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Chapter 7

Inference for a Mean or Median

7.1 Introduction

There are many situations when we might wish to make inferences about the location

of the “center” of the population distribution of a quantitative variable. We will consider

methods for making inferences about a population mean or a population median, which are

the two most commonly used measures of the center of the distribution of a quantitative

variable, in this chapter.

In Chapter 5 we considered inferences about the distribution of a dichotomous vari-

able. Since the distribution of a dichotomous variable is completely determined by the

corresponding population success proportion, we found that the sampling distribution of

the sample proportion p̂ was determined by the sampling method. In general, the dis-

tribution of a quantitative variable is not completely determined by a single parameter.

Therefore, before we can make inferences about the distribution of a quantitative variable

we need to make some assumptions about the distribution of the variable.

A probability model for the distribution of a discrete variableX is a theoretical relative

frequency distribution which specifies the probabilities (theoretical relative frequencies)

with which each of the possible values of X will occur. In contrast to a relative frequency

distribution, which indicates the relative frequencies with which the possible values of X

occur in a sample, a probability model or probability distribution specifies the probabilities

with which the possible values of X will occur when we observe a single value of X. That

is, if we imagine choosing a single value of X at random from all of the possible values of X,

then the probability model specifies the probability with which each possible value will be

observed. We can represent a discrete probability distribution graphically via a probability

histogram (theoretical relative frequency histogram) which is simply a histogram based on

the probabilities specified by the probability model.

A probability model for the distribution of a continuous variable X can be represented

by a density curve. A density curve is a nonnegative curve for which the area under the

curve (over the x–axis) is one. We can think of the density curve as a smooth version of

a probability histogram with the rectangles of the histogram replaced by a smooth curve

indicating where the tops of the rectangles would be. With a continuous variable X it

does not make sense to talk about the probability that X would take on a particular

value, after all if we defined positive probabilities for the infinite collection (continuum) of

possible values of X these probabilities could not add up to one. It does, however, make

sense to talk about the probability that X will take on a value in a specified interval or

range of values. Given two constants a < b the probability that X takes on a value in the
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interval from a to b, denoted by P (a ≤ X ≤ b), is equal to the area under the density

curve over the interval from a to b on the x–axis. Areas of this sort based on the density

curve give the probabilities which a single value of X, chosen at random from the infinite

population of possible values of X, will satisfy.

Given a probability model for the distribution of a continuous variable X, i.e., given

a density curve for the distribution of the continuous variable X, we can define population

parameters which characterize relevant aspects of the distribution. For example, we can

define the population mean µ as the balance point of the unit mass bounded by the density

curve and the number line. We can also think of the population mean as the weighted

average of the infinite collection of possible values of X with weights determined by the

density curve. We can similarly define the population median M as the point on the

number line where a vertical line would divide the area under the density curve into two

equal areas (each of size one–half).

7.2 Inference for a population mean

7.2a Introduction

In this section we will consider inference for the mean µ of the population distribution

of a continuous variable X. The basic problem we will consider is that of using a random

sample of values of the continuous variable X to estimate the corresponding population

mean or to test a hypothesis about this population mean.

Before we go further it is instructive to consider some situations where inference about

a population mean could be used and the way in which we might interpret a population

mean.

In some applications the population mean represents an actual physical constant. Let

µ denote the true value of the physical constant (such as the speed of light) which we wish

to estimate. Suppose that an experiment has been devised to produce a measurement X of

the physical constant µ. A probability model for the distribution of X provides a model for

the behavior of an observed value of X by specifying probabilities which X must satisfy.

Thus, the probability model provides an explanation of the variability in X as an estimate

of µ. It would be unreasonable to expect an observed value of X to be exactly equal to

µ; however, if the experiment is carefully planned and executed it would be reasonable to

expect the average value of X based on a long series of replications of the experiment to

be equal to µ. If this is the case, the population mean of the probability model for X will

be equal to the physical constant µ and the standard deviation σ of the probability model

will serve as a useful quantification of the variability of the measurement process.

When interest centers on an actual, physical population of units the population mean

is the average value of the variable of interest corresponding to all of the units in the
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population. Imagine a large population of units, e.g., a population of humans or animals.

Let the continuous variable X denote a characteristic of a unit, e.g., X might be some

measurement of the size of a unit. For concreteness, let X denote the height of an adult

human male and consider the population of all adult human males in the United Kingdom.

A probability model for the distribution of X provides a model for the behavior of an

observed value of the height X of an adult male selected at random from this population.

In this situation a probability model explains the variability among the heights of the adult

males in this population. Let µ denote the population mean height of all adult males in the

United Kingdom, i.e., let µ be the average height we would get if we averaged the heights

of all the adult males in this population. In this context the population mean height is

obviously not the “true height” of each of the adult males; however, we can think of the

height X of a particular adult male as being equal to the population mean height µ plus

or minus an adjustment for this particular male which is due to hereditary, environmental,

and other factors. The standard deviation σ of the probability model serves to quantify

the variability among this population of heights.

In many applications interest centers on the population mean difference between two

paired values. For example, consider a population of individuals with high cholesterol

levels and a drug designed to reduce cholesterol levels. Let X1 denote the cholesterol level

of an individual before taking the drug, let X2 denote this same individual’s cholesterol

level after being treated with the drug, and let D = X1−X2 denote the difference between

the two cholesterol levels (the decrease in cholesterol level). A probability model for the

distribution of D provides a model for the behavior of an observed value of the difference D

for an individual selected at random from this population. In this situation a probability

model explains the variability among the differences in cholesterol level due to treatment

with the drug for the individuals in this population. The corresponding population mean

difference µ is the average difference (decrease) in cholesterol level that we would observe if

all of the individuals in this population were treated with this drug. The standard deviation

σ of the probability model serves to quantify the variability among the differences for the

individuals in this population.

We can envision a probability model for the distribution of a quantitative variable X

in terms of a box model. If X has a finite number of possible values, then a probability

model specifies the probabilities with which these possible values will occur. If the balls

in a box are labeled with the possible values of X and the proportion of balls with each

label (value of X) in the box is equal to the probability for that value specified by the

probability model, then, according to the probability model, observing a value of X is

equivalent to selecting a single ball at random from this box and observing the label on

the ball. For a continuous variable X observing the value of X is like selecting a ball at

random from a box containing an infinite collection of suitably labeled balls.
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Given a probability model for the distribution of X, a collection of n values of X is

said to form a random sample of size n if it satisfies the two properties given below.

1. Each value of the variable X that we observe can be viewed as a single value

chosen at random from a (usually infinite) population of values which are distributed

according to the specified probability model for the distribution of X.

2. The observed values of X are independent. That is, knowing the value of one or

more of the observed values of X has no effect on the probabilities associated with

other values of X.

In other words, in terms of the box model for the probability distribution of X a random

sample of n values of X can be viewed as a collection of n labels corresponding to a simple

random sample selected with replacement from a box of suitably labeled balls.

Given a random sample of values of X it seems obvious that the sample mean X is an

appropriate estimate of the corresponding population mean µ. The sampling distribution

of X, which describes the sample to sample variability in X, serves as the starting point

for our study of the behavior of the sample mean X as an estimator of the population

mean µ. The exact form of the sampling distribution of X depends on the form of the

distribution of X. However, the two important properties of the sampling distribution of

the sample mean given below are valid regardless of the exact form of the distribution of

X.

Let X denote the sample mean of a random sample of size n from a population

(distribution) with population mean µ and population standard deviation σ. The sampling

distribution of the sample mean X has the following characteristics.

1. The mean of the sampling distribution of X is the corresponding population mean

µ. This indicates that the sample meanX is unbiased as an estimator of the population

mean µ. Recall that saying that a statistic is unbiased means that, even though the

statistic will overestimate the parameter for some samples and will underestimate the

parameter in other samples, it will do so in such a way that, in the long run, the

values of the statistic will average to give the correct value of the parameter.

2. The population standard error of the sample mean X (the standard deviation of

the sampling distribution of X) is S.E.(X) = σ/
√
n. That is, the standard deviation

of the sampling distribution of X is equal to the standard deviation of the distribution

of X divided by the square root of the sample size. Notice that this implies that the

sample mean is less variable than a single observation as an estimator of µ; and that

if µ and σ are held constant, then the variability in X as an estimator of µ decreases

as the sample size increases reflecting the fact that a larger sample provides more

information than a smaller sample.
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Since the form of the sampling distribution of X depends on the form of the distribu-

tion of X, we will need to make some assumptions about the distribution of X before we

can proceed with our discussion of inference for the population mean µ. These assumptions

correspond to the choice of a probability model (density curve) to represent the distribu-

tion of X. There is an infinite collection of probability models to choose from but we will

restrict our attention to a single probability model, the normal probability model, which

is appropriate for many situations when the distribution of X is symmetric and mound

shaped. This does not imply that all, or even most, distributions of continuous variables

are normal distributions. Some of the reasons that we will use the normal distribution as

a probability model are: (1) the theory needed for inference has been worked out for the

normal model; (2) there are many situations where a normal distribution provides a rea-

sonable model for the distribution of a quantitative variable; (3) even though the inferential

methods we discuss are based on the assumption that the distribution of the variable is

exactly a normal distribution, it is known that these inferential methods actually perform

reasonably well provided the true distribution of the variable is “reasonably similar to a

normal distribution”; and, (4) it is often possible to transform or redefine a variable so

that its distribution is reasonably modeled by a normal distribution.

7.2b The normal distribution

The normal distribution with mean µ and standard deviation σ can be characterized by

its density curve. The density curve for the normal distribution with mean µ and standard

deviation σ is the familiar bell shaped curve. The standard normal density curve, which

has mean µ = 0 and standard deviation σ = 1, is shown in Figure 1.

