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5: Uniform Series 

The preceding chapter presents basic equivalence calculations that do not depend on pat-

terns, such as uniform series or trends, that result in easier computations. This chapter 

shows procedures for uniform series, also referred to as annuities, and the next chapter 

presents trends. Topics of this chapter include compound and discounted amounts of se-

ries, multiple series, applications of series (bonds and loans), and multiple interest rates. 

5.1  Compound Amounts 

There are two situations involving compound amounts of series. In the first, the value of 

the cash flows in the series is known and the compound amount needs to be determined. 

In the second, the compound amount is known and the size of the series is unknown. This 

section determines formulas for these situations, presents the standard notation for the 

formulas, and illustrates the use of these new factors. 

Series Compound Amount 

Figure 5.1 shows the unknown compound amount Es of a uni-

form series having s-r cash flows of known amount U. For 

example, if s were 6 and r were 4, then there would be 6-4 or 2 

cash flows, at times 5 and 6. The compound amount formula 

indicates that the value of Es is given by 

 Es = U  s –  (r+1) + U  s –  (r+2) +  + U ,  (5-1) 

where   equals 1 + i. Factoring U  results in 

 Es = U [ s – (r+1) +   s – (r+2) +  + 1] ,  (5-2) 

and the term in brackets is a geometric series having the sum shown below: 

 Es = U [ (  s – r – 1) / i ] .  (5-3) 

The standard notation for the sum in equation (5-3) factor is (F | A, i, m): 

  Es = U (F | A, i, m)  , (5-4) 

where m equals the number of cash flows in the series, s-r in this case. Its name is the 

uniform series compound amount factor, and it also is referred to as “F given A.” The no-

tation indicates that an unknown Future amount is sought, given an Annuity, the interest 

rate, and the number of cash flows. 

Examples of Series Compound Amounts 

The following two examples illustrate the use of the series compound amount factor, first 

in a situation exactly resembling Figure 5.1 and then in a common multi-step problem. 

Example 5.1  Uniform Series Compound Amount 

Camille plans to purchase a car in three years. She intends to invest $200 at the 

end of each month for the next 36 months. If the savings account pays ½% per 

month, then how much will she have immediately after the last deposit? Figure 
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5.2 shows the end-of-month deposits, with today la-

beled as time 0. The savings after the last deposit 

equal $7,867.22: 

 $7,867.22 = 200 (F | A, ½%, 36-0)       (5-5) 

Example 5.2  Delayed Compound Amounts 

Camille wants to see how much will be in the ac-

count at time 36 if she makes her deposits at the 

beginning of each month. She also wishes to see how 

much will be in the account at time 48 if she waits an extra year but does not 

make deposits during that time. 

Figure 5.3 shows the cash flows and the requested equivalents at times 36 

and 48. The series compound amount factor is for the situations shown in Figures 

5.1 and 5.2, where the compound amount is at the time of the last cash flow. Such 

series are referred to as end-of-period series. 

This is a beginning-of-period series relative 

to E36, so the factor cannot be used. It is nec-

essary to compute E35 first since it is at the 

time of the last cash flow. The number of 

payments for E35 equals 35  (-1) or 36, the 

time of the last cash flow minus the time 

immediately before the first cash flow. Only 

differences in time are needed to count cash 

flows, even though a time such as -1 might 

seem odd at first. The amount in the account at time 35 is $7,867.22: 

 E35 = $7,867.22 = 200 (F | A, ½%, 35  (-1) ) (5-6) 

This is the same as immediately after the last deposit in the preceding example, 

where everything happens one period later. Once E35 is known, then the remain-

ing equivalents can be computed as single payment compound amounts: 

 E36 = $7,906.56 = 7,867.22 (F | P, ½%, 36  35 ) (5-7) 

 E48 = $8,394.32 = 7,867.22 (F | P, ½%, 48  35 ) (5-8) 

There will be $7,906.56 in the account at time 36 and $8,394.32 at time 48.     

Sinking Funds 

A sinking fund is an account into which deposits are made 

for the purpose of accumulating a given future sum. In Fig-

ure 5.4 the compound amount is cs and the series is EU . 

Equation (5-3) indicates that the compound amount equals 

the series multiplied by [ (  
s – r – 1) / i ] , so 

 cs = EU [ (  
s – r – 1) / i ] . (5-9) 

Solving for EU results in  

 EU = cs [ i / ( s – r – 1)] . (5-10) 
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This is the sinking fund factor, and its standard notation is 

  EU = cs (A | F, i, m)  , (5-11) 

where an unknown Annuity is sought, given a Future amount, the interest rate, and the 

number of cash flows m. The factor also is known as “A given F.” 

