The summary statistics and normality checks here are the same as those in the output for fruitfly1.

The UNIVARIATE Procedure Variable: fecund line = NS

Basic Statistical Measures					
Loc	Location Variability				
Mean	33.37200	Std Deviation	8.94201		
Median	34.40000	Variance	79.95960		
Mode		Range	36.90000		
		Interquartile Range	9.70000		

Tests for Normality					
Test	St	atistic	p Val	ue	
Shapiro-Wilk	W 0.983892		Pr < W	0.9498	
Kolmogorov-Smirnov	D	0.11463	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.037842	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.21906	Pr > A-Sq	>0.2500	

Quantiles (Definition 5)			
Level	Quantile		
100% Max	51.8		
99%	51.8		
95%	47.4		
90%	42.4		
75% Q3	37.9		
50% Median	34.4		
25% Q1	28.2		
10%	20.3		
5%	19.3		
1%	14.9		
0% Min	14.9		

Extreme Values				
Lowest		Highest		
Order Value		Order	Value	
1	14.9	21	41.7	
2	19.3	22	41.8	
3	20.3	23	42.4	
4	22.6	24	47.4	
5	23.4	25	51.8	

The UNIVARIATE Procedure Variable: fecund line = RS

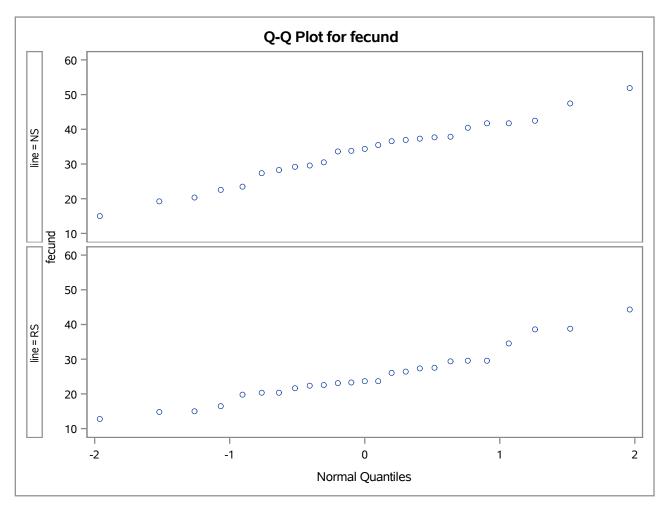
	Basic Statistical Measures					
Location Variability						
Mean	25.25600	.25600 Std Deviation 7.77				
Median	23.60000	Variance	60.41007			
Mode 20.30000		Range	31.60000			
		Interquartile Range	9.00000			

Tests for Normality					
Test	St	atistic	p Val	/alue	
Shapiro-Wilk	W 0.949559		Pr < W	0.2450	
Kolmogorov-Smirnov	D	0.139336	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.076663	Pr > W-Sq	0.2253	
Anderson-Darling	A-Sq	0.473402	Pr > A-Sq	0.2288	

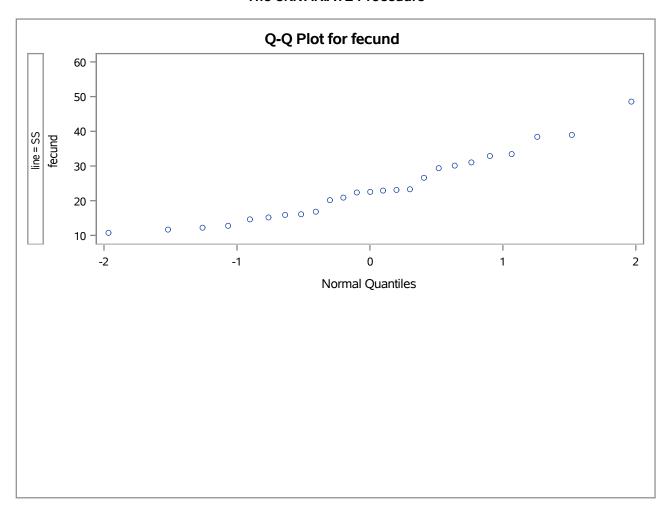
Quantiles (Definition 5)			
Level	Quantile		
100% Max	44.4		
99%	44.4		
95%	38.7		
90%	38.6		
75% Q3	29.3		
50% Median	23.6		
25% Q1	20.3		
10%	14.9		
5%	14.8		
1%	12.8		
0% Min	12.8		