Figure 1. The standard normal density curve.
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The normal distribution with mean µ and its density curve are symmetric around µ, i.e.,

if we draw a vertical line through µ, then the two sides of the density curve are mirror

images of each other. Therefore the mean of a normal distribution µ is also the median of

the normal distribution. The mean µ locates the normal distribution on the number line so
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that if we hold σ constant and change the mean µ, the normal distribution is simply shifted

along the number line until it is centered at the new mean. In other words, holding σ fixed

and changing µ simply relocates the density curve on the number line; it has no effect on

the shape of the curve. Figure 2 provides the density curves for normal distributions with

respective means µ = 0 and µ = 2 and common standard deviation σ = 1.

Figure 2. Normal distributions with common standard deviation one and
means of zero and two.
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The standard deviation σ indicates the amount of variability in the normal distribu-

tion. If we hold µ fixed and increase the value of σ, then the normal density curve becomes

flatter, while retaining its bell–shape, indicating that there is more variability in the distri-

bution. Similarly, if we hold µ fixed and decrease the value of σ, then the normal density

curve becomes more peaked around the mean µ, while retaining its bell–shape, indicating

that there is less variability in the distribution. Normal distributions with mean µ = 0

and respective standard deviations σ = .5, σ = 1, and σ = 2 are plotted in Figure 3.

Figure 3. Normal distributions with common mean zero and standard
deviations one–half, one, and two.
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Example. Heights of adult males. The 8585 heights (in inches) of adult males

born in the United Kingdom (including the whole of Ireland) which are summarized in
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Table 8 of Section 3.3 provide a good illustration of the fact that normal distributions

often provide very good models for populations of physical measurements, such as heights

or weights, of individuals. Figure 4 provides a histogram for this height distribution and

the density curve for a normal distribution chosen to model these data. You can see that

the normal distribution provides a very reasonable model for the heights of adult males

born in the United Kingdom.

Figure 4. Histogram and normal density curve for the UK height example.

57 59 61 63 65 67 69 71 73 75 77
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Computer programs and many calculators can be used to compute normal probabilities

or equivalently to compute areas under the normal density curve. These probabilities can

also be calculated using tables of standard normal distribution probabilities such as Table

1. Recall that the standard normal distribution is the normal distribution with mean µ = 0

and standard deviation σ = 1. The relationship between the standard normal variable Z

and the normal variable X, which has mean µ and standard deviation σ, is

Z =
X − µ

σ
or equivalently X = µ+ Zσ.

This relationship implies that a probability statement about the normal variable X can

be re–expressed as a probability statement about the standard normal variable Z by re–

expressing the statement in terms of standard deviation units from the mean. Given

two constants a < b, observing a value of X between a and b (observing a ≤ X ≤ b)

is equivalent to observing a value of Z = (X − µ)/σ between (a − µ)/σ and (b − µ)/σ

(observing (a − µ)/σ ≤ (X − µ)/σ ≤ (b − µ)/σ). Furthermore, Z = (X − µ)/σ behaves

in accordance with the standard normal distribution so that the probability of observing

a value of X between a and b, denoted by P (a ≤ X ≤ b), is equal to the probability that

the standard normal variable Z takes on a value between (a− µ)/σ and (b− µ)/σ, i.e.,
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P (a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
.

In terms of areas this probability equality says that the area under the normal density

curve with mean µ and standard deviation σ over the interval from a to b is equal to the

area under the standard normal density curve over the interval from (a−µ)/σ to (b−µ)/σ.
Similarly, given constants c < d, we have the analogous result that

P (c ≤ Z ≤ d) = P (µ+ cσ ≤ X ≤ µ+ dσ).

Table 1 provides cumulative standard normal probabilities of the form P (Z ≤ a) for

values of a (Z in the table) between 0 and 3.69. Computer programs usually produce

cumulative probabilities like these. To use these cumulative probabilities to compute a

probability of the form P (a ≤ Z ≤ b) note that

P (a ≤ Z ≤ b) = P (Z ≤ b)− P (Z ≤ a)

and note that the symmetry of the normal distribution implies that

P (Z ≤ −a) = P (Z ≥ a) = 1− P (Z ≤ a).

Calculators will usually provide probabilities of the form P (a ≤ Z ≤ b) directly.

Z

Probability

Table 1. Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

continued on next page
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Z

Probability

Table 1 (continuation). Cumulative normal probabilities.
(Areas under the standard normal curve to the left of Z.)

Second decimal place in Z
Z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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7.2c Sampling from a normal population

Strictly speaking, the inferential methods based on the Student’s t distribution de-

scribed in Sections 7.2d and 7.2e are only appropriate when the data constitute a random

sample from a normal population. However, these methods are known to be generally

reasonable even when the underlying population is not exactly a normal population, pro-

vided the underlying population distribution is reasonably symmetric and the true density

curve has a more or less normal (bell–shaped) appearance. We cannot be sure that an

underlying population is normal; however, we can use descriptive methods to look for ev-

idence of possible nonnormality, provided the sample size is reasonably large. The most

easily detected and serious evidence of nonnormality you should look for is evidence of

extreme skewness or evidence of extreme outlying observations. If there is evidence of

extreme skewness or extreme outlying observations, then the inferential methods based on

the Student’s t distribution should not be used. An alternate approach to inference (for a

population median) which may be used when the Student’s t methods are inappropriate

is discussed in Section 7.3.

Figure 5. Stem and leaf histograms for eight random samples of size 10
from a standard normal distribution.

In these stem and leaf histograms the decimal point is between the stem and the leaves.

(A) (B) (C) (D)
-2 41 -2 4 -2 1 -2
-1 -1 3 -1 55 -1 20
-0 20 -0 51 -0 853 -0 6442
0 345569 0 33 0 28 0 145
1 1 112 1 14 1 4
2 2 0 2 2

(E) (F) (G) (H)
-2 62 -2 -2 -2
-1 -1 3 -1 -1 63
-0 42 -0 51 -0 721 -0 77654
0 66 0 11234 0 69 0 68
1 34 1 39 1 00357 1 2
2 24 2 2 2

Table 2. Five number summaries for the eight random samples
of size 10 from Figure 5.

(A) (B) (C) (D) (E) (F) (G) (H)
min -2.38 -2.38 -2.14 -1.21 -2.57 -1.29 -.65 -1.62
Q1 -.13 -.37 -1.29 -.58 -.38 -.08 .08 -.71

median .34 .30 -.43 -.28 .57 .14 .95 -.56
Q3 .54 1.14 .67 .32 1.40 .33 1.25 .36
max .89 2.01 1.35 1.44 2.40 1.93 1.66 1.21
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Using a sample to determine whether the underlying population is normal requires

some practice. Some indication of the sorts of samples which may arise when the under-

lying population is normal is provided by the stem and leaf histograms and five number

summaries given in Figures 5 and 6 and Tables 2 and 3 for several computer generated

random samples from a standard normal distribution. The eight random samples of size

10 of Figure 5 and Table 2 indicate what may happen when a small sample is taken from

a population which is normal. Based on these examples it is clear that we should not

necessarily view slight skewness (as in A, B, D, F, G, and H) or mild outliers (as in A

and E) as evidence of nonnormality. The eight random samples of size 50 of Figure 6 and

Table 3 indicate that with a reasonably large sample we can expect to see a reasonably

symmetric distribution; but, we may see a few mild outliers as in A, C, and F.

Figure 6. Stem and leaf histograms for eight random samples of size 50
from a standard normal distribution.

In these stem and leaf histograms the decimal point is between the stem and the leaves.

(A) (B) (C) (D)
-3 -3 -3 2 -3
-2 -2 -2 -2 86
-2 -2 10 -2 21 -2 10
-1 85 -1 6 -1 66 -1 998
-1 4332110 -1 3100 -1 4322110 -1 4443222
-0 9876665 -0 8877655 -0 97655 -0 9876655
-0 4442211110 -0 42221000 -0 443221111 -0 4421111
0 113344 0 011222333 0 03344 0 011122334
0 555667778 0 55556689 0 566677789 0 566789
1 0134 1 01223 1 011224 1 022
1 5778 1 579 1 55 1 558
2 2 01 2 00 2 1
2 7 2 7 2 2

(E) (F) (G) (H)
-2 -2 5 -2 -2
-2 -2 -2 0 -2
-1 -1 -1 7666 -1 9666
-1 4320 -1 333111 -1 222110 -1 33220
-0 9875555555 -0 98876655 -0 98766555 -0 87666
-0 32 -0 443333211 -0 4443221 -0 433322211000
0 01223333444 0 0233 0 122223 0 222233334
0 556678889999 0 566666777789 0 6678899 0 5578889
1 0002344 1 022444 1 011 1 11244
1 5567 1 6 1 555699 1 56
2 2 124 2 14 2 4
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Table 3. Five number summaries for the eight random samples
of size 50 from Figure 6.

(A) (B) (C) (D) (E) (F) (G) (H)
min -1.77 -2.13 -3.20 -2.84 -1.39 -2.47 -1.98 -1.90
Q1 -.64 -.55 -.91 -1.23 -.48 -.56 -.78 -.59

median -.06 .11 -.09 -.11 .36 .10 -.13 -.02
Q3 .67 .78 .72 .54 .92 .71 .87 .67
max 2.75 2.70 1.97 2.10 1.74 2.37 2.44 2.37

Normal probability plots. If you have access to a suitable calculator or computer

program, you can construct a normal probability plot as an aid for assessing whether your

data are consistent with a sample from a normal distribution. A normal probability plot

provides a graphical comparison of the observed sample values with idealized sample values

which we might expect to observe if the sample came from a normal distribution. The

idealized sample values used in a normal probability plot are known as normal scores.