Examples of Sinking Funds 

The following two examples illustrate the use of the sinking fund factor, first in a situa-

tion exactly resembling Figure 5.4 and then in a common multi-step problem. 

Example 5.3  End-of-Month Sinking Fund 

Barrett is considering making deposits at the end of 

each month for three years into an account paying ½% 

per month to purchase a car for $10,000. How much 

must she invest each month? Figure 5.5 shows that the 

placement of the compound amount and the equivalent 

series corresponds to Figure 5.4, so the sinking fund 

factor can be used: 

 EU = $254.22 = 10,000(A | F, ½%, 36-0)  (5-12) 

If $254.22 is deposited at the end of each month, then it will accumulate to the de-

sired compound amount of $10,000.      

Example 5.4  Beginning-of-Month Sinking Fund 

Suppose Barrett still wants $10,000 at the end-

of-month 36, but she plans to make beginning-

of-month deposits at ½% per month. How 

much must the deposits be? The compound 

amount is not at the same time as the last cash 

flow of the series, so the sinking fund factor 

cannot be used in one step. First discount the 

$10,000 from time 36 to time 35 to determined 

how much is needed at time 35, and then use 

the sinking fund factor: 

 E35 = $9,950.25 = 10,000 (P | F, ½%, 36-35) (5-13) 

 EU = $252.95 = 9,950.25 (A | F, ½%, 35 – (-1) ) (5-14) 

As before, the number of cash flows in the series equals the time of the last one 

minus the time before the first one, -1 in this case. If $252.95 is deposited at times 

0, 1, …, 35, then the compound amount of those deposits at time 35 will be 

$9,950.25. In turn, the $9,950.25 will grow into the desired $10,000 after one pe-

riod. In general, if the compound amount is after the last cash flow of the series, 

then compute the discounted amount at the time of the last series flow before us-

ing the sinking fund factor.      

• • •
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5.2  Discounted Amounts 

There are two situations involving discounted amounts of series. In the first, the size of 

the series is known and the discounted amount must be computed. In the second, the dis-

counted amount is known and the size of the series is unknown. This section determines 

formulas for these situations, presents the standard notation for the formulas, and illus-

trates the use of these new factors. 

Series Discounted Amount 

Figure 5.7 shows a series of future end-of-period cash 

flows having discounted amount Er . An investor who pays 

Er for the series recovers the original Er plus interest at 

rate i. The investment equals the discounted amount of the 

series, so 

 Er = U   – (r + 1 – r) + U  – (r + 2 – r) +  + U   – (s – r) . (5-15) 

Factor U to obtain 

 Er = U [   – 1 +  
 – 2 +  +  

 – (s – r)] , (5-16) 

where the geometric series in the brackets has the sum shown below: 

 Er = U [ 1 – (1+i) – (s – r)] / i . (5-17) 

This series sum is known as the uniform series present worth factor, and its standard no-

tation is: 

 Er = U (P | A, i, s-r)  . (5-18) 

A Prior discounted amount is sought, given a future series or Annuity, interest rate i, and 

number of cash flows s-r. 

Examples of Series Discounted Amounts 

The following two examples illustrate the use of the series present worth factor, first in a 

situation exactly resembling Figure 5.7 and then in a common multi-step problem. 

Example 5.5  Uniform Series Discounted Amount 

Camille computed that she must make 36 end-of-

month deposits of  $200 at ½% per month to accumu-

late $7,867.22 for a car. If she should borrow the 

money at ¾% with 36 end-of-month payments of 

$200, then how much could she borrow for the car? 

This situation exactly matches the one depicted in 

Figure 5.7, so the series present worth factor can be 

used: 

 E0 = $6,289.36 = 200(P | A, ¾%, 36-0) . (5-19) 

If Camille chooses saving $200 instead of repaying a loan at a rate of $200 per 

month, then she will have $1,577.86 (7,867.22 - 6,289.36) more for a car.     
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Example 5.6 Discounted Amount with Delayed Series 

Consider the situation shown in Figure 5.9, where the loan payments of $200 have 

been delayed for 12 months. If interest remains at ¾% per month, then how much 

can be borrowed at time 0? The series present worth factor is for the situation in 

which the discounted amount occurs one period before the start of the payments, 

at time 12 in this case. So first discount the series to time 12, and then discount 

the resulting single equivalent to time 0: 

 E12 = $6,289.36 = 200(P | A, ¾%, 48-12)  (5-20) 

 E0 = $5,749.97 = 6,289.36(P | F, ¾%, 12-0) (5-21) 

Notice that the number of payments is 48-12, 

not 48-13. As before, $6,289.36 can be bor-

rowed in exchange for 36 immediately 

following end-of-month payments. In turn, a 

debt of $6,289.36 at time 12 is the result of 

an original debt of $5,749.97 at time 0. Thus 

$5,749.97 can be borrowed if this delayed 

payment plan is used.     

