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Chapter 8

Comparing Two Means

8.1 Introduction

In Chapter 7 we considered inferential methods for the location of the center of the

population distribution of a single continuous variable. We will now consider extensions of

these methods to provide inferential methods for comparing the locations of the population

distributions of two continuous variables. More specifically, we will consider methods for

making inferences about the difference µ1 − µ2 between two population means µ1 and µ2.

First consider a situation where the only difference between the population distribu-

tions of two continuous variables, X1 and X2, is their location on the number line. In

other words, suppose that the density curve for X2 is identical to the density curve for

X1 except for its location on the number line. We will refer to this assumption about the

population distributions of X1 and X2 as the shift assumption, since this assumption

implies that the density curve for X2 can be obtained by shifting the density curve for X1

to the right or to the left along the number line. Under this shift assumption the differ-

ence, µ1 − µ2, between the two population means completely characterizes the difference

between the two population distributions. Notice that under this shift assumption, if there

is a positive constant d for which µ1−µ2 = d (i.e., µ1 = µ2+d), indicating that the density

curve for X1 is located d units to the right of the density curve for X2, then the difference

M1 −M2 between the population medians, M1 and M2, is also d (i.e., M1 −M2 = d and

M1 = M2 + d). Therefore, under this shift assumption, a comparison of the locations of

the two distributions based on the difference between the population means is equivalent

to a comparison based on the population medians in the sense that the differences between

each of these pairs of parameters is the same.

When the shift assumption is not valid, i.e., when the two population distributions

differ in aspects other than a simple shift in location, we must decide which parameter, say

the population mean or the population median, is appropriate as a quantification of the

location of each distribution and to quantify the difference between the locations of the two

distributions. In other words, in the general situation when the shift assumption is not valid

the difference between the population means and the difference between the population

medians will be different and neither of these differences will completely describe the

difference between the two distributions. For example, if the distribution of X1 is skewed

right and the distribution of X2 is skewed left, it is possible for the population means to

be equal while the population medians are different. Hence, when the shift assumption

is not valid we must be careful about how we interpret an inference about the difference
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between any two particular location parameters, such as the population means, since the

distributions differ in aspects other than a simple shift in location.

We will restrict our attention to methods which are appropriate when the data com-

prise two independent random samples; one random sample (the X1 values) from a popula-

tion with population mean µ1; and, one random sample (the X2 values) from a population

with population mean µ2. The assumption that these random samples are independent

basically means that the method used to select the random sample from the first popula-

tion is not influenced by the method used to select the random sample from the second

population, and vice versa.

8.2 Comparing the means of two normal populations

In this section we will assume that the population distribution of X1 is a normal distri-

bution with population mean µ1 and population standard deviation σ1 and the population

distribution of X2 is a normal distribution with population mean µ2 and population stan-

dard deviation σ2. We will discuss methods for making inferences comparing the locations

of these normal distributions as quantified by the difference, µ1 − µ2, between the two

population means. As stated in the introduction, we will assume that the data comprise

two independent random samples. Let n1 denote the size of the random sample (of X1

values) from the normal population with population mean µ1 and let n2 denote the size of

the random sample (of X2 values) from the normal population with population mean µ2.

The sample mean X1 is the obvious estimate of the corresponding population mean µ1

and the sample mean X2 is the obvious estimate of the corresponding population mean µ2.

Similarly, the difference, X1−X2, between these two sample means is the obvious estimate

of the corresponding difference, µ1 − µ2, between the population means. To describe the

behavior of X1 − X2 as an estimator of µ1 − µ2 we need to know some properties of its

sampling distribution.

Some properties of the sampling distribution of X1 −X2.

Let X1 denote the sample mean of a random sample of size n1 from a distribution

with population mean µ1 and population standard deviation σ1 and let X2 denote the

sample mean of a random sample of size n2 from a distribution with population mean

µ2 and population standard deviation σ2. Assume that these two random samples are

independent. The sampling distribution of the difference, X1 − X2, between these two

sample means has the following properties. The first two properties are valid in general

and do not depend on the assumption of normal distributions.

1. The mean of the sampling distribution of X1−X2 is the difference, µ1−µ2, between

the corresponding population means. Therefore, just as the sample means X1 and
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X2 are unbiased as estimators of µ1 and µ2, respectively, the sample mean difference

X1 −X2 is unbiased as an estimator of the population mean difference µ1 − µ2.

2. The population standard error of X1−X2 (the standard deviation of the sampling

distribution of X1 −X2) is

S.E.(X1 −X2) =

√
σ2

1

n1

+
σ2

2

n2

.

This expression indicates how the variability of X1−X2 depends on the sample sizes

and population standard deviations. Notice that the population variance var(X1−X2)

(the square of S.E.(X1 −X2)) is equal to the sum of the population variance of X1

and the population variance of X2. This property is a consequence of our assumption

that the random samples are independent; and, this expression for the standard error

of the difference between two sample means is not appropriate if the random samples

are not independent.

3. If the random samples from which the sample means X1 and X2 are computed are

random samples from normal distributions with population means and population

standard deviations as given above, then in addition to the two properties above, the

sampling distribution of X1 −X2 is a normal distribution with population mean

µ1 − µ2 and population standard deviation S.E.(X1 −X2).

The choice of the appropriate inferential methods for comparing the two normal popu-

lation means µ1 and µ2 depends on the relationship between the two unknown, population

standard deviations σ1 and σ2. In particular, the choice of the appropriate estimate of the

population standard error of X1 − X2 depends on whether the two population standard

deviations σ1 and σ2 are equal.

Strictly speaking, the inferential methods based on the Student’s t distribution de-

scribed below are only appropriate when the data constitute independent random samples

from normal populations. However, these methods are known to be generally reasonable

even when the underlying populations are not exactly normal populations, provided the

underlying population distributions are reasonably symmetric and the true density curves

have a more or less normal (bell–shaped) appearance. We can use descriptive methods to

look for evidence of possible nonnormality, provided the sample sizes are reasonably large.

As in the one mean situation of Chapter 7, the most easily detected and serious evidence

of nonnormality you should look for is evidence of extreme skewness or evidence of ex-

treme outlying observations. If there is evidence of extreme skewness or extreme outlying

observations, then inferential methods based on the Student’s t distribution should not be
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used. An alternate approach to inference, based on ranks, which may be used when the

Student’s t methods are inappropriate is discussed in Section 8.3.

8.2a Inference when the two population standard deviations are equal

A normal distribution is completely determined by its mean and standard deviation;

therefore, in the present context of comparing two normal populations the shift assumption

is equivalent to the assumption that the two population standard deviations σ1 and σ2 are

equal. In other words, if we assume that σ1 = σ2, then the only difference between the two

normal populations we are comparing is that the normal density curve for X1 is centered

at µ1 and the normal density curve for X2 is centered at µ2.

When the two population standard deviations are equal we can simplify the expression

for the population standard error of X1 −X2. If we let σ = σ1 = σ2 denote the common

value of the two population standard deviations, then the population standard error of

X1 −X2 is

S.E.(X1 −X2) =

√
σ2

(
1

n1

+
1

n2

)
= σ

√
1

n1

+
1

n2

.