Ideally, we would expect a random sample of size n from a normal distribution to partition

the region under the normal density curve into n + 1 regions of equal area, with each of

these areas being 1/(n+ 1). The n normal scores, which constitute our idealized random

sample, can thus be formed by determining the n values which would partition the area

under the normal density curve into n + 1 regions each of area 1/(n + 1) as suggested

above. Once these normal scores are obtained we can plot the ordered normal scores

versus the ordered observed data values and examine this normal probability plot looking

for evidence of systematic disagreement between the actual sample values and the expected

normal scores. If the sample really was a sample from a normal distribution, then we would

expect the normal probability plot to approximate a straight line. Therefore, a normal

probability plot which differs greatly in appearance from a straight line provides evidence

that the sample may not come from a normal distribution.

Figures 7 and 8 provide normal probability plots (normal score versus observed value)

for the computer generated random samples from a standard normal distribution of Fig-

ures 5 and 6. Some representative examples of normal probability plots for actual data

are provided in Figures 9, 10, and 11. (In some of these plots and subsequent normal

probability plots the points have been subjected to small random shifts to better indicate

points which are coincident or very close together.)

The normal probability plot in Figure 9 is for the height of adult males in the United

Kingdom example of Section 7.2b. We noted that the histogram for the distribution of the

height of adult males in the United Kingdom given in Figure 4 of this chapter is very well

approximated by a normal distribution. The straight line nature of the normal probability

plot of Figure 9 indicates that it is quite reasonable to model these heights as forming a

random sample from a normal distribution. The normal probability plot in Figure 10 is

for the cholesterol levels of the rural Guatemalans from the example in Section 3.1.
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Figure 7. Normal probability plots for the for eight random samples

of size 10 (from a standard normal distribution) of Figure 5.
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The stem and leaf histogram of Figure 1 in Section 3.1 is reasonably symmetric and the

fact that the normal probability plot in Figure 10 is reasonably linear indicates that it is

reasonable to model the cholesterol levels of these rural Guatemalans as forming a sample

from a normal distribution. The normal probability plot in Figure 11 is for the rainfall

amounts for the 26 days when the cloud was unseeded in the cloud seeding example of
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Section 4.3. The curvature in this normal probability plot indicates that it is not reasonable

to model these rainfall amounts as forming a random sample from a normal distribution.

The stem and leaf histogram for this example given in Figure 12 shows that this type of

curvature in a normal probability plot corresponds to skewness to the right.

Figure 8. Normal probability plots for the for eight random samples

of size 50 (from a standard normal distribution) of Figure 6.
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Figure 9. Normal probability plot for the UK height example.
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Figure 10. Normal probability plot for rural cholesterol levels.
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Figure 11. Normal probability plot for unseeded rainfall.
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Figure 12. Stem and leaf histogram for unseeded rainfall.

In this stem and leaf histogram the stem represents hundreds
and the leaf represents tens. (acrefeet)
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7.2d Estimating a normal population mean

The sample mean X provides a single number estimate of the population mean µ. We

can think of X as our “best guess” of the value of µ. As noted above we know that X is

unbiased as an estimator of µ; therefore, on the average in the long run (under repeated

sampling) we know that X provides a good estimate of the unknown mean µ. Since this

unbiasedness does not guarantee that the observed value of X, based on a single sample,

will be close to the true, unknown value of µ, it would be useful to have a confidence

interval estimate of µ.

Recall that when the sample mean corresponds to a random sample from a population

distribution with population mean µ and population standard deviation σ the sampling

distribution of X has mean µ and standard deviation S.E.(X) = σ/
√
n (the population

standard error of X). When the underlying population distribution is normal we can say

more about the form of this sampling distribution. If the random sample from which

the sample mean X is computed is a random sample from a normal population with

population mean µ and population standard deviation σ, then the sampling distribution

of X is a normal distribution with population mean µ and population standard deviation

S.E.(X) = σ/
√
n. Thus, under these assumptions, the quantity

Z =
X − µ

S.E.(X)
=

X − µ

σ/
√
n

behaves in accordance with the standard normal distribution.
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We know that a standard normal variable Z will take on a value between −1.96 and
1.96 with probability .95 (P (−1.96 ≤ Z ≤ 1.96) = .95). This implies that

P

(
−1.96 ≤ X − µ

S.E.(X)
≤ 1.96

)
= .95

which is equivalent to

P
(
X − 1.96S.E.(X) ≤ µ ≤ X + 1.96S.E.(X)

)
= .95.

This probability statement says that 95% of the time we will observe a value of X such

that the population mean µ will be between X − 1.96S.E.(X) and X + 1.96S.E.(X). Un-
fortunately, we cannot use this interval as a confidence interval for µ, since the population

standard error S.E.(X) = σ/
√
n depends on the unknown population standard deviation

σ and thus is not computable. We can avoid this difficulty by replacing the unknown

population standard error σ/
√
n by the sample standard error Ŝ.E.(X) = S/

√
n, where

S is the sample standard deviation, and basing our confidence interval estimate on the

quantity

T =
X − µ

Ŝ.E.(X)
=

X − µ

S/
√
n
.

If the sample mean X and the sample standard deviation S are computed from a

random sample of size n from a normal population with population mean µ and popu-

lation standard deviation σ, then the quantity T defined above follows the Student’s t

distribution with n− 1 degrees of freedom. The Student’s t distribution with n− 1
degrees of freedom is symmetric about zero and has a density curve very similar to that of

the standard normal distribution. The main difference between these two distributions is

that the Student’s t distribution has “heavier” tails than the standard normal distribution.

That is, the tails of the Student’s t density curve approach the x–axis more slowly than

do the tails of the standard normal density curve. As the sample size (and the degrees

of freedom) increases the Student’s t distribution becomes more similar to the standard

normal distribution. In fact, the standard normal distribution is the limiting version of

the Student’s t distribution in the sense that the Student’s t density curve approaches

the standard normal density curve when the degrees of freedom increases without bound.

The relationship between Student’s t distributions and the standard normal distribution

is indicated by the plots in Figure 13.
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Figure 13. Student’s t distributions with 1 and 3 degrees of freedom and
standard normal distribution.
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Given a constant k such that P (−k ≤ T ≤ k) = .95, where T denotes a Students t

variable with n− 1 degrees of freedom, we have

P

(
−k ≤ X − µ

Ŝ.E.(X)
≤ k

)
= .95

which is equivalent to

P
(
X − kŜ.E.(X) ≤ µ ≤ X + kŜ.E.(X)

)
= .95.

The quantity

M.E.(X) = kŜ.E.(X) =
kS√
n

is the 95% margin of error of X. The preceding probability statement says that 95% of

the time we will observe values ofX and S such that the population mean µ will be between

X −M.E.(X) and X +M.E.(X). Thus, the interval from X −M.E.(X) to X +M.E.(X)
is a 95% confidence interval estimate for µ. To compute this confidence interval we need

to determine the value of the appropriate margin of error multiplier k. This multiplier

depends on the size of the sample so that there is a different multiplier for each sample

size. The symmetry of the Student’s t distribution and the definition of k imply that k is

the 97.5 percentile of the Student’s t distribution with n− 1 degrees of freedom. The 95%
margin of error multipliers (k’s) based on the Student’s t distribution, for several choices

of the degrees of freedom (d.f.), are given in Table 4.

This confidence interval estimate may be reported using a statement such as: We are

95% confident that the population mean µ is between X −M.E.(X) and X + M.E.(X).

Notice that it is the sample mean X and the margin of error M.E.(X) that vary from

sample to sample. The population mean µ is a fixed, unknown parameter that does not
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vary. Therefore, the 95% confidence level applies to the method used to generate the

confidence interval estimate. That is, the method (obtain a simple random sample and

compute the numbers X−M.E.(X) and X+M.E.(X) forming the limits of the confidence
interval) is such that 95% of the time it will yield a pair of confidence interval limits which

bracket the population mean µ.

97.5%

k

Table 4. 97.5 percentiles of the Student’s t distribution.

d.f. k d.f. k d.f. k d.f. k
1 12.706 14 2.145 27 2.052 40 2.021
2 4.303 15 2.131 28 2.048 45 2.014
3 3.182 16 2.120 29 2.045 50 2.008
4 2.776 17 2.110 30 2.042 55 2.004
5 2.571 18 2.101 31 2.040 60 2.000
6 2.447 19 2.093 32 2.037 65 1.997
7 2.365 20 2.086 33 2.034 70 1.994
8 2.306 21 2.080 34 2.032 75 1.992
9 2.262 22 2.074 35 2.030 80 1.989
10 2.228 23 2.069 36 2.028 85 1.988
11 2.201 24 2.064 37 2.026 90 1.986
12 2.179 25 2.060 38 2.024 95 1.985
13 2.160 26 2.056 39 2.023 100 1.982

Example. Newcomb’s measurements of the speed of light. In 1882 Simon

Newcomb conducted an investigation to measure the speed of light. The essence of New-

comb’s experiment was to determine the time it took for light to travel from Fort Myer

on the west bank of the Potomac river to a fixed mirror at the foot of the Washington

monument 3721 meters away and back. (More details about this and similar examples can

be found in Stigler (1977), Do robust estimators work with real data? (with discussion),

Annals of Statistics, 5, 1055–1098.) Data from 64 replications of this experiment are pro-

vided in Table 5. For ease of handling the times in Table 5 are simplified. The values

given in Table 5 are times expressed as billionths of a second in excess of 24.8 millionths

of a second, i.e., if a time value from Table 5 is multiplied by 10−3 and added to 24.8,

the result is the time which Newcomb observed measured in millionths of a second. For

example, the first observation in Table 5 is 28 which corresponds to an observed time of

24.828 millionths of a second.
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Table 5. Newcomb’s time data.