In general, both borrowing instead of saving and delaying payments decrease the 

amount available for a purchaser. Interest works for a saver and against a borrower. 

Moreover, rates for borrowed money typically are higher than savings rates, since many 

lenders, such as finance companies, actually borrow money to have the capital to lend. 

Capital Recovery 

Investors give up capital in hopes of recovering it with 

interest, as illustrated in Figure 5.10. Given an invest-

ment (or a loan) of amount cr , what size series EU 

would recover the capital with interest at rate i? Equa-

tion (5-17) indicates that the relationship between a 

discounted amount (DA) and an equivalent uniform se-

ries (US) is 

 DA = US [ 1 – (1+i) – (s – r)] / i . (5-22) 

This can be solved for an unknown uniform series, 

 US = DA   i / [ 1 – (1+i) – (s – r)] , (5-23) 

and expressing it in terms of Figure 5.10 results in 

 EU = cr { i / [ 1 – (1+i) – (s – r)] } . (5-24) 

The standard notation for this is 

 EU = cr (A | P, i, s-r) , (5-25) 

and the factor is known as the capital recovery factor. It is used to compute an unknown 

series or Annuity, given a Prior amount, the interest rate i, and the number of series flows  

s-r. Notice that the prior amount occurs one period before the first series flow, and the 

number of series flows equal the time of the last flow minus the time before the first flow.  
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Examples of Capital Recovery 

The following two examples illustrate the use of the capital recovery factor, first in a sit-

uation exactly resembling Figure 5.10 and then in a common multi-step problem. 

Example 5.7  Capital Recovery 

Barrett determined that if she deposited $254.22 at the 

end of each month in an account paying ½% per 

month for 3 years, then she would have $10,000 for a 

car. If instead of saving, she borrows the $10,000 at 

¾% per month for 3 years, then what would her pay-

ment be at the end of each month? Figure 5.11 

illustrates the loan, and the monthly payments are 

 EU = $318.00 = 10,000(A | P, ¾%, 36-0) . (5-26) 

Barrett’s notes will cost $63.78 ($318.00 - $254.22) more than her saving depos-

its.     

Example 5.8  Capital Recovery with Delayed Payments 

If Barrett should be able to delay her month-

ly payments in the preceding example by a 

year, then how much would she have to pay 

per month? The capital recovery factor as-

sumes that the initial transaction occurs one 

period before the start of the series, so the 

first step is to compute the debt as of time 12 

using the single payment compound amount 

factor: 

 E 12 = $10,938.07 = 10,000(F | P, ¾%, 12-0) . (5-27) 

Now the capital recovery factor can compute the amount of the payments: 

 EU  = $347.83 = 10,938.07 (A | P, ¾%, 48-12) . (5-28) 

In this case, delaying payments will cost Barrett $94.88 (347.83  252.95) more 

per month than saving for the car.     

5.3  Multiple Series 

The preceding sections show how to convert a series into a single cash flow, a compound 

or discounted amount, and vice-versa. Another common form of problem involves multi-

ple series. For example, a person or a company planning for a series of future 

expenditures might accumulate the funds with a series of deposits. This section provides 

two examples that illustrate the use of equivalents as intermediate steps in solving such 

problems.  

Example 5.9  Known Deposits, Unknown Withdrawals 

Mac realizes that early planning is necessary for his eventual retirement. Figure 

5.13 shows that he wants to determine his yearly withdrawals X from 39 through 
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63 years in the future if he makes yearly deposits of $3,000 beginning in 2 years 

and ending in 30 years. The gap between the deposits and withdrawals is in antic-

ipation of helping his children through college and having no extra funds for 

savings. He thinks that he can earn 8% per year on his investments. 

The best way to solve multi-

step problems like this is to plan 

each step in terms of the factors. 

Careful attention must be paid to the 

positioning of each equivalent. 

 Use (F | A, i, m) to compute 

the compound amount E30 . 

 Use (F | P, i, m) to calculate 

the compound amount E38 , 

one period before the first withdrawal. 

 E38 is positioned so (A | P, i, m) can compute X. 

Now implement this logic, being particularly careful with the s-r terms: 

 E30 =  $311,897.81 = 3,000 (F | A, 8%, 30-1) (5-29) 

 E38 = $577, 301.08 = E30 (F | P, 8%, 38-30) (5-30) 

 X = $54,080.86 = E38 (A | P, 8%, 63-38) (5-31) 

An early program of regular, modest savings of $3,000 per year can produce a 

significant annuity of $54,080.86 over time.     