Extreme Values					
Lowest			ı	Highest	
Order	Value	Freq	Order	Value	Freq
1	12.8	1	20	29.6	1
2	14.8	1	21	34.6	1
3	14.9	1	22	38.6	1
4	16.4	1	23	38.7	1
5	19.7	1	24	44.4	1

The UNIVARIATE Procedure Variable: fecund line = SS


	Basic Statistical Measures					
Loc	Location Variability					
Mean	23.62800	52800 Std Deviation 9.3				
Median	22.50000	Variance	95.42293			
Mode .		Range	37.70000			
		Interquartile Range	14.20000			

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	w	0.939562	Pr < W	0.1446	
Kolmogorov-Smirnov	D	0.153393	Pr > D	0.1312	
Cramer-von Mises	W-Sq	0.070113	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.457935	Pr > A-Sq	0.2463	


Quantiles (Definition 5)		
Level	Quantile	
100% Max	48.5	
99%	48.5	
95%	39.0	
90%	38.4	
75% Q3	30.2	
50% Median	22.5	
25% Q1	16.0	
10%	12.2	
5%	11.6	
1%	10.8	
0% Min	10.8	

Extreme Values				
Lowest		Highest		
Order	Order Value		Value	
1	10.8	21	32.9	
2	11.6	22	33.4	
3	12.2	23	38.4	
4	12.8	24	39.0	
5	14.6	25	48.5	

The UNIVARIATE Procedure

The UNIVARIATE Procedure

Class Level Information				
Class	Levels Values			
line	e 3 NS RS			

Number of Observations Read	75
Number of Observations Used	75

ANOVA and model comparison approach to the fruitfly fecundity example.

We begin with the full model with 3 means -- one for each genetic line

We will consider the reduced model obtained by grouping the two selected lines (RS and SS) to give the reduced model with 2 means -- one for NS and one for selected.

Coefficients for Estimate RS vs SS			
	Row 1		
Interce	0		
line NS		0	
line	RS	1	
line	-1		

contrast coefficients for the model comparison mu_RS - mu_SS

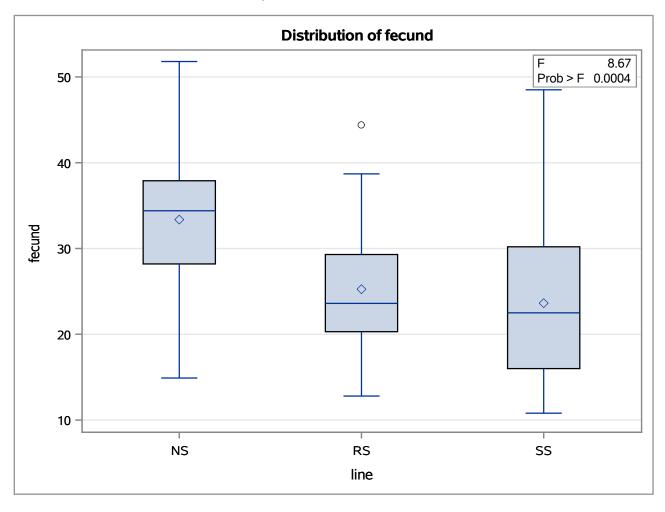
Dependent Variable: fecund

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1362.211467	681.105733	8.67	0.0004
Error	72	5659.022400	78.597533		
Corrected Total	74	7021.233867			

R-Square	Coeff Var Root MSE		fecund Mean	
0.194013	32.33390	8.865525	27.41867	

Source	DF	OF Type I SS Mean Square		F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004


Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
RS vs SS	1	33.12980000	33.12980000	0.42	0.5182

Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits
RS vs SS	1.62800000	2.50754914	0.65	0.5182	-3.37070784	6.62670784

the large P-value .5182 indicates that we cannot reject the null hypothesis H_0: mu_RS=mu_SS

Thus we do not need the full model with three means and the reduced model with 2 means mu_NS and mu_S will suffice.