28 22 36 26 28 28 26 24 32 30 27 24 33 21 36 32
31 25 24 25 28 36 27 32 34 30 25 26 26 25 23 21
30 33 29 27 29 28 22 26 27 16 31 29 36 32 28 40
19 37 23 32 29 24 25 27 24 16 29 20 28 27 39 23

Figure 14. Stem and leaf histogram for Newcomb’s time data.

In this stem and leaf histogram the stem represents tens of billionths of
a second and the leaf represents billionths of a second.

stem leaf
1 66
1 9
2 011
2 22333
2 4444455555
2 66666777777
2 888888899999
3 00011
3 2222233
3 4
3 66667
3 9
4 0

Figure 15. Normal probability plot for Newcomb’s time data.
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Table 6. Summary statistics for Newcomb’s time data.

minimum 16.0 Q1− minimum 8.5
Q1 24.5 median −Q1 3.0

median 27.5 Q3− median 3.5
Q3 31.0 maximum −Q3 9.0

maximum 40.0

mean 27.7500 range 24.0
standard deviation 5.0834 IQ range 6.5

Summary statistics for these times are given in Table 6, a stem and leaf histogram

is provided in Figure 14, and a normal probability plot is given in Figure 15. Based

on the summary statistics, the stem and leaf histogram, and the normal probability plot

it seems reasonable to assume that these data form a random sample from a normal

population. More specifically, it seems reasonable to assume that these 64 measurements

are independent realizations of a normally distributed variable with population mean µ.

Actually, the assumption of independence is somewhat questionable, since repetitions of

the experiment conducted at nearly the same point in time might exhibit some dependence.

We will hope that any such dependence is minor and treat these observations as if they

were independent. The population mean µ can be thought of as the “true” time it would

take light to make the “trip” as indicated for this experiment if this time could be measured

very precisely. We can also view the population mean µ as the long run average of the

times which would be obtained if this experiment was repeated over and over. We must

keep in mind the fact that Newcomb’s method of measurement may introduce a systematic

bias which would make the “true” time µ differ from the actual time it would take for light

to travel a distance of 7442 = 2× 3721 meters.
The sample mean for these n = 64 observations is 27.7500, the sample standard

deviation is 5.0834, the standard error of the sample mean is 5.0834/
√
64 = .6354, and

the multiplier for the 95% margin of error, based on the Student’s t distribution with

n− 1 = 63 degrees of freedom, is k = 1.9983. Thus the 95% margin of error of the sample
mean is (1.9983)(.6354) = 1.2697 and the limits for the 95% confidence interval estimate of

µ are 27.7500− 1.2697 = 26.4803 and 27.7500 + 1.2697 = 29.0197. Therefore, we are 95%
confident that the population mean time for Newcomb’s experiment is between 26.4803

and 29.0197 billionths of a second. If we re-express this in terms of the time required for

light to travel through the experimental set-up, we find that we are 95% confident that

the population mean time measured in this way is between 24.8264803 and 24.8290197

millionths of a second.

For the preceding analysis we have removed two “outliers” from Newcomb’s data.

The two unusual values are -44 and -2, which correspond to measured times of 24.756 and
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24.798 millionths of a second. If these values are added to the stem and leaf histogram of

Figure 14, they are clearly inconsistent with the other 64 data values. It seems reasonable to

conjecture that something must have gone wrong with the experiment when these unusually

small values were obtained. Newcomb chose to omit the observation of -44 and retain the

observation of -2. If we consider the 65 observations including the -2, we find that the

sample mean is reduced to 27.2923, the sample standard deviation is increased to 6.2493,

and the standard error of the mean becomes .7752. Notice that, as we would expect, the

presence of this outlier reduces the sample mean (moves the mean toward the outlier)

and increases the sample standard deviation (increases the variability in the data). With

n = 65 observations the multiplier for the 95% margin of error, based on the Student’s t

distribution with n − 1 = 64 degrees of freedom, is k = 1.9977, which gives a margin of
error of (1.9977)(.7752) = 1.5486. Hence, when the unusually small value -2 is included we

are 95% confident that the population mean time for Newcomb’s experiment is between

25.7437 and 28.8409 billionths of a second. Re-expressing this in terms of the time required

for light to travel through the experimental set-up, we find that we are 95% confident that

the population mean time measured in this way is between 24.8257437 and 24.8288409

millionths of a second. Including the outlier, -2, has the effect of shifting the confidence

interval to the left and making it longer.

Example. Heights of husbands and wives. The data used in this example are

part of data set 231 in Hand, Daly, Lunn, McConway, and Ostrowski (1994), A Handbook

of Small Data Sets, Chapman and Hall, London. The original source is Marsh (1988),

Exploring Data, Cambridge, UK. A random sample of n = 169 married couples was selected

from the 1980 OPCS study of the heights and weights of the adult population of Great

Britain. The data consist of paired heights (in mm) for these husbands and wives. A few

of these paired heights are given in Table 7 and all of the differences (husband’s height

minus wife’s height) are given in Table 8.

Table 7. Husband and wife height data (partial).

couple husband’s wife’s difference
height height

1 1786 1590 196
2 1754 1660 94
3 1755 1590 165
4 1725 1550 175
5 1796 1550 246
. . . . . . . . . . . .
169 1641 1570 71
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Table 8. Husband and wife height differences.

-96 -65 -46 -37 -30 -30 -21 -12 0 0
1 9 13 14 15 19 34 35 35 36
39 40 50 55 56 59 60 60 65 65
66 68 70 70 71 71 73 74 75 75
79 79 81 83 84 84 84 85 85 88
90 94 94 95 96 100 103 103 105 110
110 113 113 114 115 118 119 120 120 123
123 123 123 125 125 125 125 125 128 128
128 129 130 130 130 133 134 135 135 135
135 139 140 141 141 144 144 145 145 145
145 150 151 155 155 155 159 159 160 160
160 160 161 161 164 165 165 165 166 169
170 174 175 175 178 180 181 183 183 188
189 190 190 191 193 194 195 195 195 196
196 196 204 205 209 210 215 219 225 228
228 229 233 235 236 239 241 243 244 246
250 255 258 259 271 276 281 295 303

Table 9. Summary statistics for height differences.

minimum -96 Q1− minimum 177
Q1 81 median −Q1 49

median 130 Q3− median 51
Q3 181 maximum −Q3 122

maximum 303

mean 129.8225 range 399.0
standard deviation 76.0211 IQ range 100.0

Figure 16. Stem and leaf histogram for height differences.

In this stem and leaf histogram the stem represents hundreds and the leaf tens (mm).

stem leaf
-0 96
-0 4333210
0 0001111333334
0 555566666677777777778888888899999
1 0000111111112222222222222223333333333444444444
1 55555556666666666667777788888899999999999
2 000111222233334444
2 55557789
3 0
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Figure 17. Normal probability plot for height differences.
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Summary statistics for these differences are given in Table 9, a stem and leaf histogram

is provided in Figure 16, and a normal probability plot is given in Figure 17. Based on

the summary statistics, the stem and leaf histogram, and the normal probability plot it

seems reasonable to assume that these differences form a random sample from a normal

population of differences. The population mean difference µD is the average difference in

height corresponding to the population of all married couples in Great Britain in 1980.

(Technically, we should restrict this mean to those married couples included in the 1980

COPS study from which the sample was taken.)

The sample mean for these n = 169 differences is 129.8225 mm, the sample standard

deviation is 76.0211 mm, the standard error of the sample mean is 76.0211/
√
169 = 5.8478,

and the multiplier for the 95% margin of error, based on the Student’s t distribution with

n−1 = 168 degrees of freedom, is k = 1.9742. Thus the 95% margin of error of the sample
mean is (1.9742)(5.8478) = 11.5447 and the limits for the 95% confidence interval estimate

of µD are 129.8225 − 11.5447 = 118.2778 and 129.8225 + 11.5447 = 141.3672. Therefore,
we are 95% confident that for the population of all married couples in Great Britain in

1980, on average, the husband’s height exceeds the wife’s height by at least 118.2778 mm

and perhaps as much as 141.3672 mm.

Remark regarding directional confidence bounds. The use of one of the confidence

limits of a 90% confidence interval as a 95% confidence bound discussed in Section 5.4 can

also be used in the present context. That is, we can find an upper or lower 95% confidence

bound for µ by selecting the appropriate confidence limit from a 90% confidence interval

estimate of µ.
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7.2e Tests of hypotheses about a normal population mean

The hypothesis testing procedures discussed in this section are based on the fact that,

when µ = µ0, the Student’s t test statistic

Tcalc =
X − µ0

Ŝ.E.(X)
=

X − µ0

S/
√
n
,

follows the Student’s t distribution with n − 1 degrees of freedom. Recall that, techni-
cally, this result requires that the sample from which the sample mean X and the sample

standard deviation S are computed forms a random sample from a normal distribution

with population mean µ. However, these methods are known to be generally reasonable

even when the underlying population is not exactly a normal population, provided the

underlying population distribution is reasonably symmetric and the true density curve has

a more or less normal (bell–shaped) appearance. An alternate approach to inference (for

a population median) which may be used when the Student’s t methods are inappropriate

is discussed in Section 7.3.

Recall that a hypothesis (statistical hypothesis) is a conjecture about the nature of

the population. When we considered hypotheses about dichotomous populations we noted

that the population was completely determined by the population success proportion p. In

the present context of sampling from a normal population two parameters, the mean and

the standard deviation, must be specified to completely determine the normal population.

A hypothesis about the value of the population mean µ of a normal distribution specifies

where the center of this normal distribution, µ, is located on the number line but places

no restriction on the population standard deviation.