Example 5.10  Known Withdrawals, Unknown Deposits 

Suppose that Mac decides that he 

would like to have $60,000 per year 

in his retirement, as shown in Figure 

5.14. How much would he have to 

deposit each year? The solution 

strategy for this problem is given 

below. Notice the positioning of the 

equivalents. 

 Use (P | A, i, m) to compute 

the discounted amount E38 . This amount must be in the account at time 38 

to make the withdrawals. 

 Use (P | F, i, m) to calculate the discounted amount E30 , placed at the time 

of the last deposit. This amount will grow to E38 . 

 E30 is positioned so (A | F, i, m) can compute X. 

Now write and solve the equations, paying attention to the s-r terms: 

 E38 =  $640,486.57 = 60,000 (P | A, 8%, 63-38) (5-32) 

 E30 = $346,034.97 = E38 (P | F, 8%, 38-30) (5-33) 

• • •
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 X = $3,328.35 = E30 (A | F, 8%, 30-1) (5-34) 

A yearly savings of $3,328.35 will produce the annuity of $60,000 per year.     

5.4  Bonds 

This section applies series factors to solve commonly occurring problems dealing with 

bonds, and the next section uses them to solve loan problems. 

Both government and private industry use bonds to borrow directly from the pub-

lic. Banks also borrow from the public in the form of savings accounts, so the interest rate 

on their loans must be higher than the rate paid on savings accounts to make a profit. In-

stitutions that sell bonds bypass the profit margin of banks, but they have administrative 

costs associated with selling the bond issue and making payments on the bonds.  

A bondholder typically receives an income stream of 

periodic payments plus a final payment, as illustrated in Fig-

ure 5.15. This bond has just been issued at time 0, and it has a 

maturity date of 10 years when its $1,000 redemption value 

must be paid to the bondholder. The redemption value is also 

known as the face or par value. This value usually is printed 

on the face (front) of the bond, and it is the bond’s selling 

price under par conditions when the interest rate paid by the bond equals the rate of return 

generally available in the bond market. 

The bond’s interest rate is called its coupon rate, and it is 8% in this case. The 

bond’s coupon is the $80 payable yearly, where the coupon equals the face value multi-

plied by the coupon rate: 

 Coupon = Face Value  Coupon Rate (5-35)  

Bondholders used to clip off parts of the bond known as coupons and send them to the 

issuer to receive the periodic interest payments. 

Prudent buyers determine a bond's cash flows and then discount them at the inter-

est rate that the buyer wants to earn. This is the most that the buyer should offer for the 

bond, as illustrated by the following two examples. 

Example 5.11  Purchase of a New Bond 

How much would an investor wanting to earn 9% per year pay for the bond 

shown in Figure 5.15? The discounted amount at 9% of the income stream is: 

 E0 = $935.82 = 80 (P | A, 9%, 10-0) + 1,000 (P | F, 9%, 10-0) (5-36) 

If the bond should be purchased for $935.82 and held to maturity, then the inves-

tor would earn exactly 9%, so this is the most the investor would pay for the bond. 

This would be a below par or face value offer. When the rate of return desired by 

investors equals the bond’s coupon rate, then the bond sells at par or face value: 

 E0 = $1,000.00 = 80 (P | A, 8%, 10-0) + 1,000 (P | F, 8%, 10-0) (5-37) 

If the rate of return desired by bond investors is lower than the bond’s coupon 

rate, such as at 7%, then the bond sells above par or face value: 
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 E0 = $1,070.24 = 80 (P | A, 7%, 10-0) + 1,000 (P | F, 7%, 10-0)      (5-38) 

Example 5.12  Purchase of an Existing Bond 

Bonds are bought and sold just like other financial in-

struments, such as stocks. If the bond shown in 

Figure 5.15 has just paid its coupon at time 3, then 

what is the most that an investor wishing to earn 9% 

would be willing to offer? The remaining payments 

are shown in Figure 5.16, and their discounted value 

at time 3 equals the most that an investor wanting to 

earn 9% would be willing to offer: 

 E3 = $949.67 = 80 (P | A, 9%, 10-3) + 1,000 (P | F, 9%, 10-3) (5-39) 

The investor’s desired rate of return is greater than the coupon rate, so the offer is 

below par.     

5.5  Loans 

Series factors are quite useful for several types of problems involving loans other than 

bonds. Example 5.5 calculated the amount that can be borrowed in exchange for a pay-

ment of a given size, and Example 5.7 determined the payment necessary for a loan of a 

given amount. Three other common computations for loans involve balloon notes, deter-

mining how much interest is paid each year, and early repayment. 

