr, and rR, which include the dominant R allele, will

yield red flowers while the fourth genotype rr will yield white flowers. If a red flowered

RR genotype parent is crossed with a white flowered rr genotype parent, then all of the

offspring will have genotype Rr and will produce red flowers. If two of these first generation

Rr genotype plants are crossed, each of the four possible genotypes RR,Rr, rR, and rr is

equally likely and plants with white as well as red flowers will occur. Under this simple

model for inheritance, with each of the four genotypes having the same probability of

occurring (and with each plant possessing only one genotype), the probability that a plant

will have red flowers is p = 3/4 and the probability that a plant will have white flowers is

1− p = 1/4. In other words, this model for inheritance of flower color says that we would

expect to see red flowers 3/4 of the time and white flowers 1/4 of the time.

We can test the validity of this model by testing the null hypothesisH0 : p = 3/4 versus

the alternative hypothesis H1 : p 6= 3/4. Notice that the model is valid under the null

hypothesis and the model is not valid under the alternative hypothesis. Mendel observed

705 plants with red flowers out of the n = 929 plants giving an observed proportion of

plants with red flowers of p̂ = 705/929 = .7589. The standard error of p̂, computed under

the assumption that p = p0 = 3/4, is

S.E.(p̂) =

√
(.75)(.25)

929
= .0142

and the calculated Z statistic is Zcalc = .6251 giving a P–value of

P–value = P (|Z| ≥ Zcalc) = P (|Z| ≥ .6251) = .5319.
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This P–value is quite large and we are not able to reject the null hypothesis; therefore,

we conclude that the observed data are consistent with Mendel’s model. Technically, we

should say that the data are not inconsistent with the model in the sense that we cannot

reject the hypothesis that p = 3/4. In this example, the 95% confidence interval estimate

of p ranges from .7303 to .7853.

5.4 Directional confidence bounds

In our discussion of hypothesis testing we considered directional research hypotheses

of the form p > p0 and p < p0 as well as nondirectional research hypotheses of the form

p 6= p0. However, in our discussion of 95% confidence intervals for p we only considered

confidence intervals of the form

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k).

A 95% confidence interval of this form consists of a lower bound p̃k −M.E.(p̃k) for p and

an upper bound p̃k +M.E.(p̃k) for p, thereby giving a range of plausible values for p. In a

situation where we have enough a priori information to justify a directional research hy-

pothesis we might argue that it would be more appropriate to determine a 95% confidence

bound (a lower bound or an upper bound) for p instead of a range of values.

For example, in the acceptance sampling example we might argue that we are less

concerned with how large p might be than with how small it might be. Therefore, we

might be satisfied with an estimate of the smallest value of p which would be consistent

with the data, i.e., we might only need a 95% confidence lower bound for p.

We will now show how a 90% confidence interval for p can be used to provide a 95%

confidence lower (or upper) bound for p. The cutoff point k for the margin of error for

a 90% confidence interval for p is k = 1.645. Three relevant probabilities associated with

the 90% confidence interval with lower limit L and upper limit U are:

P [L ≤ p ≤ U ] = .90, P [p < L] = .05, and P [U < p] = .05.

Combining the probability that p is between L and U and the probability that p is greater

than U we see that

P [p > L] = .90 + .05 = .95.

In other words, 95% of the time the computed value of the lower limit L of a 90% confidence

interval for p will be less than p. Therefore, the lower limit L of a 90% confidence interval

for p can be used as a 95% confidence lower bound for p. An analogous argument shows

that the upper limit U of a 90% confidence interval for p can be used as a 95% confidence

upper bound for p.
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Example. Acceptance sampling for electronic devices (revisited). If there

are 16 defective devices in a sample of n = 200, then the observed proportion of defective

devices is p̂ = .08 and taking k = 1.645 gives p̃k = .0856 and a 90% margin of error of

M.E.(p̃k) = .0318. Therefore, we are 95% confident that the actual proportion of defective

devices in the shipment of 10,000 is at least .0856 − .0318 = .0538, which allows for the

possibility that p < .06.