An appropriate estimator of the common standard deviation σ is the pooled sam-

ple standard deviation which we will denote by Sp. Recall that the sample standard

deviation SX for a single sample of n values of the variable X is the square root of the

“average” of the squared deviations of the observed values of X from the sample mean X,

SX =

√∑
(X −X)2

n− 1
.

In the present context, the n1 values of X1 have sample mean X1 and the n2 values of

X2 have sample mean X2; therefore, the sum of squared deviations in the formula for SX

is replaced by the sum of two such sums of squared deviations, one for each sample. The

divisor n− 1 in the formula for SX is replaced by the total number of observations n1+n2

decreased by 2, i.e., the one sample divisor n − 1 is replaced by the two sample divisor

n1 + n2 − 2. The resulting formula for the pooled sample standard deviation is

Sp =

√∑
(X1 −X1)2 +

∑
(X2 −X2)2

n1 + n2 − 2
.

This pooled sample standard deviation can also be expressed in terms of the two sample

standard deviations S1 and S2 as shown below

Sp =

√
(n1 − 1)S2

1
+ (n2 − 1)S2

2

n1 + n2 − 2
.
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Strictly speaking, the inferential methods described in this subsection are only valid

when the two population standard deviations σ1 and σ2 are equal. However, in practice

these methods still perform reasonably well provided the two population standard devia-

tions σ1 and σ2 are reasonably close to being equal and the two sample sizes n1 and n2

are reasonably similar. (This assumption is more critical when the sample sizes are very

dissimilar.) A common rule of thumb for assessing the assumption of equal standard devi-

ations says that the assumption of a common population standard deviation is reasonable

if the ratio of the sample standard deviations is between 1/2 and 2.

When σ1 = σ2, the appropriate sample standard error of X1 −X2, based on the

pooled sample standard deviation Sp, is

Ŝ.E.(X1 −X2) = Sp

√
1

n1

+
1

n2

,

and the corresponding 95% margin of error of X1 −X2 is

M.E.(X1 −X2) = kŜ.E.(X1 −X2) = kSp

√
1

n1

+
1

n2

,

where k is the 97.5 percentile of the Student’s t distribution with n1 + n2 − 2 degrees of

freedom. Thus the interval from (X1−X2)−M.E.(X1−X2) to (X1−X2)+M.E.(X1−X2)

is a 95% confidence interval for µ1 − µ2.

Example. Energy consumption. The data used in this example are part of data

set 93 in Hand, Daly, Lunn, McConway, and Ostrowski (1994), A Handbook of Small

Data Sets, Chapman and Hall, London. The original source is two reports issued in 1983

and 1984 by the Open University. A large–scale experiment on energy consumption was

conducted in the early 1980’s in the Pennyland district of Milton Keynes. A housing

development of about 180 houses was built. About half of the houses had a standard level

of roof and wall insulation. The others had extra roof and wall insulation (these houses

also had double glazing and under–floor insulation). In addition to the differences in level

of insulation, many of the houses were designed with passive solar heating features, e.g.,

southern orientation with most of the windows on the south side. The other houses had a

more traditional design. Energy consumption was monitored over several years. Table 1

provides the annual gas consumption (in 1000 kWh) for two independent random samples

of houses. One random sample was selected from all of the houses with standard insulation

(regardless of design type) and the other was selected from all of the houses with extra

insulation (regardless of design type). Summary statistics are given in Table 2, stem and

leaf histograms are given in Figure 1, and normal probability plots are provided in Figures

2 and 3.
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Table 1. Gas consumption data (1000 kWh) (both designs).

standard insulation extra insulation

11.4 13.9 13.9 14.0 15.3 18.0 8.3 11.7 12.7 13.0 13.4 13.6 13.7
18.0 18.1 18.9 19.0 19.0 21.7 13.7 13.8 14.6 15.3 15.6 16.0 18.8

Table 2. Descriptive statistics for gas consumption (both designs).

standard extra

minimum: 11.40 8.3
Q1: 13.95 13.0
median: 18.00 13.7
Q3: 18.95 15.3
maximum: 21.70 18.8
Q1 - minimum: 2.55 4.7
median - Q1: 4.05 .7
Q3 - median: .95 2.4
maximum - Q3: 2.75 3.5
mean: 16.7667 13.8714
standard deviation: 2.9959 2.3636
range: 10.3 10.5
IQ range: 5 2.3
sample size: 12 14

Figure 1. Stem and leaf histograms for gas consumption (both designs).

In these stem and leaf histograms the stem represents ones and the leaf
represents tenths. (1000 kWh)

standard extra

8 3
9
10

11 4 11 7
12 12 7
13 99 13 046778
14 0 14 6
15 3 15 36
16 16 0
17 17
18 0019 18 8
19 00
20
21 7
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Figure 2. Normal probability plot for gas consumption for houses

with standard insulation (both designs).
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Figure 3. Normal probability plot for gas consumption for houses

with extra insulation (both designs).
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The summary statistics show some evidence of slight skewness to the left in the dis-

tribution for houses with standard insulation. Both stem and leaf histograms appear to

be unimodal and reasonably symmetric with mild outliers on both sides. Both normal

probability plots are reasonably linear. Thus it seems reasonable to model these data

as independent random samples from normal distributions. Furthermore, the two sample

standard deviations, 2.9959 and 2.3636, are quite similar; therefore, we can also reasonably

assume that the two population standard deviations are equal.

Letting X1 denote the annual gas consumption for a house with standard insulation

and X2 denote annual gas consumption for a house with extra insulation, we find that the

difference in the sample means is X1 −X2 = 16.7667 − 13.8714 = 3.8953 (3,895.3 kWh)
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suggesting that, among these 180 houses, the mean annual gas consumption for a house

with standard insulation µ1 is approximately 3.8953 thousand kW hours higher than the

mean annual gas consumption for a house with extra insulation µ2. The pooled sample

standard deviation Sp = 2.6720, the standard error Ŝ.E.(X1 − X2) = 1.0512, and the

margin of error multiplier k = 2.064 for the Student’s t distribution with n1+ n2− 2 = 24

degrees of freedom yield the 95% confidence interval (.7258, 5.0648) for µ1 − µ2. Thus

we are 95% confident that, among these 180 houses, the population mean annual gas

consumption for a house with standard insulation is at least 725.8 kW hours and as much

as 5,064.8 kW hours higher than the mean annual gas consumption for a house with extra

insulation. Note that, technically, this inference is restricted to these 180 houses but we

might conjecture that a similar difference would occur for similar houses (with standard

and extra insulation) in this same area.

Remark regarding directional confidence bounds. We can find an upper or lower

95% confidence bound for µ1−µ2 by selecting the appropriate confidence limit from a 90%

confidence interval estimate of µ1 − µ2.

When σ1 = σ2, we can use the two sample Student’s t test statistic

T =
X1 −X2

Ŝ.E.(X1 −X2)
=

X1 −X2

Sp

√
1

n1
+ 1

n2

,

based on the standard error computed using the pooled estimate of the common standard

deviation, to test hypotheses relating µ1 to µ2.