Balloon Loan 

A balloon loan occurs when the last payment is much larger than the preceding ones, ex-

panding like a balloon. This happens when the borrower wants to keep the notes or 

periodic payments as low as possible, but anticipates being able to pay the larger balloon 

payment later. Thus a borrower might pay $100 per month for 3 years, and then an extra 

$5,000 with the last payment of $100. The extra payment equals the balance due at the 

end of the loan. This is illustrated by the following example. 

Example 5.13  Balloon Note 

Kate’s company has just transferred her to another city 

where she is planning on buying a house. She does not 

think that she will be in the city for over 5 years, and she 

has discovered that she can get favorable terms on the 

loan shown in Figure 5.17. It has monthly payments cal-

culated using a 30 year period, but paid for only 5 years, 

plus a balloon note at the end of 5 years. What is her 

month note and balloon payment for a loan of $80,000 at ¾% per month? 

The monthly note M is based on a 30 year or 360 month period, so its val-

ue is $643.70:  

 M = $643.70 = 80,000 (A | P, ¾%, 360-0) (5-40) 

The amount of the balloon note B is the balance due on the loan immediately after 

the $643.70 payment at time 60. The balance equation indicates that 

• • •

4 5 103

1,000
E3

80

 
Figure 5.16  Existing 

Bond 

• • •

1 2 60

0

BM

80,000
 

Figure 5.17 

Balloon Loan 



5.5  Uniform Series  Loans  10 

 B = $76,704.11 = 80,000 (F | P, ¾%, 60-0)  643.70 (F | A, ¾%, 60-0) . (5-41) 

In this case, it is known that the $643.70 would pay off the loan if the payments 

continued through time 360, so discounting $643.70 at times 61, 62, …, 360 also 

results in  

 B = $76,704.11 = 643.70 (P | A, ¾%, 360-60) . (5-42) 

The total payment at time 60 is M + B or $77,347.81.     

Principal and Interest 

Computing the amount of interest paid each year is important because interest for busi-

ness purposes and for home ownership is a tax deduction. For example, paying $10,000 

in interest on a home loan reduces income taxes by $2,800 for someone in the 28% tax 

bracket. Each loan payment consists of two components, interest and principal: 

  Loan Payment = Interest + Principal (5-43) 

The interest component equals preceding balance multiplied by the interest rate, and the 

rest of the payment reduces the debt or principal. The sum of the principal components of 

several payments is the amount by which they reduce the debt. This debt reduction also 

equals the difference in balances before and after the payments. Everything else is inter-

est, so the sum of the interest payments is given by: 

 Interest = Loan Payments  Debt Reduction . (5-44)  

This is illustrated in the following example. 

Example 5.14  Principal and Interest Payments 

Thibodeaux borrowed $100,000 at ¾% per month over 30 years for a house, so 

his monthly payment is $804.62, 

 $804.62 = 100,000 (A | P, ¾%, 360-0) . (5-45) 

Slightly over a year has passed since the purchase, and he 

is preparing his income tax return. During the current tax 

year he made payments 3, 4, …, 14 on the house. How 

much interest did he pay? The principal components of 

payments 3, 4, …, 14 reduce the debt from the balance 

immediately after payment 2 to the balance immediately 

after payment 14. Compute the balances by discounting the 

payments remaining at times 2 and 14 to obtain E2 and 

E14 , shown in Figure 5.18, or use the balance equation. 

The debt reduction is E2  E14 , so 

 Debt Reduction  = 804.62 (P | A, ¾%, 360-2)  804.62 (P | A, ¾%, 360-14)  (5-46) 

or $693.48. The sum of the loan payments is $804.6212 or $9,655.44, so the in-

terest payment is 

 Interest = $8,961.96 = $9,655.44 – 693.48 (5-47) 

Of the $9,655.44 paid, $8,961.96 is for interest and $693.48 is for principal.    
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Early Repayment 

Computing monthly balances on a spreadsheet for Example 5.14 results in Figure 5.19. 

The interest payments on the loan are larger than the principal payments for over 22 

years, and the total of the interest payments is $189,664.14. Making extra, early principal 

payments can reduce interest charges substantially. Some lenders allow borrowers to 

make extra principal payments, whereas others do not or charge a penalty. The following 

example illustrates the impact of an early principal payment. 

Example 5.15  Early Loan Repayment 

Suppose that Thibodeaux’s loan allows him to make early principal payments 

without penalty. He must continue paying at least $804.62 per month, but the loan 

will be paid off earlier. What will be the effect of his paying an extra $10,000 at 

time 12 and continuing to pay $804.62 at all other times? 