Dependent Variable: fecund

Class Level Information					
Class	Levels Values				
line2	2	NS S			

Number of Observations Read	75
Number of Observations Used	75

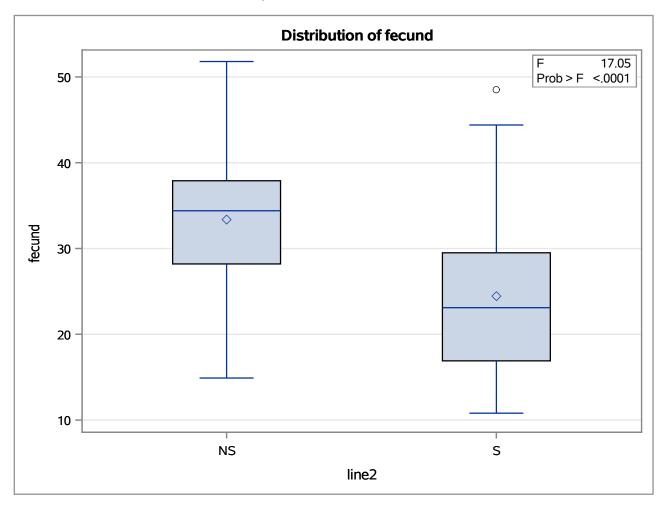
Dependent Variable: fecund

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1329.081667	1329.081667	17.05	<.0001
Error	73	5692.152200	77.974688		
Corrected Total	74	7021.233867			

R-Square	Coeff Var	Root MSE	fecund Mean	
0.189295	32.20553	8.830328	27.41867	

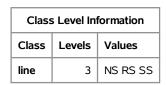
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
line2	1	1329.081667	1329.081667	17.05	<.0001	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line2	1	1329.081667	1329.081667	17.05	<.0001


Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
NS vs selected	1	1329.081667	1329.081667	17.05	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
NS vs selected	8.93000000	2.16297972	4.13	<.0001

The small P-value < .0001 shows strong evidence that mu_NS is not equal to mu_(selected) The F and t tests are equivalent with $F = 17.05 = (4.13)^2 = t^2$


On average the mean fecundity for the nonselected (NS) population is 8.93 units larger than the mean fecundity for the combined (selected) population.

Dependent Variable: fecund

alternate approach for the full model

The GLM Procedure

Number of Observations Read	75
Number of Observations Used	75

In this part of the program we use stick with the full model with 3 means and use linear combinations to explore relationships among the lines.

Dependent Variable: fecund

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1362.211467	681.105733	8.67	0.0004
Error	72	5659.022400	78.597533		
Corrected Total	74	7021.233867			

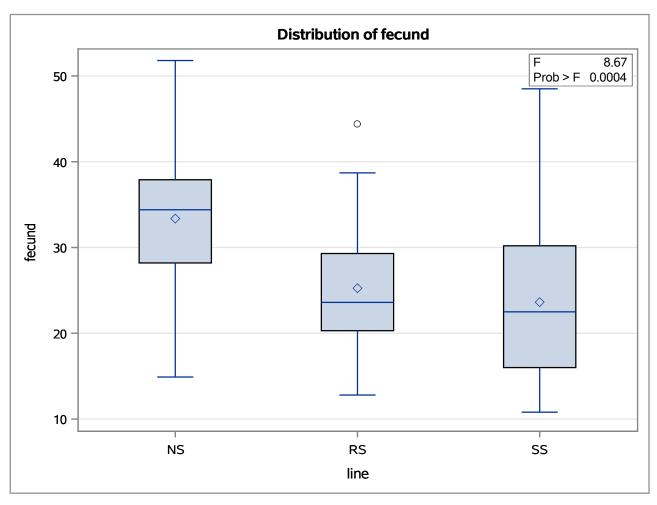
ANOVA for the full model with three means