First consider a situation where we want to determine whether there is sufficient

evidence to conclude that the population mean µ1 exceeds the population mean µ2. Our

research hypothesis is the contention that the population mean µ1 exceeds the population

mean µ2, i.e., H1 : µ1 > µ2. The corresponding null hypothesis is H0 : µ1 ≤ µ2. Values of

X1 −X2 which are large relative to zero provide evidence in favor of H1 : µ1 > µ2, since

this hypothesis is equivalent to H1 : µ1 − µ2 > 0, and against H0 : µ1 ≤ µ2. Since large

values of X1−X2 yield large values of the Student’s t statistic, we will reject H0 : µ1 ≤ µ2

in favor of H1 : µ1 > µ2 if the calculated Student’s t statistic is sufficiently large. This

decision will hinge on the size of the P–value, which is the probability, computed under

the assumption that µ1 = µ2, that X1 −X2 is as large or larger than the value actually

observed and is equal to the probability that a Student’s t variable with n1+n2−2 degrees

of freedom is as large or larger than the calculated t value Tcalc. Notice that this P–value

is the area to the right of Tcalc under the density curve of the Student’s t distribution with

n1+n2− 2 degrees of freedom, since values of X1−X2 that are sufficiently far above zero

provide evidence in favor of the research hypothesis.



8.2a Inference when the two population standard deviations are equal 191

The steps for performing a hypothesis test for

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≥ Tcalc),

where T denotes a Student’s t variable with n1 + n2 − 2 degrees of freedom and

Tcalc = (X1−X2)/Ŝ.E.(X1−X2) as described above. This P–value is the area to the

right of Tcalc under the density curve for the Student’s t distribution with n1+n2− 2

degrees of freedom as shown in Figure 4.

Figure 4. P–value for H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2.

0 Tcalc

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 > µ2 over H0 : µ1 ≤ µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 is greater than the second population mean µ2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 > µ2 over H0 : µ1 ≤ µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the first population mean µ1 is greater than the second population mean

µ2.

The procedure for testing the null hypothesis H0 : µ1 ≤ µ2 versus the research hy-

pothesis H1 : µ1 > µ2 given above is readily modified for testing the null hypothesis

H0 : µ1 ≥ µ2 versus the research hypothesis H1 : µ1 < µ2. The essential modification

is to change the direction of the inequality in the definition of the P–value. Consider a

situation where the research hypothesis specifies that the population mean µ1 is less than

the population mean µ2. Values of X1−X2 that are sufficiently far from 0 in the negative

direction provide evidence in favor of the research hypothesis H1 : µ1 < µ2 and against

the null hypothesis H0 : µ1 ≥ µ2. Therefore, the appropriate P–value is the probability

of observing a value of X1 −X2 as small or smaller than the value actually observed. As

before, the P–value is computed under the assumption that µ1 = µ2. The calculated t

statistic Tcalc is defined as before; however, in this situation the P–value is the area to the
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left of Tcalc under the density curve of the Student’s t distribution with n1+n2−2 degrees

of freedom, since values of X1 −X2 that are sufficiently far below zero provide evidence

in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (T ≤ Tcalc),

where T denotes a Student’s t variable with n1 + n2 − 2 degrees of freedom and

Tcalc = (X1 −X2)/Ŝ.E.(X1 −X2) as before. This P–value is the area to the left of

Tcalc under the density curve for the Student’s t distribution with n1+n2− 2 degrees

of freedom as shown in Figure 5.

Figure 5. P–value for H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2.

Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 < µ2 over H0 : µ1 ≥ µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 is less than the second population mean µ2.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 < µ2 over H0 : µ1 ≥ µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the first population mean µ1 is less than the second population mean

µ2.

Example. Energy consumption (revisited). We will now consider the reduction

in energy consumption due to extra insulation when the population is restricted to the

houses among the 180 houses which have passive solar designs. Table 3 provides the annual

gas consumption (in 1000 kWh) for two independent random samples of houses. One

random sample was selected from all of the passive solar houses with standard insulation

and the other was selected from all of the passive solar houses with extra insulation.

Summary statistics are given in Table 4, stem and leaf histograms are given in Figure 6,

and normal probability plots are provided in Figures 7 and 8.
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Table 3. Gas consumption data (1000 kWh) (passive solar).

standard insulation extra insulation

12.3 13.3 13.7 13.8 14.9 15.6 15.9 16.3 10.5 11.3 11.4 12.6 13.0 14.5
16.5 17.2 17.5 17.6 17.8 17.9 18.0 19.9 15.2 15.7 15.7 17.6 19.0

Table 4. Descriptive statistics for gas consumption (passive solar).

standard extra

minimum: 12.30 10.5
Q1: 14.35 11.4
median: 16.40 14.5
Q3: 17.70 15.7
maximum: 19.90 19.0
Q1 - minimum: 2.05 .9
median - Q1: 2.05 3.1
Q3 - median: 1.30 1.2
maximum - Q3: 2.20 3.3
mean: 16.1375 14.2273
standard deviation: 2.0791 2.7225
range: 7.6 8.5
IQ range: 3.35 4.3
sample size: 16 11

Figure 6. Stem and leaf histograms for gas consumption (passive solar).

In these stem and leaf histograms the stem represents ones and the leaf
represents tenths. (1000 kWh)

standard extra

10 5
11 34

12 3 12 6
13 378 13 0
14 9 14 5
15 69 15 277
16 35 16
17 25689 17 6
18 0 18
19 9 19 0
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Figure 7. Normal probability plot for gas consumption for houses

with standard insulation (passive solar).

12 14 16 18 20
gas consumption

-2

-1

0

1

2
no

rm
al

 s
co

re

Figure 8. Normal probability plot for gas consumption for houses

with extra insulation (passive solar).
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In this case both stem and leaf histograms appear to be unimodal and reasonably sym-

metric. The summary statistics support these claims and both normal probability plots

are reasonably linear. Thus it seems reasonable to model these data as independent ran-

dom samples from normal distributions. The two sample standard deviations, 2.0791 and

2.7225, are quite similar; therefore, we can also reasonably assume that the two population

standard deviations are equal.

Let X1 denote the annual gas consumption for a passive solar house with standard

insulation and let X2 denote annual gas consumption for a passive solar house with extra

insulation. Similarly, let µ1 and µ2 denote the respective population means for all of

the passive solar houses among the 180 houses with standard and extra insulation. The
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obvious research hypothesis H1 : µ1 > µ2 states that among the passive solar houses

in this development, on average, the annual gas consumption is lower for a house with

extra insulation than it is for a house with standard insulation. For these data the pooled

sample standard deviation is Sp = 2.3576, the standard error is Ŝ.E.(X1−X2) = .9234, the

observed value of the Student’s t statistic is Tcalc = 2.07 with 25 degrees of freedom, and

the corresponding P–value is .0245. This P–value is reasonably small indicating that there

is reasonably strong evidence that µ1 is greater than µ2. Therefore, there is reasonably

strong evidence that for this population of passive solar houses, on average, the annual

gas consumption for a passive solar house with extra insulation is lower than the annual

gas consumption for a passive solar house with standard insulation. We can form a 95%

confidence interval for µ1−µ2 to get a feel for the practical importance of this result. Using

the margin of error multiplier k = 2.060 for the Student’s t distribution with 25 degrees of

freedom yields the 95% confidence interval (.0084, 3.8120) for µ1 − µ2. Thus we are 95%

confident that, among this population of passive solar houses, the population mean annual

gas consumption for a house with standard insulation is between 8.4 kW hours and 3,812

kW hours higher than the mean annual gas consumption for a house with extra insulation.