After the payment of $804.62 at time 12, Thibodeaux owes the discounted 

amount of the remaining payments, 

 $99,316.48 = 804.62 (P | A, ¾%, 360-12), (5-48) 

and the extra payment of $10,000 reduces this to $89,316.48. The payments re-

main at $804.62 per month until an unknown month s. Use trial-and-error to 

determine the last value of s for which the balance is greater than or equal to zero, 

 Bs =89,316.48 (F | P, ¾%, s -12)  804.62 (F | A, ¾%, s-12)  0, (5-49) 

or compute the balance each month on a spreadsheet using the recursive balance 

formula. The balance is $124.81 after the payment when s equals 251, so a final 

payment at time 252 of $124.81(F | P, ¾%, 252-251) or $125.75 sets the balance 

to $0.00. Thibodeaux saves $678.87 (804.62 - 125.75) at time 252 and eliminates 
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Figure 5.19  Principal and Interest Components 
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the remaining 108 (360 - 252) payments of $804.62. 

If he invests the eliminated payments at ½% per month, then he will have 

 E360 = 678.87(F | P, ½%, 360-252)  + 804.62 (F | A, ½%, 360-252) (5-50) 

or $116,014.76 in savings at time 360. If he had invested the $10,000 at ½% per 

month instead of making an extra principal payment, then he would have had 

$10,000(F | P, ½%, 360-12) or $56,726.96. He will have $59,287.89 (116,014.76 - 

56,726.96) more at time 360 by paying early. This is on a before tax basis. If 

Thibodeaux is in the 28% tax bracket, then it can be shown that he still will have 

$33,007.97 more at time 360 on an after tax basis.    

5.6  Multiple Interest Rates 

All of the preceding series formulas depend on factoring the cash flow term and recogniz-

ing the remaining terms as a geometric series. If the interest rate fluctuates, then the 

remaining terms do not form a geometric series, and there are no convenient formulas. 

This section provides relationships between series and compound or discounted amounts 

when interest rates change, as well as showing how series factors can still be used over 

regions where the interest rate is constant. 

Compound Amounts 

Figure 5.20 shows a uniform series, its compound amount, and the interest rates for each 

period. The multiple interest rate compound amount formula 

indicates that the relationship between the compound 

amount CA and the series U is 

  CA = U  r+2  r+3  s + U  r+3  t +  + U . (5-51) 

No simplifications are possible after factoring U, so 

  CA = U ( r+2  r+3  s +  r+3  t +  + 1)  . (5-52) 

and 

  U = CA / (  r+2  r+3  s +   r+3  t +  + 1)  . (5-53) 

The interest rate ir+1 is not needed for these formulas. 

Example 5.16  Multiple Rate Series and Compound Amount 

Consider the uniform series and compound amount shown in Figure 5.21. If the 

size of the series is known to be $1,000, then the 

unknown compound amount is 

 CA = 1,000 [ (1.06)(1.065)(1.07) (5-54) 

 + (1.065)(1.07) + 1.07 + 1] 

or $4,417.47. A known compound amount of 

$2,000 implies that the unknown series is 

 U = 2,000 / [ (1.06)(1.065)(1.07) (5-55) 

 + (1.065)(1.07) + 1.07 + 1] 

or $452.74.        

ir+1 ir+2 is

r+1 r+2 sr

• • •

CA

U
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Discounted Amounts 

Figure 5.22 shows a uniform series, its discounted amount, and the interest rates each pe-

riod. The multiple interest rate discounted amount formula indicates that the relationship 

between the discounted amount DA and the series U is 

 DA = U (r+1)-1 +  +  U ( r+1  r+2  s)-1 . (5-56) 

No simplifications are possible after factoring U, so 

  DA = U [ (r+1)-1 +  + ( r+1  r+2  s)-1
 ]  (5-57) 

and 

  U = DA / [ (r+1)-1+  + ( r+1  r+2  s)-1
 ]  . (5-58) 

Example 5.17  Multiple Rate Series and Discounted 

Amount 

Consider the uniform series and discounted amount 

shown in Figure 5.23. If the size of the series 

is known to be $1,000, then the unknown dis-

counted amount is 

 DA = 1,000 [ (1.06)-1 + (1.061.065)-1  

 + (1.061.0651.07)-1 (5-59) 

 + (1.061.0651.071.075)-1] 

or $3,427.19. A known discounted amount 

of $2,000 implies that the unknown series is 

  U = 2,000 / [ (1.06)-1 + (1.061.065)-1 + (1.061.0651.07)-1 (5-60) 

 + (1.061.0651.071.075)-1] 

or $583.56.        