If there are 20 defective devices in a sample of n = 200, then the observed proportion

of defective devices is p̂ = .10 and taking k = 1.645 gives p̃k = .1053 and a 90% margin of

error of M.E.(p̃k) = .0351. Therefore, we are 95% confident that the actual proportion of

defective devices in the shipment of 10,000 is at least .1053− .0351 = .0702, which supports

the conclusion that p > .06.

5.5 Summary

Basic inferential methods (confidence intervals and hypothesis tests) were introduced

in this chapter in the context of making inferences about a population proportion p. These

inferential methods are based on the sampling distribution of a statistic (the sample pro-

portion p̂ in this chapter) which describes the sample to sample variability in the statistic

as an estimator of the corresponding parameter.

The specific inferential methods introduced in this chapter involve the use of the

observed proportion of successes p̂ in a random sample to make inferences about the corre-

sponding population success proportion p. In particular, we discussed confidence interval

estimates of p and formal tests of hypotheses about p. These inferences about p are based

on a normal approximation to the sampling distribution of p̂ and require certain assump-

tions about the random sample. Strictly speaking, the inferential methods discussed in this

chapter are not appropriate unless these assumptions are valid. The requisite assumptions

are that the sample is a simple random sample selected with replacement or equivalently

that the sample corresponds to a sequence of Bernoulli trials. We also noted that this

approximation works well for a simple random sample selected without replacement pro-

vided the population being sampled is very large. The sampling distribution of p̂ is the

theoretical probability distribution of p̂ which indicates how p̂ behaves as an estimator of

p. Under the assumptions described above, the sampling distribution of p̂ indicates that

p̂ is unbiased as an estimator of p (p̂ neither consistently overestimates p nor consistently

underestimates p) and provides a measure of the variability in p̂ as an estimator of p (the

population standard error of p̂, S.E.(p̂) =
√
p(1− p)/n). The normal approximation allows

us to compute probabilities concerning p̂ by re–expressing these probabilities in terms of

the standardized variable Z = (p̂− p)/S.E.(p̂) and using the standard normal distribution

to compute the probabilities.
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A 95% confidence interval estimate of p is an interval of plausible values for p con-

structed using a method which guarantees that 95% of such intervals will actually contain

the unknown proportion p. That is, a 95% confidence interval is an interval constructed

using a method of generating such intervals with the property that this method will work,

in the sense of generating an interval that contains p, for 95% of all possible samples. We

recommended the Wilson interval as a confidence interval estimate of p. For a confidence

level C (usually .95) and the corresponding standard normal cutoff point k (k = 1.96 when

C = .95) the Wilson interval is of the form

p̃k −M.E.(p̃k) ≤ p ≤ p̃k +M.E.(p̃k),

where

p̃k =
np̂+ k

2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

M.E.(p̃k) =

√
p̃2
k
− np̂2

n+ k2

determines the length of the interval. We also discussed a simple but less accurate con-

fidence interval for p (the Wald interval) and a simple approximation to the 95% Wilson

interval (the Agresti–Coull interval). The 95% Agresti–Coull interval is of the form

p̃−M.E.(p̃) ≤ p ≤ p̃+M.E.(p̃),

where

p̃ =
the number of successes plus 2

the number of observations plus 4
=

np̂+ 2

n+ 4

and

M.E.(p̃) = 1.96

√
p̃(1− p̃)

n+ 4
.

The “add 2 successes / add 4 observations” trick used in the Agresti–Coull interval can

be used in a computer program or calculator implementation of the Wald interval to

approximate the 95% Wilson interval.

A hypothesis test is used to compare two competing, complementary hypotheses (the

null hypothesis H0 and the research or alternative hypothesis H1) about p by tentatively

assuming that H0 is true and examining the evidence, which is quantified by the appropri-

ate P–value, against H0 and in favor of H1. Since the P–value quantifies evidence against

H0 and in favor of H1, a small P–value constitutes evidence in favor of H1. Guidelines for

interpreting a P–value are given on page 99.