Notice that this confidence interval estimate indicates that the difference between these

means might be as small as 8.4 kW hours which is not much of a difference. Of course,

the confidence interval estimate also allows that the difference in these means might be as

large as 3,812 kW hours which is more impressive. In this case, technically, our inferences

are restricted to all of the passive solar houses among these 180 houses.

Example. Paspalum grass. This example is taken from Seber (1984), Multivariate

Observations, Wiley, New York. (The data were provided by Peter Buchanan.) Paspalum

grass is a weed which grows in pastures used for grazing farm animals. Scientists at

the Mount Albert Research Centre in Auckland conducted a laboratory experiment to

determine whether inoculation of paspalum with a fungal infection might be effective

in reducing the growth of this weed. The experimenters randomly assigned 48 pots of

paspalum to the 8 combinations of treatment (inoculated, not inoculated) and temperature

(14, 18, 22, 26 degrees C). For our purposes we will restrict our attention to the 24 pots of

plants grown under moderate temperatures (18 or 22 degrees) and we will not distinguish

between the two temperatures. Thus we have two samples of size 12. The experimenters

measured several characteristics of the paspalum. The response variable we will consider

is the fresh weight of the roots (in grams) of the paspalum in a pot. (In this example a

pot of paspalum is a unit; the number of plants per pot is not specified.) Table 5 provides

the fresh root weights for the 12 pots assigned to each treatment. Summary statistics are

given in Table 6, stem and leaf histograms are given in Figure 9, and normal probability

plots are provided in Figures 10 and 11.
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Table 5. Paspalum root weight (grams).

inoculated not inoculated

3.9 4.3 4.9 5.2 6.5 7.6 6.2 8.7 11.0 12.2 12.3 13.1
9.6 10.0 10.1 12.3 13.6 19.7 13.6 14.5 15.4 16.4 16.7 21.8

Table 6. Descriptive statistics for paspalum root weight.

inoculated not inoculated

minimum: 3.90 6.20
Q1: 5.05 11.60
median: 8.60 13.35
Q3: 11.20 15.90
maximum: 19.70 21.80
Q1 - minimum: 1.15 5.40
median - Q1: 3.55 1.75
Q3 - median: 2.60 2.55
maximum - Q3: 8.50 5.90
mean: 8.9750 13.4917
standard deviation: 4.6384 4.0230
range: 15.8 15.6
IQ range: 6.15 4.3
sample size: 12 12

Figure 9. Stem and leaf histograms for paspalum root weight.

In these stem and leaf histograms the stem represents tens and the leaf
represents ones. The data are rounded. (grams)

inoculated not inoculated

0 3
0 445
0 67 0 6
0 9 0 8
1 00 1 1
1 23 1 2233
1 1 45
1 1 66
1 9 1

2 1
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Figure 10. Normal probability plot for root weight (inoculated).
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Figure 11. Normal probability plot for root weight (not inoculated).
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Let X1 denote the fresh root weight for a pot of paspalum inoculated with the fungus

and let X2 denote the fresh root weight for a pot of paspalum not inoculated with the

fungus. We can think of the corresponding population means µ1 and µ2 as the mean fresh

root weights we would observe if all 48 of the pots of paspalum had been inoculated (µ1)

or not inoculated (µ2). We want to determine whether there is sufficient evidence to claim

that inoculation with this fungus retards the growth of paspalum in the sense of reducing

fresh root weight. In terms of the population means the research hypothesis H1 : µ1 < µ2

states that, for this collection of 48 pots of paspalum, on average, the fresh root weight

would be smaller if the paspalum was inoculated with the fungus than it would be if the

paspalum was not inoculated.

Both of the stem and leaf histograms are unimodal and both show some evidence of

slight skewness to the right. Each sample contains a mild outlier (19.7 for the inoculated
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sample and 21.8 for the not inoculated sample). The summary statistics indicate that it is

these outliers which give the impression of skewness to the right. The normal probability

plots are reasonably linear suggesting that skewness is not a problem. Thus it seems

reasonable to model these data as independent random samples from normal distributions.

The two sample standard deviations, 4.6384 and 4.0230, are quite similar; therefore, we

can also reasonably assume that the two population standard deviations are equal.

For these data the pooled sample standard deviation is Sp = 4.3416, the standard error

is Ŝ.E.(X1 −X2) = 1.7725, the observed value of the Student’s t statistic is Tcalc = −2.55

with 22 degrees of freedom, and the corresponding P–value is .0092. This P–value is very

small indicating that there is very strong evidence that µ1 is less than µ2. Therefore, there

is very strong evidence that for this collection of 48 pots of paspalum, on average, the

fresh root weight would be smaller if the paspalum was inoculated with the fungus than

it would be if the paspalum was not inoculated.

Using the margin of error multiplier k = 2.074 for the Student’s t distribution with 22

degrees of freedom yields the 95% confidence interval (−8.193,−.8410) for µ1 − µ2. Thus

we are 95% confident that, for this collection of 48 pots of paspalum, the mean fresh root

weight we would observe if all 48 of the pots of paspalum had been inoculated is between

.8410 grams and 8.1930 grams smaller than the mean fresh root weight we would observe

if none of the 48 of the pots of paspalum had been inoculated.

The directional hypothesis tests we discussed above are readily modified for testing a

nondirectional hypothesis. To decide between the null hypothesis H0 : µ1 = µ2 and the

research hypothesis H1 : µ1 6= µ2, we need to decide whether X1 −X2 supports the null

hypothesis by being “close to 0”, or supports the research hypothesis by being “far away

from 0”. In this situation the P–value is the probability that X1 −X2 would be as far or

farther away from 0 in either direction as is the value that we actually observe. In other

words, the P–value is the probability that the distance |X1−X2| between the two sample

means (the absolute value of the difference between X1 and X2) is as large or larger than

the actual observed value of this distance. As before, the P–value is computed under the

assumption that the null hypothesis is true and µ1 = µ2. In this situation the calculated

t statistic Tcalc is the absolute value of the t statistic that would be used for testing a

directional hypothesis. That is, the calculated t statistic is

Tcalc =
|X1 −X2|

Ŝ.E.(X1 −X2)
.

In terms of this t statistic the P–value is the probability that the absolute value of a

Students’s t variable with n1 + n2 − 2 degrees of freedom would take on a value as large

or larger than Tcalc, computed assuming that µ1 = µ2. This probability is the sum of the
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area under the appropriate Student’s t density curve to the left of −Tcalc and the area

under this Student’s t density curve to the right of Tcalc. We need to add these two areas

(probabilities) since we are finding the probability that X1−X2 would be as far or farther

away from 0 in either direction as is the value that we actually observe, when µ1 = µ2.

The steps for performing a hypothesis test for

H0 : µ1 = µ2 versus H1 : µ1 6= µ2

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|T | ≥ Tcalc) =

P (T ≤ −Tcalc)+P (T ≥ Tcalc), where T denotes a Student’s t variable with n1+n2−2

degrees of freedom and

Tcalc =
|X1 −X2|

Ŝ.E.(X1 −X2)
.

Notice that this calculated t value is the absolute value of the calculated t value we

would use for a directional hypothesis. This P–value is the area, under the density

curve for the Student’s t distribution with n1 + n2 − 2 degrees of freedom, to the left

of −Tcalc plus the area to the right of Tcalc as shown in Figure 12.