Regions with Constant Rates 

The development of the series factors assumes constant rates over the region in which 

they are used, so factors can be used within regions of constant rates. Equivalents must be 

placed at the boundaries of regions where necessary, just as with single cash flows. This 

is illustrated by the following examples. 

Example 5.18  Series Compound Amount with Regions 

Figure 5.24 shows the compound amount of 

a series that spans two interest regions. The 

factors can be used up to region boundaries, 

so compute the equivalent of the cash flows 

in the first region, 

 E7 = U (F | A, 5%, 7-4) , (5-61) 

and then the compound amount CA : 

 CA = E7 (F | P, 6%, 12-7) (5-62) 

ir+1 ir+2 is

r+1 r+2 sr

• • •

DA U
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 + U (F | A, 6%, 12-7) . 

Substituting for E7 in equation (5-62) provides the relationship between the series 

and the compound amount, 

 CA = U (F | A, 5%, 7-4) (F | P, 6%, 12-7) + U (F | A, 6%, 12-7)  (5-63) 

or 

 CA = 9.8558U  (5-64) 

If the series amount should be $1,000, then substitute its value to obtain the com-

pound amount of $9,855.80 (9.85581,000). If the compound amount should be 

$20,000, then solve for the series value of $2,029.26 (20,000 / 9.8558).     

Example 5.19   Series Discounted Amount with Regions 

Figure 5.25 shows the discounted amount of 

a series that spans two interest regions. 

Compute the equivalent of the cash flows in 

the second region at its boundary, 

 E7 = U (P | A, 6%, 12-7) , (5-65) 

and then the discounted amount DA : 

 DA = E7 (P | F, 5%, 7-4) (5-66) 

 + U (P | A, 5%, 7-4) . 

Substitute for E7 in equation (5-66) to ob-

tain 

 DA = U (P | A, 6%, 12-7) (P | F, 5%, 7-4) + U (P | A, 5%, 7-4)   (5-67) 

or 

 DA = 6.3620U  (5-68) 

If the series amount should be $1,000, then substitute its value to obtain the dis-

counted amount of $6,362.00 (6.36201,000). If the discounted amount should be 

$20,000, then solve for the series value of $3,143.67 (20,000 / 6.3620).      

5.7  Summary 

This chapter introduces factors for uniform series. A common aspect of these factors is 

the argument for the number of cash flows in the series. It always equals the time of the 

last cash flow minus the time before the first cash flow. 

The uniform series compound amount factor computes the compound amount, 

and the sinking funds factor calculates the size of the series. Both of these factors require 

the compound amount to be positioned at the time of the last cash flow, and any other 

positioning results in a multi-step problem. 

The uniform series present worth factor discounts a series, and the capital recov-

ery factor computes the periodic flow required to recover an investment with interest. The 

discounted amount must be placed one period before the first cash flow, or a multi-step 

problem occurs. 

DA
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Problems involving multiple series use single equivalents as intermediate steps. 

Compound amounts must be positioned at the time of the last cash flow of a series, and 

discounted amounts have to be positioned one period prior to the first cash flow. Single 

payment factors are used to position the equivalents as needed. 

Applications of series include bonds and loans. Bond problems require mastery of 

the vocabulary associated with bonds in order to construct the future income stream. This 

includes the terms maturity date, redemption (face or par) value, coupon rate, and cou-

pon. The most an investor should pay for a bond is the discounted value of its income 

stream, with discounting done at the investor’s desired rate of return. 

Loan problems include balloon notes, an extra payment at the end of a loan equal 

to its balance due. Computing the amount of interest paid on a loan during a year is use-

ful, since it can be a tax deduction. Early loan payments have a large interest component, 

and early principal payments can be good investments if the interest rate on the loan is 

greater than the rate of return the investor can earn elsewhere. 

Multiple interest rates preclude developing simple factors for uniform series. If 

the rates continually fluctuate, then the best that can be done is to use the multiple rate 

compound and discounted amount formulas, factor the series amount, and manually 

compute the sum of the remaining terms. If rates are stable over regions, then the factors 

can be used within regions to compute single equivalents. These equivalents can be 

moved from one region to the next by single payment factors with each region. 