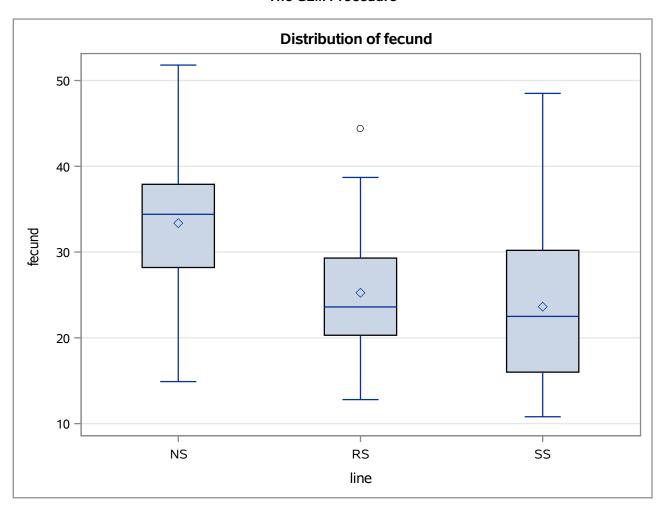
/	R-Square	Coeff Var	Root MSE	fecund Mean	
	0.194013	32.33390	8.865525	27.41867	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

DF	Contrast SS	Mean Square	F Value	Pr > F
1	33.129800	33.129800	0.42	0.5182
1	823.368200	823.368200	10.48	0.0018
1	1186.819200	1186.819200	15.10	0.0002
rs 1	1329.081667	1329.081667	16.91	0.0001
	1 1	1 33.129800 1 823.368200 1 1186.819200	1 33.129800 33.129800 1 823.368200 823.368200 1 1186.819200 1186.819200	1 33.129800 33.129800 0.42 1 823.368200 823.368200 10.48 1 1186.819200 1186.819200 15.10


Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
RS vs SS	1.62800000	2.50754914	0.65	0.5182	-3.37070784	6.62670784
RS vs NS	-8.11600000	2.50754914	-3.24	0.0018	-13.11470784	-3.11729216
SS vs NS	-9.74400000	2.50754914	-3.89	0.0002	-14.74270784	-4.74529216
NS vs others	8.93000000	2.17160125	4.11	0.0001	4.60099202	13.25900798


Thes F and t tests are for the null hypotheses that the contrast (indicated below) are equal to zero.

muRS-muSS mu_RS-mu_NS muu_SS-mu_NS and mu_NS-(mu_RS+mu_SS)/2 95% confidence intervals for: muRS-muSS mu_RS-mu_NS mu_SS-mu_NS and

mu_NS-(mu_RS+mu_SS)/2

Dependent Variable: fecund

Scheffe's Test for fecund

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

The pairwise comparisons considered earlier are reconsidered here making adjustments for multiple comparisons.

Alpha	0.05
Error Degrees of Freedom	72
Error Mean Square	78.59753
Critical Value of F	3.12391
Minimum Significant Difference	6.2678

We can be 95% confident that all of these intervals apply simultaneously!

Comparisons significant at the 0.05 level are indicated by ***.				
line Comparison	Difference Between Means	Simultaneous 95% Confidence Limits)
NS - RS	8.116	1.848	14.384	***
NS - SS	9.744	3.476	16.012	***
RS - NS	-8.116	-14.384	-1.848	***
RS - SS	1.628	-4.640	7.896	
SS - NS	-9.744	-16.012	-3.476	***
SS - RS	-1.628	-7.896	4.640	

the multiplier for the Scheffe intervals

Obs	F	multi
1	3.12391	2.49956

This is the multiplier used to form the simultaneous confidence intervals.

simultaneous Scheffe type intervals

Obs	differ	estimate	stderr	lowerCL	upperCL
1	RS_SS	1.628	2.50755	-4.6398	7.8958
2	RS_NS	-8.116	2.50755	-14.3838	-1.8482
3	SS_NS	-9.744	2.50755	-16.0118	-3.4762
4	NS_other	8.930	2.17160	3.5019	14.3581

The first three intervals here are the same simultaneous intervals for the pairwise differences as above. The last interval is for the contrast mu_NS-(mu_RS+mu_SS)/2.

The 95% confidence level is for all 4 intervals simultaneously.