Even though the logic behind a hypothesis test for a population mean µ is the same

as the logic behind a hypothesis test for a population proportion p, we will introduce

hypothesis testing for a mean in the context of a simple hypothetical example.

Example. Strength of bricks. Consider a brick manufacturer that has produced

a large batch of bricks and wants to determine whether these bricks are suitable for a

particular construction project. The specifications for this project require bricks with a

mean compressive strength that exceeds 3200 psi. In order to assess the suitability of

this batch of bricks the manufacturer will obtain a simple random sample of bricks from

this batch and measure their compressive strength. In this example a single brick is a

unit, the entire large batch of bricks is the population, and a suitable variable X is the

compressive strength of an individual brick (in psi). We will assume that the distribution

of X is reasonably modeled by a normal distribution with population mean µ and popu-

lation standard deviation σ. In this example the population mean µ represents the mean



164 7.2e Tests of hypotheses about a normal population mean

compressive strength for all of the bricks in this large batch and the population standard

deviation quantifies the variability from brick to brick in (measured) compressive strength.

The manufacturer does not want to use these bricks for this construction project

unless there is sufficient evidence to claim that the population mean compressive strength

for this batch exceeds 3200 psi. Thus, the question of interest here is: “Is there sufficient

evidence to justify using this batch of bricks for this project?” In terms of the population

mean µ the research hypothesis is H1 : µ > 3200 (the mean compressive strength for this

batch of bricks exceeds 3200 psi); and the null hypothesis is H0 : µ ≤ 3200 (the mean
compressive strength for this batch of bricks does not exceed 3200 psi). In other words,

the manufacturer will tentatively assume that these bricks are not suitable for this project

and will check to see if there is sufficient evidence against this tentative assumption to

justify the conclusion that these bricks are suitable for the project.

A test of the null hypothesis H0 : µ ≤ 3200 versus the research hypothesis H1 : µ >

3200 begins by tentatively assuming that the mean compressive strength for this batch of

bricks is no larger than 3200 psi. Under this tentative assumption it would be surprising

to observe a sample mean compressive strength X that was much larger than 3200. Thus

the test should reject H0 : µ ≤ 3200 in favor of H1 : µ > 3200 if the observed value of X is

sufficiently large relative to 3200. In order to determine whether X is large relative to 3200

we need an estimate of the sample to sample variability in X. The sample standard error

of the sample mean Ŝ.E.(X) = S/
√
n, where S denotes the sample standard deviation,

provides a suitable measure of the sample to sample variability in X. Our conclusion will

hinge on deciding whether the observed value of the Student’s t test statistic

Tcalc =
X − 3200
Ŝ.E.(X)

=
X − 3200
S/
√
n

is far enough above zero to make µ > 3200 more tenable than µ ≤ 3200. We will base
this decision on the probability of observing a value of T as large or larger than the

actual calculated value Tcalc of T , under the assumption that µ ≤ 3200. This probability
(computed assuming that µ = 3200) is the P–value of the test. We will use the fact that,

when µ = 3200, the Student’s t statistic T follows the Student’s t distribution with n− 1
degrees of freedom to calculate the P–value.

First suppose that a simple random sample of n = 100 bricks is selected from the

large batch. Further suppose that the sample mean compressive strength of these 100

bricks is X = 3481 psi and the sample standard deviation is S = 1118.38. In this case we

know that the mean compressive strength of the bricks in the sample X = 3481 exceeds

3200 and we need to decide whether this suggests that the mean compressive strength

of all of the bricks in the batch µ exceeds 3200. In this case the sample standard error

of X is Ŝ.E.(X) = 1118.38/
√
100 = 111.838. Thus X exceeds 3200 by 281 psi which is
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281/111.838 = 2.5126 standard error units, i.e., Tcalc = 2.5126. In this case the P–value

.0068 is the probability of observing a calculated T value as large or larger than 2.5126

when µ ≤ 3200. That is, if µ ≤ 3200 and we perform this experiment with n = 100,

then we would expect to see a value of X that is 2.5126 standard error units above the

hypothesized value 3200 (2.5126 times Ŝ.E.(X) psi above 3200) about 0.68% of the time.

Therefore, observing values of X and S in a sample of size n = 100 which yield a value of

Tcalc as large or larger than 2.5126 would be very surprising if the true mean compressive

strength for the batch µ was not larger than 3200 and we have sufficient evidence to reject

the null hypothesis H0 : µ ≤ 3200 in favor of the research hypothesis H1 : µ > 3200.

In the case we would conclude that there is sufficient evidence to contend that the mean

compressive strength for this batch of bricks exceeds 3200 psi, i.e., these bricks are suitable

for the construction project.

Now suppose that a simple random sample of n = 100 bricks is selected from the large

batch and the sample mean compressive strength of these 100 bricks is X = 3481 psi as

before. However, suppose that in this case the sample standard deviation is S = 2329.3. As

before we know that the mean compressive strength of the bricks in the sample X = 3481

exceeds 3200 and we need to decide whether this suggests that the mean compressive

strength of all of the bricks in the batch µ exceeds 3200. In this case the sample standard

error of X is Ŝ.E.(X) = 2329.3/
√
100 = 232.93. Thus X exceeds 3200 by 281 psi which

is 281/232.93 = 1.2064 standard error units, i.e., Tcalc = 1.2064. In this case the P–value

.1153 is the probability of observing a calculated T value as large or larger than 1.2064

when µ ≤ 3200. That is, if µ ≤ 3200 and we perform this experiment with n = 100, then we
would expect to see a value of X that is 1.2064 standard error units above the hypothesized

value 3200 (1.2064 times Ŝ.E.(X) psi above 3200) about 11.53% of the time. Therefore,

observing values of X and S in a sample of size n = 100 which yield a value of Tcalc as large

or larger than 1.2064 would not be very surprising if the true mean compressive strength

for the batch µ was not larger than 3200 and we do not have sufficient evidence to reject

the null hypothesis H0 : µ ≤ 3200 in favor of the research hypothesis H1 : µ > 3200. In

the case we would conclude that there is not sufficient evidence to contend that the mean

compressive strength for this batch of bricks exceeds 3200 psi, i.e., these bricks are not

suitable for the construction project.

The research hypothesis in the brick example is a directional hypothesis of the form

H1 : µ > µ0, where µ0 = 3200. We will now discuss the details of a hypothesis test

for a directional research hypothesis of this form. For the test procedure to be valid the

specified value µ0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.
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Let µ0 denote the hypothesized value which we wish to compare with µ. The research

hypothesis states that µ is greater than µ0; in symbols we will indicate this research

hypothesis by writing

H1 : µ > µ0.

The null hypothesis is the negation of H1 : µ > µ0 which states that µ is not greater than

µ0; in symbols we will indicate this null hypothesis by writing

H0 : µ ≤ µ0.

The research hypothesis H1 : µ > µ0 specifies that the normal distribution is one of the

normal distributions for which the population mean µ is greater than µ0. The null hypoth-

esis H0 : µ ≤ µ0 specifies that the normal distribution is one of the normal distributions

for which the population mean µ is at most µ0. The population standard deviation σ is

not restricted by either hypothesis. Assuming that the population standard deviation is

the same regardless of which hypothesis is true, this competing pair of hypotheses provides

a decomposition of all possible normal distributions with this σ into the collection of nor-

mal distributions where µ > µ0 and the research hypothesis is true and the collection of

normal distributions where µ ≤ µ0 and the null hypothesis is true. Our goal is to use the

data to decide which of these two collections of normal distributions contains the normal

distribution we are actually sampling from.

Since a hypothesis test begins by tentatively assuming that the null hypothesis is

true, we need to decide what constitutes evidence against the null hypothesis H0 : µ ≤ µ0

and in favor of the research hypothesis H1 : µ > µ0. We will assume that the unknown

population standard deviation σ is fixed regardless of the value of µ. The difference X−µ0

between the sample mean X and the hypothesized value µ0, expressed in standard error

units, will be used to assess the strength of the evidence in favor of the research hypothesis.

Generally, we would expect to observe larger values of X more often when the research

hypothesis H1 : µ > µ0 is true than when the null hypothesis H0 : µ ≤ µ0 is true. In

particular, we can view the observation of a value of X that is sufficiently large relative

to µ0 as constituting evidence against the null hypothesis H0 : µ ≤ µ0 and in favor of the

research hypothesis H1 : µ > µ0. To decide whether the observed value of X is “sufficiently

large relative to µ0” we need to take the variability in the data into account. We can do

this by basing our decision on the corresponding Student’s t test statistic,

Tcalc =
X − µ0

Ŝ.E.(X)
=

X − µ0

S/
√
n
,

instead of X alone. Notice that values of Tcalc which are large relative to zero correspond

to values of X which are large relative to µ0. Deciding whether the observed value of Tcalc
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is sufficiently large relative to zero to allow rejection of H0 is based on the corresponding

P–value, which is defined below.

The P–value for testing the null hypothesis H0 : µ ≤ µ0 versus the research hypothesis

H1 : µ > µ0 is the probability of observing a value of a Student’s t variable T as large or

larger than the calculated value Tcalc that we actually do observe, i.e., P–value = P (T ≥
Tcalc), where T denotes a Student’s t variable with n−1 degrees of freedom. This P–value
is computed under the assumption that the research hypothesis H1 : µ > µ0 is false and

the null hypothesis H0 : µ ≤ µ0 is true. Because the null hypothesis only specifies that

µ ≤ µ0, we need to choose a particular value of µ (that is no larger than µ0) in order to

compute the P–value. It is most appropriate to use µ = µ0 for this computation. Using

µ = µ0, which defines the boundary between µ ≤ µ0, where the null hypothesis is true, and

µ > µ0, where the research hypothesis is true, provides some protection against incorrectly

rejecting H0 : µ ≤ µ0.