Figure 12. P–value for H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

Tcalc-Tcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : µ1 6= µ2 over H0 : µ1 = µ2. That is, if the P–value

is small enough, then there is sufficient evidence to conclude that the first population

mean µ1 and the second population mean µ2 are different.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : µ1 6= µ2 over H0 : µ1 = µ2.

That is, if the P–value is not small enough, then there is not sufficient evidence to

conclude that the population means µ1 and µ2 are different.

Example. Fecundity of fruitflies. Sokal, R.R. and Rohlf, F.J. (1969) Biometry,

W.H. Freeman, p.232, discuss a study conducted to compare the fecundity of three genetic

lines of Drosophila melanogaster. The data in Table 7 consist of per diem fecundities

(number of eggs laid per female per day for the first 14 days of life) for 25 females of three
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lines of Drosophila melanogaster. Two of these genetic lines were selected for resistance

(RS) and susceptibility (SS) to DDT, the third line is a nonselected control (NS). These

data can be used to address two questions which were of interest to the investigator. We

can use the data for the two selected lines (RS and SS) to determine if there is evidence

that the mean fecundity differs for these selected lines. We can then use the data for the

control line (NS) to compare the mean fecundity of the control line with that of the two

selected lines. For the time being we will use two–sample Student’s t tests to address these

questions. We consider an alternate approach to this problem in Chapter 12.

Table 7. Fruitfly fecundity data.

resistant susceptible nonselected
RS SS NS

12.8 22.4 38.4 23.1 35.4 22.6
21.6 27.5 32.9 29.4 27.4 40.4
14.8 20.3 48.5 16.0 19.3 34.4
23.1 38.7 20.9 20.1 41.8 30.4
34.6 26.4 11.6 23.3 20.3 14.9
19.7 23.7 22.3 22.9 37.6 51.8
22.6 26.1 30.2 22.5 36.9 33.8
29.6 29.5 33.4 15.1 37.3 37.9
16.4 38.6 26.7 31.0 28.2 29.5
20.3 44.4 39.0 16.9 23.4 42.4
29.3 23.2 12.8 16.1 33.7 36.6
14.9 23.6 14.6 10.8 29.2 47.4
27.3 12.2 41.7

Figure 13. Stem and leaf histograms for fruitfly fecundity.

In these stem and leaf histograms the stem represents tens
and the leaf represents ones. The data are rounded.

resistant (RS) susceptible (SS) nonselected (NS)

1 3 1 1223 1
1 556 1 55667 1 59
2 0002233344 2 0122333 2 033
2 66789 2 79 2 789
3 00 3 0133 3 00444
3 599 3 89 3 577788
4 4 4 4 0222
4 4 8 4 7
5 5 5 2
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Let XRS denote the fecundity for an RS female, XSS the fecundity for an SS female,

and XNS the fecundity for an NS female; and let µRS , µSS , and µNS denote the corre-

sponding population means. The first question, concerning the relationship between the

population mean fecundities µRS and µSS , can be addressed via a test of H0 : µRS = µSS

versus H1 : µRS 6= µSS . Our approach to the second question will depend on our con-

clusion for the first. If we decide that there is no difference between the two selected line

population mean fecundities (µRS = µSS), then we can combine the data for these two

lines and, viewing this as a random sample from a population of selected lines with pop-

ulation mean µS , we can test for a difference between the population mean for selected

lines and the population mean for the nonselected line by testing H0 : µS = µNS versus

H1 : µS 6= µNS . On the other hand, if we decide that there is a difference between the

population mean fecundities for the two selected lines, then we will need to perform two

tests; one for comparing µRS to µNS and another for comparing µSS to µNS .

Table 8. Descriptive statistics for fruitfly fecundity.

resistant susceptible nonselected
(RS) (SS) (NS)

minimum: 12.8 10.8 14.9
Q1: 20.3 16.0 28.2
median: 23.6 22.5 34.4
Q3: 29.3 30.2 37.9
maximum: 44.4 48.5 51.8
Q1 - minimum: 7.5 5.2 13.3
median - Q1: 3.3 6.5 6.2
Q3 - median: 5.7 7.7 3.5
maximum - Q3: 15.1 18.3 13.9
mean: 25.2560 23.6280 33.3720
standard deviation: 7.7724 9.7685 8.9420
range: 31.6 37.7 36.9
IQ range: 9.0 14.2 9.7
sample size: 25 25 25

The stem and leaf histograms in Figure 13 and the information in Table 8 indicate that

the fecundity distributions for the two selected lines (RS and SS) are unimodal with some

evidence of skewness to the right; and the fecundity distribution for the nonselected line

(NS) is unimodal and reasonably symmetric with slight evidence of skewness to the left in

the middle of the distribution. The normal probability plots in Figures 14, 15, and 16 are

reasonably linear. Thus it seems reasonable to treat these samples as forming independent

random samples from normal populations. The three sample standard deviations are

reasonably similar allowing us to also assume a common population standard deviation.
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Figure 14. Normal probability plot fruitfly data (resistant line).
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Figure 15. Normal probability plot fruitfly data (susceptible line).
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Figure 16. Normal probability plot fruitfly data (nonselected line).
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Therefore, we will model the three population distributions as normal distributions with

respective population means µRS , µSS and µNS and with common population standard

deviation. If we decide to combine the samples from the two selected lines, we will model
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the corresponding population distribution as a normal distribution with population mean

µS and the same common population standard deviation as before.

The difference between the sample mean fecundities for the two selected lines XRS −

XSS = 1.628 is small relative to the corresponding standard error Ŝ.E.(XRS − XSS) =

2.4967 suggesting that there is little evidence of a difference between the population means

µRS and µSS . The observed value of the Student’s t statistic for testing H0 : µRS = µSS

versus H1 : µRS 6= µSS is Tcalc = .65 with 48 degrees of freedom, and the correspond-

ing P–value is .5175. This large P–value allows us to conclude that the two population

mean fecundities µRS and µSS are equal. In light of this conclusion we will now com-

bine the samples for the selected lines as described above and test H0 : µS = µNS versus

H1 : µS 6= µNS . Recall that µS denotes the population mean fecundity for the popula-

tion of fruitflies obtained by combining the populations for the two selected lines. The

difference between the sample mean fecundities for the combined population of selected

lines and the nonselected line is XS − XNS = −8.93 with an associated standard error

of Ŝ.E.(XS − XNS) = 2.163. The observed value of the Student’s t statistic for testing

H0 : µS = µNS versus H1 : µS 6= µNS is Tcalc = −4.13 with 73 degrees of freedom and

a corresponding P–value which is less than .0001. This P–value is quite small indicating

that there is very strong evidence that the population mean fecundity for the selected lines

µS is different from the population mean fecundity µNS for the nonselected line. The

data clearly support the conclusion that the population mean fecundity is higher for the

nonselected line, however, technically speaking, we cannot make this conclusion based on

the preceding hypothesis test, since we did not have a priori reason to justify a directional

hypothesis. We can however form a confidence interval for µNS − µS and use it to justify

this conclusion. In this example, we are 95% confident that µNS − µS is between 4.6192

and 13.241. More precisely we are 95% confident that the population mean fecundity

(mean number of eggs laid per day for the first 14 days of life) µNS for the nonselected line

exceeds the population mean fecundity µS for the selected lines by at least 4.6192 eggs per

day and perhaps as much as 13.241 eggs per day. Thus it appears that the population of

fruitflies which are either resistant to or susceptible to DDT has lower fecundity on average

than the population of fruitflies which are neither resistant nor susceptible to DDT.