5.6 Exercises 111

If there is sufficient a priori information to specify a directional hypothesis of the

form H1 : p > p0 or H1 : p < p0, then we can perform a hypothesis test to address

the respective questions “Is there sufficient evidence to conclude that p > p0?” or “Is

there sufficient evidence to conclude that p < p0?” The null hypotheses for these research

hypotheses are their negations H0 : p ≤ p0 and H0 : p ≥ p0, respectively. The hypothesis

test proceeds by tentatively assuming that the null hypothesisH0 is true and checking to see

if there is sufficient evidence (a small enough P–value) to reject this tentative assumption

in favor of the research hypothesis H1. The P–values for these directional hypothesis

tests are based on the observed value of the Z–statistic Zcalc = (p̂ − p0)/S.E.(p̂), where

S.E.(p̂) =
√

p0(1− p0)/n is the standard error for testing. For H1 : p > p0 large values of

p̂, relative to p0, favor H1 over H0 and the P–value is the probability that Z ≥ Zcalc. For

H1 : p < p0 we look for small values of p̂, relative to p0, and the P–value is the probability

that Z ≤ Zcalc.

For situations where there is not enough a priori information to specify a directional

hypothesis we considered a hypothesis test for the null hypothesis H0 : p = p0 versus the

alternative hypothesis H1 : p 6= p0. Again we tentatively assume that H0 is true and

check to see if there is sufficient evidence (a small enough P–value) to reject this tentative

assumption in favor ofH1. In this situation the hypothesis test addresses the question “Are

the data consistent with p = p0 or is there sufficient evidence to conclude that p 6= p0?”

For this non–directional hypothesis test we take the absolute value when computing the

observed value of the Z–statistic Zcalc = |(p̂− p0)|/S.E.(p̂), since values of p̂ which are far

away from p0 in either direction support p 6= p0 over p = p0. Thus the P–value for this

hypothesis test is the probability that |Z| ≥ Zcalc.

For all of these hypothesis tests, the P–value is computed under the assumption that

H0 is true, and the P–value is the probability of observing a value of p̂ that is as extreme

or more extreme, relative to p0, than the value we actually observed, under the assumption

that H0 is true (in particular p = p0). In this statement the definition of extreme (large,

small, or far from in either direction) depends on the form of H1.

5.6 Exercises

For each of the following examples:

a) Define the relevant population success proportion or probability. Be sure to indicate

the corresponding population.

b) Using the information provided, formulate an appropriate research hypothesis about

the population success proportion and briefly explain why your hypothesis is appropriate.
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c) Perform a hypothesis test to determine whether the data support your research hypoth-

esis. Provide the P–value and briefly summarize your conclusion in the context of the

example.

d) Construct a 95% confidence interval for the success proportion and interpret it in context

of the example.

1. A company which provides telephone based support for its products has found that 20%

of the users of this service file complaints about the quality of the service they receive.

Recently this company retrained its support personnel with the hope of reducing the

percentage of users who file complaints. A random sample of 150 customers who used

the telephone support after the support personnel had been retrained revealed that 20

customers were not satisfied with the quality of support they received.

2. A manufacturer has found that 15% of the items produced at its old manufactur-

ing facility fail to pass final inspection and must be remanufactured before they can be

sold. This manufacturer has recently opened a new manufacturing facility and wants to

determine whether the items produced at the new facility are more or less likely to fail

inspection and require remanufacture. A random sample of 200 items is selected from a

large batch of items produced at the new facility and of these 42 fail inspection and require

remanufacturing.

3. A supplier of vegetable seeds has a large number of bean seeds left over from last season

and is trying to decide whether these seeds are suitable for sale for the current season.

This supplier normally advertises that more than 85% of its bean seeds will germinate. A

random sample of 200 of the leftover beans seeds was selected and of these 200 seeds 181

germinated.