The steps for performing a hypothesis test for

H0 : µ ≤ µ0 versus H1 : µ > µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≥ Tcalc),

where T denotes a Student’s t variable with n − 1 degrees of freedom and Tcalc =

(X − µ0)/Ŝ.E.(X) as described above. This P–value is the area to the right of Tcalc

under the density curve for the Student’s t distribution with n− 1 degrees of freedom
as indicated in Figure 18.

Figure 18. P–value for H0 : µ ≤ µ0 versus H1 : µ > µ0.

0 Tcalc

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ > µ0 over H0 : µ ≤ µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is greater than µ0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ > µ0 over H0 : µ ≤ µ0. That
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is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ is greater than µ0.

The procedure for testing the null hypothesis H0 : µ ≤ µ0 versus the research hypoth-

esis H1 : µ > µ0 given above is readily modified for testing the null hypothesis H0 : µ ≥ µ0

versus the research hypothesis H1 : µ < µ0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population mean µ is less than the particular,

hypothesized value µ0. For these hypotheses values of the sample mean X that are suffi-

ciently small relative to µ0 provide evidence in favor of the research hypothesis H1 : µ < µ0

and against the null hypothesis H0 : µ ≥ µ0. Therefore, the appropriate P–value is the

probability of observing a value of a Student’s t variable T as small or smaller than the

value actually observed. As before, the P–value is computed under the assumption that

µ = µ0. The calculated t statistic Tcalc is defined as before; however, in this situation

the P–value is the area under the density curve of the Student’s t distribution with n− 1
degrees of freedom to the left of Tcalc, since values of X that are small relative to µ0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : µ ≥ µ0 versus H1 : µ < µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≤ Tcalc),

where T denotes a Student’s t variable with n − 1 degrees of freedom and Tcalc =

(X − µ0)/Ŝ.E.(X) as described above. This P–value is the area to the left of Tcalc

under the density curve for the Student’s t distribution with n− 1 degrees of freedom
as indicated in Figure 19.

Figure 19. P–value for H0 : µ ≥ µ0 versus H1 : µ < µ0.

Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ < µ0 over H0 : µ ≥ µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is less than µ0.
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2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ < µ0 over H0 : µ ≥ µ0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ is less than µ0.

Example. Brain changes in response to experience. A study by Rosenzweig,

Bennett, and Diamond, described in an article in Scientific American (1964), was con-

ducted to examine the effects of psychological environment on the anatomy of the brain.

The units for this study came from a strain of genetically pure rats. A pair of rats was

selected at random from each of 12 litters of rats; one of these rats was placed in group

A and the other in group B. Each animal in group A lived with eleven others in a large

cage, furnished with playthings which were changed daily. Each animal in group B lived

in isolation, with no toys. Both groups of rats were provided with as much food and drink

as they desired. After a month, the rats were killed and dissected. One variable which

was measured was the weight (in milligrams) of the cortex of the rat. The cortex is the

“thinking” part of the brain. The question we wish to address here is whether there is

evidence in favor of the contention that the cortex of a rat raised in the more stimulating

environment of group A will tend to be larger than the cortex of a rat raised in the less

stimulating environment of group B.

The researchers conducted this experiment five times. Data from one of these exper-

iments are given in Table 10. There are sets of three values for each of twelve pairs of

littermates in this table: the weight of the cortex of the rat in group A, the weight of the

cortex of the rat in group B, and the difference between these two weights (A weight minus

B weight); all of these values are measured in milligrams.

Table 10. Rat cortex weight data.

pair group A group B difference pair group A group B difference

1 690 668 22 7 720 665 55
2 701 667 34 8 718 689 29
3 685 647 38 9 718 642 76
4 751 693 58 10 696 673 23
5 647 635 12 11 658 675 -17
6 647 644 3 12 680 641 39

Summary statistics for the differences in cortex weights (A weight minus B weight)

are given in Table 11, a stem and leaf histogram is provided in Figure 20, and a normal

probability plot is given in Figure 21. Based on the summary statistics and the stem

and leaf histogram there is some evidence that this distribution is slightly skewed to the

left; however, the normal probability plot is reasonably linear and it seems reasonable to
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assume that these data form a random sample from a normal population. More specifically,

it seems reasonable to assume that these 12 differences are independent realizations of a

normally distributed variable with population mean µD. We can think of this population

mean difference µD as the average difference that would be obtained if this experiment

was conducted using all possible littermate pairs from this strain of genetically pure rats.

Table 11. Summary statistics for the rat cortex weight differences.

minimum -17.0 Q1− minimum 34.0
Q1 17.0 median −Q1 14.5

median 31.5 Q3− median 15.5
Q3 47.0 maximum −Q3 29.0

maximum 76.0

mean 31.0000 range 93
standard deviation 25.3162 IQ range 30

Figure 20. Stem and leaf histogram for the rat
cortex weight difference data.

In this stem and leaf histogram the stem represents tens
and the leaf represents ones. (milligrams)

stem leaf
-1 7
-0
0 3
1 2
2 239
3 489
4
5 58
6
7 6

For this example the research hypothesis can be formalized as H1 : µD > 0. This

research hypothesis specifies that the population mean difference, µD, between the cortex

weight of a stimulated rat (a rat raised in a stimulating environment like that of group A)

and the cortex weight of a unstimulated rat (a rat raised in a non–stimulating environment

like that of group B) exceeds zero, i.e., for this population of pairs of rats, on average, the

cortex weight of a stimulated rat would be higher than the cortex weight of an unstimulated

rat. The observed value of the Student’s t statistic is Tcalc = 4.2418 with 11 degrees of

freedom, which gives a P–value of .0007. Notice that this P–value is the probability that

a Student’s t variable with 11 degrees of freedom will be at least as large as Tcalc = 4.2418
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when µD = 0. Since this P–value is quite small, there is very strong evidence that the

population mean difference µD is greater than zero. Hence, the data do support the

contention that for this population of pairs of rats, on average, the cortex weight of a

stimulated rat would be higher than the cortex weight of an unstimulated rat.

Figure 21. Normal probability plot for weight differences.
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To get a feel for the size of this population mean difference we can compute a 95%

confidence interval estimate for µD. The sample mean difference is D = 31, the sample

standard error of the mean is Ŝ.E.(D) = 7.3082, and the multiplier for the 95% margin of

error, based on the Student’s t distribution with 11 degrees of freedom, is k = 2.201. Thus

the 95% margin of error for D is (2.201)(7.3082) = 16.0853, and we are 95% confident that

the population mean difference µD is between 14.9147 and 47.0853 milligrams. In other

words, we are 95% confident that for this population of pairs of rats, on average, the cortex

weight of the stimulated rat would exceed the cortex weight of the unstimulated rat by at

least 14.9147 mg but by no more than 47.0853 mg.

The hypothesis tests we have discuss thus far are only appropriate when we have

enough a priori information, i.e., information that does not depend on the data to be

used for the hypothesis test, to postulate that the population mean µ is on one side of

a particular value µ0. That is, we have only considered situations where the research

hypothesis is directional. There are situations when we will not have enough a priori

information to allow us to choose the appropriate directional research hypothesis. Instead,

we might only conjecture that the population mean µ is different from some particular

value µ0. In a situation like this our research hypothesis specifies that the population

mean µ is different from µ0, i.e., H1 : µ 6= µ0.

To decide between the null hypothesis H0 : µ = µ0 and the research hypothesis

H1 : µ 6= µ0, we need to decide whether the sample mean X supports the null hypothesis
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by being “close to µ0”, or supports the research hypothesis by being “far away from µ0”.

In this situation the P–value is the probability that the sample mean X would be as far

or farther away from µ0 in either direction as is the value that we actually observe. In

other words, the P–value is the probability that the standardized distance from X to µ0

( the standardized absolute value of the difference between X and µ0) is as large or larger

than the actual observed value of this standardized distance. As before, the P–value is

computed under the assumption that the null hypothesis is true and µ = µ0. In this

situation the calculated t statistic Tcalc is the absolute value of the t statistic that would

be used for testing a directional hypothesis. That is, the calculated t statistic is

Tcalc =

∣∣∣∣∣
X − µ0

Ŝ.E.(X)

∣∣∣∣∣ .

In terms of this t statistic the P–value is the probability that the absolute value of a

Students’s t variable with n − 1 degrees of freedom T would take on a value as large or

larger that Tcalc, assuming that µ = µ0. This probability is the sum of the area under the

appropriate Student’s t density curve to the left of −Tcalc and the area under this Student’s

t density curve to the right of Tcalc. We need to add these two areas (probabilities) since

we are finding the probability that the sample mean X would be as far or farther away

from µ0 in either direction as is the value that we actually observe, when µ = µ0.

The steps for performing a hypothesis test for

H0 : µ = µ0 versus H1 : µ 6= µ0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|T | ≥ Tcalc) =

P (T ≤ −Tcalc) + P (T ≥ Tcalc), where T denotes a Student’s t variable with n − 1
degrees of freedom and Tcalc = |X −µ0|/Ŝ.E.(X) as described above. This P–value is
the sum of the area to the left of −Tcalc and the area to the right of Tcalc, where each

area is that under the density curve for the Student’s t distribution with n−1 degrees
of freedom over the appropriate region on the x–axis as indicated in Figure 22.

Figure 22. P–value for H0 : µ = µ0 versus H1 : µ 6= µ0.

Tcalc-Tcalc 0
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2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ 6= µ0 over H0 : µ = µ0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population mean

µ is not equal to µ0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ 6= µ0 over H0 : µ = µ0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population mean µ differs from µ0.