Remark regarding the comparison of the difference of two means to a nonzero

constant. In some situations we may have enough a priori information to specify

a known constant d with the goal of comparing the difference µ1 − µ2 to this

particular constant. For example, we might hypothesize that the first population mean

µ1 exceeds the second population mean µ2 by more than d = 2 units, i.e., H1 : µ1−µ2 > 2

or H1 : µ1 > µ2 + 2. To test such a hypothesis we simply replace the difference X1 −X2

by the quantity X1 −X2 − d in the formula for T and proceed as before. Many computer

programs provide an option for testing such a hypothesis.
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8.2b Inference when the two population standard deviations are not equal

In this subsection we will describe an alternate method of inference which can be

used when the population standard deviations σ1 and σ2 are not equal. Notice that when

σ1 6= σ2 the two normal populations are not identical when their population means, µ1

and µ2, are equal. Therefore, a statement regarding the difference between two popula-

tion means does not tell the whole story about the relationship between the corresponding

normal populations when the population standard deviations are not equal. This does not

indicate that there is anything wrong with comparing population means when the corre-

sponding population standard deviations are unequal. However, it does indicate that the

interpretation of a particular difference between two population means is somewhat differ-

ent when the population standard deviations are different than it is when the population

standard deviations are equal.

When the population standard deviations σ1 and σ2 are different, the appropriate

estimator of the standard error of X1−X2 is based on the two sample standard deviations

S1 and S2 rather than the pooled sample standard deviation. That is, when σ1 6= σ2 the

appropriate sample standard error of X1 −X2 is

Ŝ.E.(X1 −X2) =

√
S2

1

n1

+
S2

2

n2

,

where S1 is the sample standard error for the sample from the first population (the X1

values) and S2 is the sample standard error for the sample from the second population

(the X2 values).

Inference about the relationship between two normal population means when σ1 6= σ2

is based on an approximation to the sampling distribution of the quantity

T ∗ =
X1 −X2√

S2

1

n1
+

S2

2

n2

.

Because the details of this approximation are fairly complicated, you really need an ap-

propriate calculator or computer program to implement this method.

Using this method the 95% margin of error of X1 −X2 is

M.E.(X1 −X2) = k

√
S2

1

n1

+
S2

2

n2

,

where k is the 97.5 percentile of a Student’s t distribution with ν degrees of freedom. The

relevant degrees of freedom ν is computed using a complex formula which may yield a

value that is not a whole number. An approximate 95% confidence interval for µ1 − µ2



8.3 Inference based on ranks 205

based on this approach is given by the values between (X1 −X2) −M.E.(X1 −X2) and

(X1 − X2) + M.E.(X1 − X2), where the margin of error is as given above. A suitable

calculator or computer program will provide the calculated value of this margin of error

or the actual 95% confidence interval values.

To test a hypothesis relating µ1 to µ2 using this method we simply replace the Stu-

dent’s t statistic T by the approximate Student’s t statistic T ∗ and compute the P–value

using the appropriate degrees of freedom ν. A suitable calculator or computer program

will provide the calculated value of the approximate t statistic T ∗

calc and the associated

P–value.

One way to determine whether the assumption of a common population standard de-

viation is reasonable is to compare the results of the confidence intervals and P–values

computed assuming equal standard deviations and not assuming equal standard devia-

tions. If the two methods yield essentially the same conclusions, then the assumption of

equal standard deviations is reasonable and the methods based on the pooled estimate of

the standard error are appropriate; otherwise, the methods which do not use the pooled

estimate of the standard error should be used.

8.3 Inference based on ranks

The inferential methods for comparing two population means discussed above require

at least approximate normality of the population distributions of the variables of interest.

In this section we will consider methods for making inferences about two population means

which do not require the assumption of a particular form for the population distributions

of the variables of interest. The methodology we are about to discuss is based on the

location shift assumption described in the introduction.

As before we will assume that the data comprise two independent random samples;

a random sample of size n1 from a population of values of a continuous variable X1 with

population mean µ1 and a random sample of size n2 from a population of values of a contin-

uous variable X2 with population mean µ2. We will also assume that the shift assumption

holds meaning that the only difference between these two population distributions is a pos-

sible difference in location, i.e., we will assume that the population distributions (density

curves) of X1 and X2 are identical except for a possible difference between the population

means µ1 and µ2. We will make no further assumptions about the exact form of this

common density curve.

We can look for evidence of a location shift by examining the locations of the n1

observed values of X1 relative to the locations of the n2 observed values of X2. If there

is no location shift, then, by assumption, the population distributions of X1 and X2 are

identical (and consequently µ1 = µ2) and we would expect the n1 observed values of X1

to be randomly dispersed among the n2 observed values of X2. On the other hand, if the
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density curve for X1 is located to the right of the density curve for X2 (the distribution

of X1 is shifted to the right of the distribution of X2 and consequently µ1 > µ2), then we

would expect the observed values of X1 to tend to be large relative to the observed values

of X2. Similarly, if the density curve for X1 is located to the left of the density curve for

X2 (the distribution of X1 is shifted to the left of the distribution of X2 and consequently

µ1 < µ2), then we would expect the observed values of X1 to tend to be small relative to

the observed values of X2.

We can quantify the locations of the n1 observed values of X1 relative to the locations

of the n2 observed values of X2 by assigning ranks to these N = n1 + n2 observations.

We first combine the n1 observed values of X1 with the n2 observed values of X2, keeping

track of which observations form the X1 sample and which form the X2 sample. We then

order these N = n1 + n2 observations from smallest to largest and assign them ranks; the

smallest observation having rank 1, the next rank 2, and so on with the largest observation

having rank N = n1 + n2. Finally, we separate these ranks into the group of n1 ranks of

the X1 sample and the group of n2 ranks of the X2 sample.

Let R1 and R2 denote the respective sample means of the ranks of the X1 sample and

theX2 sample. Restating the remarks from above in terms of the ranks yields the following.

If µ1 = µ2, then we would expect the X1 ranks to look like a simple random sample of

size n1 selected without replacement from the set of all possible ranks {1, 2, . . . , N} with

the remaining n2 ranks constituting the X2 ranks; and, we would expect R1 and R2 to be

similar. If µ1 > µ2, then as a group we would expect the X1 ranks to be large relative to

the X2 ranks and we would expect R1 to be large relative to R2. If µ1 < µ2, then as a

group we would expect the X1 ranks to be small relative to the X2 ranks and we would

expect R1 to be small relative to R2. These facts suggest that we can perform a test of

a hypothesis relating µ1 to µ2 on the basis of the ranks of the two samples instead of the

actual data. In particular, we can base a hypothesis test on a suitably standardized version

of the difference, R1 − R2, between the means of the two sets of ranks. For example, we

would view a sufficiently large positive value of R1−R2 as evidence in favor of the research

hypothesis that µ1 > µ2.

It is possible to determine the exact sampling distribution of R1−R2; however, using

this exact sampling distribution to compute the relevant P–value requires a computer

program or an extensive set of tables. The hypothesis test we are about to describe is known

as the rank–sum test, the Wilcoxon rank–sum test, and the two–sample Mann–Whitney

test. If you have a access to a computer statistics package, check for the availability of

this procedure under one of these names. If a computer program is not available, a simple

alternative is to use the two sets of ranks (the n1 ranks of the X1 sample and the n2 ranks

of the X2 sample) as input for a two–sample Student’s t test as described in Section 8.2a
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and below. That is, we can use a suitable calculator or computer program to compute the

relevant P–value corresponding to the calculated t statistic

Tcalc =
R1 −R2

Ŝ.E.(R1 −R2)

for a test of a directional hypothesis and the absolute value of this quantity for a test of

a nondirectional hypothesis, where Ŝ.E.(R1 − R2) is computed using the pooled sample

standard deviation Sp, based on the ranks, with n1+n2−2 degrees of freedom. This two–

sample t test based on the ranks provides a large sample size (both n1 and n2 reasonably

large) approximation to the test based on the exact sampling distribution of R1 −R2.

Example. This example is provided to clarify the method of ranking and the compu-

tations described above. Two artificial samples of sizes n1 = 13 and n2 = 13 are provided.

From the stem and leaf histograms given in Figure 17 we see that the shift assumption is

reasonable for these data.

Figure 17. Stem and leaf histograms for the hypothetical data.

In these stem and leaf histograms the stem represents tens
and the leaf represents ones.

X1 data X2 data

1 01679
2 1578 2 02469
3 16 3 2478
4 2 4 14
5 1 5 2

6 1

The ordered data values and corresponding ranks are shown in Table 9. The sample

means of these ranks are R1 = 10.4615 and R2 = 16.5385, the pooled estimated standard

deviation is Sp = 7.1369, and the estimated standard error of R1 − R2 is 2.7993. The

calculated t statistic, for a directional hypothesis, is Tcalc = −2.1708 with 24 degrees of

freedom. The P–value for H1 : µ1 6= µ2 is .0400, the P–value for H1 : µ1 < µ2 is .0200,

and the P–value for H1 : µ1 > µ2 is .9800.

The Minitab and S–Plus computer programs, which use the exact sampling distribu-

tion or a slightly different large sample approximation to this sampling distribution, give

P–values for H1 : µ1 6= µ2 of .0455 and .0441, respectively, and P–values for H1 : µ1 < µ2

of .0228 and .0220, respectively. Therefore, at least for this example, it seems that the

method we have proposed (using the two–sample Student’s t test based on the ranks) and

these alternative methods give essentially the same P–values.
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Table 9. The ordered data and corresponding ranks.

X1 X2 R1 R2 X1 X2 R1 R2

10 1 29 14
11 2 31 15
16 3 32 16
17 4 34 17
19 5 36 18

20 6 37 19
21 7 38 20

22 8 41 21
24 9 42 22

25 10 44 23
26 11 51 24

27 12 52 25
28 13 61 26

In the preceding discussion we implicitly assumed that the combined data consisted of

N = n1 + n2 distinct values. In practice some observed values may occur more than once

in the combined data listing. When there are repetitions or “ties” in the data it is not clear

how we should assign the ranks to these tied values. The usual approach is to assign the

average of the relevant ranks to all of the observations which are tied at a particular value.

An example with hypothetical data is provided below to demonstrate the assignment of

ranks when there are ties.

Table 10. The ordered data and corresponding ranks.

X1 X2 tie R1 R2

5 1
6 2

9 3
10 * 5
10 * 5

10 * 5
11 7

12 8
13 9

14 * 10.5
14 * 10.5

17 12
18 13
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Example. For the hypothetical data in Table 10 with n1 = 7, n2 = 6, there are three

observations tied at 10, and there are two observations tied at 14. The ranks corresponding

to the three 10’s are 4, 5, and 6 which average to 5, thus, we assign each of these observation

a rank of 5. Similarly, the ranks corresponding to the two 14’s are 10 and 11, thus, we

assign each of these observations a rank of 10.5.

Example. Cowbird parasitization of flycatchers. Brown–headed cowbirds

search for and lay their eggs in nests built by the willow flycatcher. It is theorized that

those flycatchers that recognize but do not vocally react to cowbird calls are more apt to

defend their nests and less likely to be found and parasitized by the cowbirds. A study

published in The Condor, May, 1995, yielded the data regarding 13 active flycatcher nests

given in Table 11. Each active flycatcher nest was classified as parasitized (if at least one

cowbird egg was present) or not parasitized. Tapes of cowbird songs were played while the

flycatcher pairs were sitting in the nest prior to incubation. The vocalization rate (mea-

sured as the number of calls per minute) of each flycatcher pair was recorded. According

to the theory mentioned above we would expect the vocalization rate to be higher for the

parasitized group.

Table 11. Cowbird vocalization data.

parasitized not parasitized

2.00 1.25 8.50 1.10 1.00 1.00 0 3.25
1.25 3.75 5.50 1.00 .25

The stem and leaf histograms in Figure 18 both appear to be skewed right and each

distribution possesses at least one unusually large value. Therefore, the assumption that

the underlying population distributions are normal is not reasonable. However, the as-

sumption that the underlying population distributions differ only in a shift of location is

reasonable. As in Table 12, let X1 denote the vocalization rate for a parasitized flycatcher

pair and let X2 denote the vocalization rate for a non–parasitized flycatcher pair. Fur-

thermore, let µ1 denote the population mean vocalization rate for the population of all

parasitized flycatcher pairs and let µ2 denote the population mean vocalization rate for the

population of all non–parasitized flycatcher pairs. We can formalize the theory from above

as the research hypothesis H1 : µ1 > µ2 indicating that the population mean vocalization

rate for the population of all parasitized flycatcher pairs, µ1, is greater than the population

mean vocalization rate for the population of all non–parasitized flycatcher pairs, µ2.
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Figure 18. Stem and leaf histograms for the cowbird data.

In these stem and leaf histograms the stem represents ones
and the two digit leaf represents hundredths.

parasitized not parasitized
“X1” data “X2” data

0 0 00.25
1 10.25.25 1 00.00.00
2 00 2
3 75 3 25
4
5 50
6
7
8 50

Table 12. Ordered cowbird data and corresponding ranks.

X1 X2 tie R1 R2

0 1
.25 2
1 * 4
1 * 4
1 * 4

1.10 6
1.25 # 7.5
1.25 # 7.5
2 9

3.25 10
3.75 11
5.5 12
8.5 13

Using the X1 ranks and the X2 ranks as the input for a Student’s t test yields the

calculated t statistic Tcalc = 3.3056 and the P–value .0035. Since this P–value is very small

there is strong evidence that the population mean vocalization rate for the population of

all parasitized flycatcher pairs, µ1, is greater than the population mean vocalization rate

for the population of all non–parasitized flycatcher pairs, µ2.

In a situation where we wish to compare the difference µ1−µ2 to a particular, a priori

constant value d we first note that a hypothesis relating µ1 − µ2 to d can be re–expressed
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as a hypothesis relating µ1−d to µ2. For example, the three standard research hypotheses

have the equivalent forms listed below

H1 : µ1 − µ2 > d is equivalent to H1 : µ1 − d > µ2;

H1 : µ1 − µ2 < d is equivalent to H1 : µ1 − d < µ2; and

H1 : µ1 − µ2 6= d is equivalent to H1 : µ1 − d 6= µ2.