Example. Newcomb’s measurements of the speed of light (revisited). The

parameter we were estimating in our analysis of Newcomb’s measurements of the speed of

light was the population mean time µ for light to travel a distance of 7442 meters. Notice

that the population mean time µ is actually defined by the process of measurement being

used. That is, we can think of µ as the long run average time that we would observe if

we replicated Newcomb’s experiment a large times. We might wonder how this population

mean time µ relates to the “true time” it would take for light to travel a distance of

7442 meters. We don’t know exactly what this “true time” is, but we can use a generally

accepted, modern measurement of the speed of light to obtain a hypothesized “true time.”

Stigler (op. cit.) used the modern estimate of the speed of light in a vacuum of 299,792.5

km/sec adjusted to give the speed of light in air and converted to a time as measured by

Newcomb to obtain a hypothesized “true time” of 33.02. Therefore, our present goal is to

determine how the population mean time µ relates to the “true time” µ0 = 33.02.

We do not have sufficient a priori information to specify a directional hypothesis;

therefore, we will test the null hypothesis H0 : µ = 33.02 versus the research hypothesis

H1 : µ 6= 33.02 to determine whether the population mean time µ is equal to or different
from the hypothesized “true value” of 33.02. For Newcomb’s n = 64 measurements the

sample mean is X = 27.75, the sample standard error of the mean is Ŝ.E.(X) = .6354, and

the calculated t statistic is

Tcalc =

∣∣∣∣
27.75− 33.02

.6354

∣∣∣∣ = 8.2940.

The P–value is less than .0001 indicating that observing a sample mean as far away from

the hypothesized “true value” 33.02 (in either direction) as Newcomb did is extremely

unlikely if in fact µ = 33.02. We can conclude that the population mean µ corresponding

to Newcomb’s experiment is almost certainly not equal to the hypothesized value of 33.02.

The confidence interval, (26.4803, 29.0197), we computed above suggests that the mean µ

that Newcomb was estimating is less than the hypothesized value 33.02.
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7.3 Inference for a population median

The inferential methods for a population mean discussed above require at least ap-

proximate normality of the population distribution of the variable of interest. In this

section we will consider methods for making inferences about a population median which

do not require the assumption of a particular form for the population distribution of the

variable of interest. That is, the inferential methods considered in this section are appli-

cable for any population distribution for a continuous variable regardless of the shape of

the corresponding density curve.

We will begin by discussing a method for testing a hypothesis about a population

median. The essence of this method is to re–express the hypothesis about the population

median as a hypothesis about a related population proportion and to then use inferential

methods for a population proportion to test the hypothesis about the population median.

For a continuous variable X we can think of the population medianM as the point on

the number line which divides the area under the corresponding population density curve

into two equal areas (each of area one–half). The population median M is analogous to

the sample median which divides the histogram into two equal areas. Notice that if we

observe a single value of X, then the probability that we will observe a value larger than

the population median M is 1/2, i.e., P (X > M) = 1/2, and similarly, the probability

that we will observe a value smaller than M is 1/2, i.e., P (X < M) = 1/2.

Let M denote the population median of the distribution of the continuous variable X

and consider a hypothesis relating the population median M to a particular, fixed value

M0. We can dichotomize the population of values of X by thinking of the event “observe

X > M0” as a success and the event “observe X < M0” as a failure. The population

success proportion p corresponding to this dichotomization is p = P (X > M0), i.e., p is

the probability that a single value of X chosen from the infinite population of values of

X will be larger than the hypothesized value M0. The corresponding population failure

proportion is 1− p = P (X < M0).

The three possible relationships between the population median M and the partic-

ular value M0 are readily re–expressed in terms of the corresponding population suc-

cess probability p = P (X > M0). If the population median M exceeds the partic-

ular value M0, then, since the area or probability to the right of the population me-

dian M is 1/2 and since M0 is to the left of M on the number line, we must have

p = P (X > M0) > 1/2 = P (X > M). Hence we see that M > M0 is equivalent to

p > 1/2. Similarly, if M is less than M0, then M0 is to the right of M on the number line

and we must have p = P (X > M0) < 1/2 = P (X > M); thus M < M0 is equivalent to

p < 1/2. Finally, if M = M0, then we must have p = P (X > M0) = 1/2 = P (X > M);

thus M = M0 is equivalent to p = 1/2. These relationships allow us to re–express a
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hypothesis relating the population median M to the particular value M0 as a hypothesis

about the corresponding population success probability p = P (X > M0).

For ease of reference the three standard pairs of null and research hypotheses about

M are summarized below (recall that p = P (X > M0))

1. H0 :M ≤M0 versus H1 :M > M0 corresponds to H0 : p ≤ .5 versus H1 : p > .5.

2. H0 :M ≥M0 versus H1 :M < M0 corresponds to H0 : p ≥ .5 versus H1 : p < .5.

3. H0 :M =M0 versus H1 :M 6=M0 corresponds to H0 : p = .5 versus H1 : p 6= .5.

The dichotomy described above, where X > M0 constitutes a success and X < M0

constitutes a failure, does not allow for the possibility that the continuous variable X

is exactly equal to M0. This is allowable, theoretically, when we are talking about the

population distribution of X; however, when we examine the data we may find that one or

more of the observations are equal to the hypothesized value M0. The easiest solution to

this potential difficulty is to remove any observations which are exactly equal to M0 and

adjust the sample size accordingly before we perform a hypothesis test. In other words,

a hypothesis test for comparing the population median M to the hypothesized value M0

is based on the observed proportion p̂ of successes (values of X which are greater than

M0) relative to n, where n is the number of observations which are not equal to M0. An

alternative to discarding values exactly equal to M0 is to classify half of these values as

successes and half as failures and use the original sample size for n.

Example. Darwin’s plant height comparison. Charles Darwin conducted an

experiment to determine whether cross–fertilized plants tend to be more vigorous than self–

fertilized plants. (The plants used in Darwin’s study were young corn (Zea mays) plants.)

(Darwin (1876), The Effect of Cross– and Self–fertilization in the Vegetable Kingdom,

second edition, John Murray, London) Darwin selected several plants and fertilized several

flowers on each plant; a number of flowers were cross–fertilized with pollen taken from

distant plants and a number of flowers were self–fertilized with their own pollen. Seeds

gathered from these flowers were allowed to ripen and were then placed in wet sand to

germinate. Fifteen seedlings from cross–fertilized seeds were selected and fifteen seedlings

from self–fertilized seeds were selected. These seedlings were paired (one cross–fertilized

and one self–fertilized) and the two seedlings in each pair were planted on opposite sides of

the same pot. After a fixed period of time the height of each plant (in inches) was recorded.

The raw data and the associated differences are provided in Table 12. The distribution of
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the differences is summarized in Table 13 and Figure 23 and a normal probability plot is

given in Figure 24.

Table 12. Plant height data.

plant height

pair cross–fertilized self–fertilized difference

1 23.500 17.375 6.125
2 12.000 20.375 -8.375
3 21.000 20.000 1.000
4 22.000 20.000 2.000
5 19.125 18.375 0.750
6 21.500 18.625 2.875
7 22.125 18.625 3.500
8 20.375 15.250 5.125
9 18.250 16.500 1.750
10 21.625 18.000 3.625
11 23.250 16.250 7.000
12 21.000 18.000 3.000
13 22.125 12.750 9.375
14 23.000 15.500 7.500
15 12.000 18.000 -6.000

If it is true that cross–fertilized plants tend to be more vigorous than self–fertilized

plants, then we would expect a cross–fertilized plant to be taller than a self–fertilized plant

of the same age. Therefore, we can formalize this theory as the research hypothesis that

the population median of the difference between the height of a cross–fertilized plant and

the height of a self–fertilized plant grown in the same pot MD is greater than zero, i.e.,

H1 :MD > 0. We can think of the population as consisting of all of the pairs of seedlings

(one cross–fertilized and one self–fertilized) which could have been used in this experiment;

and, we can think of the population median differenceMD as the median of the differences

between the heights of these pairs of seedlings (height of the cross–fertilized plant minus

height of the self–fertilized plant). Notice that this research hypothesis specifies that, for

this population of potential pairs of plants, the cross-fertilized plant would be taller than

the self–fertilized plant more than half of the time.

Table 13. Summary statistics for the plant height differences.

minimum -8.375 Q1− minimum 9.375
Q1 1.000 median −Q1 4.000

median 3.000 Q3− median 3.125
Q3 6.125 maximum −Q3 3.250

maximum 9.375
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Figure 23. Stem and leaf histogram for the plant
height difference data (rounded).

In this stem and leaf histogram the stem represents tens
of inches and the leaf represents inches.
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Figure 24. Normal probability plot for height differences.
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The normality assumption is questionable in this example since the stem and leaf

histogram and the normal probability plot show some evidence of extreme skewness to the

left in this sample of differences.

Since all but two of the 15 plant height differences are positive, there appears to be

strong evidence that the population median height difference is positive. For these data

there are no zero differences so we use the actual sample size n = 15 to perform our test

of H0 :MD ≤ 0 versus H1 :MD > 0 (H0 : p ≤ .5 versus H1 : p > .5, where p = P (D > 0)

denotes the proportion of this population of pairs of plants for which the cross–fertilized

plant would be taller than the self–fertilized plant). Thirteen of the differences are positive

(successes) which gives p̂ = 13/15 = .8667. The standard error of p̂, assuming that p = .5,
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is S.E.(p̂) = .1291, the calculated Z–statistic is Zcalc = 2.8402, and the P–value is .0023.

Therefore, there is very strong evidence that the population median height difference MD

is greater than zero which means that there is very strong evidence in support of the

contention that, for this population of pairs of plants, the cross-fertilized plant would be

taller than the self–fertilized plant more than half of the time.