If we shift the random sample of n1 values of X1 (with corresponding population mean

µ1) by subtracting the constant d from each X1 value, we can view the resulting n1 values

of X∗

1 = X1− d as forming a random sample of size n1 from a population with population

mean µ1∗ = µ1 − d. Therefore, testing a hypothesis relating µ1 − µ2 to d based on the X1

sample and the X2 sample is equivalent to testing the corresponding hypothesis relating

µ∗1 = µ1 − d to µ2 based on the X
∗

1 sample and the X2 sample.

We can construct a 95% confidence interval for µ1−µ2 by finding the interval of values

for the difference d for which a test at the 5% level of significance does not lead to the

rejection of the hypothesis H0 : µ1 − µ2 = d (equivalently H0 : µ1 − d = µ2). Actually

finding this interval of values for d is complicated by the fact that the rank based test

statistic does not explicitly depend on the actual data values. We need to determine the

smallest and largest values (say d1 and d2, either of which may be negative) for which the

test does not reject H0 : µ1 − µ2 = d. A simple, but computationally intensive, method

of finding this interval of values is based on the n1n2 (n1 times n2) differences between

all possible pairings of the values of X1 and X2. By ordering the n1n2 differences from

smallest to largest it is possible to determine the smallest value of d, say d1, and the largest

value of d, say d2, which do not lead us to reject H0 : µ1 − µ2 = d. This determination

is based on a large sample size normal approximation to the sampling distribution of R1

which states that, when both n1 and n2 are reasonably large, the quantity

Z =
n1[R1 − (N + 1)/2]√

n1n2(N + 1)/12

behaves in approximate accordance with the standard normal distribution. This procedure

is outlined in the steps given below.

1. Compute the quantity k obtained by rounding

n1n2

2
− 1.96

√
n1n2(N + 1)

12

to the nearest integer.
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2. Compute all n1n2 differences X1−X2 and order these from smallest to largest including

any repeats which occur.

3. The lower limit d1 for the confidence interval is the difference located at the position k

places in from the beginning of the ordered listing (counting up). The upper limit d2

is the difference located at the position k places in from the end of the ordered listing

(counting down).

4. We then conclude that we are 95% confident that the difference µ1 − µ2 is between d1

and d2.

Example. Cowbird parasitization of flycatchers (revisited). We will now

construct a 95% confidence interval for the difference µ1 − µ2 giving us an estimate of the

amount by which the population mean vocalization rate for the population of all parasitized

flycatcher pairs, µ1, exceeds the population mean vocalization rate for the population of

all non–parasitized flycatcher pairs, µ2.

Table 13. The 42 differences X1 −X2 for the cowbird data.

X2

0 .25 1 1 1 3.25

1.10 1.10 .85 .10 .10 .10 -2.15

1.25 1.25 1 .25 .25 .25 -2

1.25 1.25 1 .25 .25 .25 -2

X1
2 2 1.75 1 1 1 -1.25

3.75 3.75 3.5 2.75 2.75 2.75 .5

5.5 5.5 5.25 4.5 4.5 4.5 2.25

8.5 8.5 8.25 7.5 7.5 7.5 5.25

Table 14. The ordered differences X1 −X2.

-2.15 -2 -2 -1.25 .10 .10 .10 .25 .25 .25 .25
.25 .25 .50 .85 1 1 1 1 1 1.10 1.25
1.25 1.75 2 2.25 2.75 2.75 2.75 3.50 3.75 4.50 4.50
4.50 5.25 5.25 5.50 7.50 7.50 7.50 8.25 8.50

The quantity from step 1 in the confidence interval construction given above is 7.28,

which on rounding to the nearest integer gives k = 7. Counting up (in Table 14) we find

that the seventh difference is .1 and counting down we find that the seventh difference is

5.25. Therefore, we are 95% confident that the population mean vocalization rate for the
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population of all parasitized flycatcher pairs, µ1, exceeds the population mean vocalization

rate for the population of all non–parasitized flycatcher pairs, µ2 by at least .1 and at most

5.25 calls per minute.

8.4 Summary

This chapter is concerned with inference for the difference µ1−µ2 between two popula-

tion means. We began by discussing the shift assumption under which the two distributions

being compared are identical except for the values of the two population means µ1 and

µ2. Under this shift assumption an inference about the difference µ1 − µ2 completely

characterizes the difference between the two distributions. The majority of this chapter is

devoted to inference for the difference between the means of two normal distributions.

Given independent random samples, of size n1 and n2, the sampling distribution of

the difference X1 −X2 between the two sample means has population mean µ1 − µ2 and

the population standard error of X1−X2 is S.E.(X1−X2) =
√
(σ2

1
/n1) + (σ2

2
/n2). Thus

the difference X1−X2 is unbiased as an estimator of µ1−µ2 and the variability of X1−X2

as an estimator of µ1 − µ2 can be quantified using this standard error. If we also assume

that the two population distributions are normal distributions, i.e., if we assume that

the data form independent random samples from normal distributions, then the sampling

distribution of X1 − X2 is the normal distribution with population mean µ1 − µ2 and

population standard deviation S.E.(X1 −X2).

Given independent random samples from normal distributions with population means

µ1 and µ2 and with common population standard deviation σ, the quantity

T =
(X1 −X2)− (µ1 − µ2)

Sp

√
(1/n1) + (1/n2)

,

where Sp denotes the pooled sample standard deviation, follows the Student’s t distribution

with n1 + n2 − 2 degrees of freedom. Therefore, if the normality and common population

standard deviation assumptions are reasonable, then we can use the Student’s t distribution

with n1 + n2 − 2 degrees of freedom to make inferences about the difference µ1 − µ2.

Under the normality and common population standard deviation assumptions the

interval from (X1 − X2) − kSp

√
(1/n1) + (1/n2) to (X1 − X2) + kSp

√
(1/n1) + (1/n2),

where k denotes the 97.5 percentile of the Student’s t distribution with n1+n2−2 degrees

of freedom, is a 95% confidence interval for µ1 − µ2. We can test a hypothesis relating

µ1 − µ2 to zero by using the Student’s t test statistic

Tcalc =
X1 −X2

Sp

√
(1/n1) + (1/n2)
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to find the appropriate P–value. The P–value is determined as the appropriate area under

the density curve of the Student’s t distribution with n1 + n2 − 2 degrees of freedom.

If the normality assumption is reasonable but the assumption of a common population

standard deviation is not, then we can use the quantity

T ∗ =
(X1 −X2)− (µ1 − µ2)√
(S2

1
/n1) + (S2

2
/n2)

for inferences about µ1 − µ2. The details of this approach, which is based on a Student’s

t approximation to the distribution of T ∗, are outlined in Section 8.2b.

The Student’s t inferential methods for µ1 − µ2 are based on the assumption that

the underlying populations are reasonably modeled by normal distributions. When this

normality assumption is not tenable we need to consider a method of inference which

is applicable under weaker assumptions. If the shift assumption is reasonable, then we

can make inferences about µ1 − µ2 based on the ranks of the observations. A Student’s t

approximation to this rank based approach to inference about µ1−µ2 is discussed in Section

8.3. This rank based approach to inference does not require the normality assumption but

it does require independent samples and the shift assumption.