We can construct a 95% confidence interval estimate for the population median M by

finding the interval of values of M0 for which a test at the 5% level of significance does

not lead to the rejection of H0 : M = M0. Recall that H0 : M = M0 and H1 : M 6= M0

are equivalent to H0 : p = .5 and H1 : p 6= .5, where p = P (X > M0). A test at the 5%

level of significance will fail to reject the null hypothesis H0 :M =M0 if

|p̂− .5| ≤ 1.96/(2
√
n),

where p̂ is the observed proportion of values of X which are greater than M0. The lower

and upper limiting values of p̂ in this expression, denoted by p̂L and p̂U , are

p̂L = .5− 1.96/(2
√
n) and p̂U = .5 + 1.96/(2

√
n).

The corresponding limits on the value of M0, denoted by ML and MU , are the p̂L100

percentile and the p̂U100 percentile of the observed values of X, respectively. We will

adopt the rounding convention described below to avoid the need for averaging observed

values of X when computing ML and MU . First convert p̂L and p̂U from proportions to

counts by multiplying each by the sample size n. If the count np̂L is not a whole number,

round it down to the next whole number. If the count np̂U is not a whole number, round it

up to the next whole number. Finally, find the observed values of X which occur at these

locations in an ordered listing of the observed values. As is true when counting to find a

sample median or quartile be sure to list any repeated values as many times as they occur.

The resulting values for ML and MU form the endpoints of our 95% confidence interval

estimate for the population median M .

The procedure for calculating the 95% confidence interval estimate for a population

median M is summarized below.

1. Arrange the data (observations) in increasing order from smallest (obs. no. 1) to largest

(obs. no. n). Be sure to include all n values in this list, including repeats if there are

any.

2. Compute the quantity np̂L and round it down to the nearest whole number if it is not a

whole number. The observation at the location indicated by the rounded–down value

in the ordered listing of the data is ML.
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3. Compute the quantity np̂U and round it up to the nearest whole number if it is not a

whole number. The observation at the location indicated by the rounded–up value in

the ordered listing of the data is MU .

4. Conclude that we are 95% confident that the population median M is between ML and

MU .

Example. Darwin’s plant height comparison (revisited). For this example

we have 1.96/(2
√
15) = .2530, p̂L = .5 − .2530 = .2470, and p̂U = .5 + .2530 = .7530,

giving np̂L = 3.705 which we round down to 3 and np̂U = 11.295 which we round up to

12. Observation number 3 is .75 and observation number 12 is 6.125. Therefore, we are

95% confident that the population median height difference for this population of pairs of

plants is between .75 inches and 6.125 inches.

7.4 Summary

The majority of this chapter is devoted to inference for the population mean µ of the

distribution of a continuous variable X. We began by discussing probability models for

the distribution of a continuous variable (density curves) and then introduced the normal

distribution which serves as the basis for our inferences about µ (based on the Student’s t

distribution).

Given data which form a random sample of size n from a population with population

mean µ and population standard deviation σ, the sampling distribution of the sample

mean X has mean µ and the population standard error of X is S.E.(X) = σ/n. Thus the

sample mean X is unbiased as an estimator of the population mean µ and the variability

in the sample mean X as an estimator of the population mean µ can be quantified by

this standard error. If we also assume that the population distribution of X is a normal

distribution, i.e., if we assume that the data form a random sample of size n from a

normal distribution with population mean µ and population standard deviation σ, then

the sampling distribution of X is the normal distribution with population mean µ (the

same as that of X) and standard deviation S.E.(X).

Given data which form a random sample of size n from a normal distribution with

population mean µ and population standard deviation σ and with sample mean X and

sample standard deviation SX = S, the quantity

T =
X − µ

S/
√
n

follows the Student’s t distribution with n − 1 degrees of freedom. Therefore, if the as-
sumption that the population distribution of X is normal is reasonable, then we can use

the Student’s t distribution to make inferences about the population mean µ. It is im-

portant to remember the normality assumption needed for the Student’s t distribution
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and to verify that this assumption is reasonable by examining the data for violations of

this assumption. The Student’s t methods work reasonably well provided the normality

assumption is not totally unreasonable.

The interval from X − kS/
√
n to X + kS/

√
n, where k denotes the 97.5 percentile of

the Student’s t distribution with n− 1 degrees of freedom, is a 95% confidence interval for
µ. We can test a hypothesis relating µ to a specified value µ0 by using the Student’s t test

statistic

Tcalc =
X − µ0

S/
√
n

to find the appropriate P–value. The P–value for H1 : µ > µ0 is the probability P (T ≥
Tcalc); the P–value for H1 : µ < µ0 is the probability P (T ≤ Tcalc); and, the P–value for

H1 : µ 6= µ0 is the probability P (|T | ≥ |Tcalc|), where T denotes a Student’s t variable
with n−1 degrees of freedom, i.e., these P–values are areas under the density curve of the
Student’s t distribution with n− 1 degrees of freedom.

The Student’s t inferential methods for a population mean are based on the assumption

that the underlying population distribution is reasonably modeled by a normal distribution.

When this normality assumption is not tenable we need to consider a method of inference

which is applicable under weaker assumptions. One approach to inference about the center

of a distribution based on the population median is discussed in Section 7.4. This approach

to inference about the population median does not require the assumption of a specific form

for the underlying population distribution.

7.5 Exercises

Provide a complete analysis for the following example. Be sure to: define a relevant popu-

lation mean µ; setup and perform a relevant hypothesis test; and, find a confidence interval

for µ. Be sure to include comments regarding the validity of the normality assumption for

this example. Provide a complete summary of your findings in the context of the example.

1. An article by Rosner, Willett, and Spiegelman in Statistics in Medicine (1989) describes

a study conducted to assess the make up of the diets of a population of women. The data

used here are as reported in Ott and Longnecker (2002). A sample of n = 168 women

was obtained and each of these women completed a food frequency questionnaire. The

completed questionnaires were then used to determine the percentage of calories from fat

in each woman’s diet. The values of the variable X, the percentage of calories from fat in

a woman’s diet, are summarized in the stem and leaf histogram in Figure 25. For display

purposes the data have been rounded to the nearest 1 percent. The actual data are given

in Table 14. In 2002 the Food and Nutrition Board, a unit of the Institute of Medicine

iom.edu, recommended that adults should restrict the percentage of calories from fat in

their diet to the range from 20% to 35%.
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If you wish to analyze these data without entering all n = 168 values in your computer

or calculator you may use the facts that: the sample mean for these data is 36.91899 and

the sample standard deviation is 6.72820.

Figure 25. Stem and leaf histogram for percentage of calories from fat.

In this stem and leaf histogram the stem represents tens and the leaf represents
ones. For example, the smallest value is 16% and the largest is 58%.

stem leaf
1
1 6
2 014
2 55666677888999999
3 000001111111222222222333333334444444444
3 5555555555555666666666666777777888888888888999999999
4 0000000001111111111222222222334444444
4 555666667888
5 00134
5 68

Table 14. Percentage of calories from fat data.

15.92 20.22 20.80 24.06 24.98 25.07 25.53 26.16 26.18 26.27
26.79 27.29 27.54 28.16 28.35 28.76 29.07 29.34 29.34 29.45
29.46 29.55 29.72 29.94 29.99 30.50 30.61 30.71 30.96 30.99
31.02 31.10 31.27 31.61 31.71 31.75 31.97 32.24 32.26 32.28
32.43 32.73 32.86 32.96 33.08 33.11 33.13 33.23 33.32 33.51
33.71 33.72 33.86 33.87 33.95 34.11 34.17 34.25 34.31 34.51
34.86 34.87 34.87 34.89 35.09 35.18 35.18 35.20 35.29 35.32
35.49 35.50 35.56 35.67 35.69 35.71 35.74 35.77 36.07 36.07
36.30 36.32 36.32 36.37 36.58 37.04 37.10 37.14 37.34 37.39
37.47 37.56 37.85 37.88 37.89 38.02 38.04 38.10 38.19 38.21
38.36 38.41 38.45 38.58 38.81 38.88 38.89 38.97 39.13 39.22
39.25 39.40 39.80 39.84 39.95 40.05 40.12 40.25 40.29 40.46
40.48 40.69 41.12 41.15 41.22 41.29 41.30 41.32 41.41 41.42
41.44 41.53 41.64 41.69 41.78 41.89 42.12 42.17 42.20 42.37
42.60 42.98 43.57 43.74 43.79 44.27 44.28 44.33 44.39 44.66
45.06 45.28 45.51 45.82 45.83 46.22 46.38 46.97 47.63 47.83
48.29 49.65 49.86 50.72 53.08 54.05 55.54 57.85
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2. Cox and Snell (1981), Applied Statistics, Chapman and Hall, discuss a study conducted

to examine changes in blood pressure due to the drug captopril. The original source is

MacGregor, Markandu, Roulston, and Jones (1979), Essential hypertension: effect of an

oral inhibitor of angiotension–converting enzyme, British Medical Journal, 2 1106–1109.

The data given in Table 15 are the blood pressures (in mm Hg) for 15 patients with

moderate essential hypertension. The data consist of supine systolic and diastolic blood

pressures measured immediately before and two hours after taking 25 mg of the drug

captopril. Relevant differences are also provided.

Table 15. Blood pressure data.

patient systolic diastolic

before after difference before after difference

1 210 201 9 130 125 5
2 169 165 4 122 121 1
3 187 166 21 124 121 3
4 160 157 3 104 106 -2
5 167 147 20 112 101 11
6 176 145 31 101 85 16
7 185 168 17 121 98 23
8 206 180 26 124 105 19
9 173 147 26 115 103 12
10 146 136 10 102 98 4
11 174 151 23 98 90 8
12 201 168 33 119 98 21
13 198 179 19 106 110 -4
14 148 129 19 107 103 4
15 154 131 23 100 82 18