Questions 

Section 1: Compound Amounts 

1.1 Midas earns ¾% per month on his investments. He plans to save $300 per month to 

buy a used truck. How much truck can he buy with deposits at times: 

a) 1, 2, …, 30 and the purchase at time 30? (10,050.87) 

b) 0, 1, …, 29 and the purchase at time 30? (10,126.25) 

c) 1, …, 30 and the purchase at time 48? (11,497.80) 

1.2 Midas has decided that he wants to spend $15,000 on his truck. He earns ¾% per 

month, so how much is his monthly deposit if it is made at times: 

a) 1, 2, …, 30 with the purchase at time 30? (447.72) 

b) 0, 1, …, 29 with the purchase at time 30? (444.39) 

c) 1, …, 30 with the purchase at time 48? (391.38)  

Section 2: Discounted Amounts 

2.1 Midas borrows at 1% per month to buy his beloved truck. If he wants to pay $300 

per month, then how much can he borrow at time 0 with payments at times: 

a) 1, 2, …, 30? (7,742.31) 

b) 13, 14, …, 42? (6,870.91) 

2.2 At time 0 Midas borrows $10,050.87 at 1% per month to buy the wretched truck. 

What will be the size of his monthly payments if they are made at times: 

a) 1, 2, …, 30? (389.45) 

b) 13, 14, …, 42? (438.84) 
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2.3 Two new graduates have the potential to save $550 each month at ½% per month. 

Expenses, such as buying a car or stereo must come out of those potential savings. This 

problem examines the effects of different financial practices on their bank balances after 

6 years. Flambeaux buys a new car by borrowing $20,000 at 1% per month with pay-

ments at times 1, 2, …, 48. He will keep the car for 6 years and then sell it for $4,000. 

Marie buys a 3 year old used car for $10,000 by borrowing at 1% with payments at times 

1, 2, …, 36. She will sell the 6 year old car after 3 years for $4,000. If she has $10,000 in 

savings at the end of three years, then she will buy another 3 year old car for $10,000 

cash and sell it after 3 years for $4,000. If she does not have the $10,000 in savings, then 

she will borrow whatever she needs at 1% per month with payments at times 37, 38, …, 

72. 

a) What are Flambeaux’s monthly payments on his car? (526.68) 

b) How much will he have in savings after his deposit at time 48? (1,261.56) 

c) What will his savings be after selling his car at time 72? (19,409.56) 

d) What are Marie’s monthly payments on her car? (332.14) 

e) How much will she have in savings after she sells her car at time 36? (12,569.76) 

f) Will she have to borrow for the next car? If so, how much? (No) 

g) How much will her payments be at times 37, 38, …, 72, if any? (0) 

h) What will her savings be after selling her car at time 72?  (28,710.04) 

Section 3: Multiple Series 

3.1 Dominique plans to graduate when he is 23 and make yearly deposits at times 24, 25, 

… 60 into his individual retirement account (IRA). He plans on making withdrawals 

when he is 66, 67, …, 85. 

a) What are his withdrawals if deposits of $3,000 earn 6% per year? (44,546.11) 

b) What are his withdrawals if deposits of $3,000 earn 9% per year? (130,648.44) 

c) What deposits at 6% per year allow withdrawals of $70,000? (4,714.22) 

d) What deposits at 9% per year allow withdrawals of $70,000? (1,607.37) 

Section 4: Bonds 

4.1 A bond has just been issued with a maturity date 20 years from now. Its face value is 

$5,000 with a coupon rate of 7% per year and coupons paid each year. 

a) What is the most that an investor wanting to earn 8% should pay? Is this above or 

below par? (4,509.09, below) 

b) If 5 years have passed and the fifth coupon has just been paid, then what is the 

most that an investor wanting to earn 6% should pay? Is this above or below par?  
 (5,485.61, above) 

Section 5: Loans 

5.1 Dominique borrows $10,000 for a car at 1% per month. The loan is for 36 months, 

and she wants to keep the notes low until she graduates. She negotiates a $200 per month 

payment at times 1, 2, …, 36, plus an extra balloon payment at time 36. What is the 

amount of the balloon payment?  (5,692.31) 

5.2 Pierre borrows $80,000 at ¾% per month for 15 years for a house. 

a) What is the monthly note? (811.41) 

b) How much interest is contained in payments 7, 8, …, 18? (6,971.40) 
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c) What is the total amount of interest over the life of the loan? (66,054.80) 

5.3 Taccaux borrows $80,000 at ¾% per month for 25 years for a house. 

a) What is his monthly note? (671.36) 

b) If he pays $10,000 extra at month 12 and keeps paying the regular note, then how 

much will he owe after the regular plus extra payment at time 12? (69,107.50) 

c) When will the last payment be? (210) 

d) How much will the last payment be? (588.23) 

e) If he had not paid early, Taccaux would have invested the $10,000 at ½% per 

month. How much would he have at the end of year 25? (42,055.79) 

f) If he invests his savings in note payments at ½% per month, how much will he 

have at the end of year 25? (76,202.66) 

Section 6: Multiple Interest Rates 

6.1 Suppose that interest rates will be 7% from year 0 to year 1, 8% from year 1 to year 

2, 9% from year 2 to year 3, and 10% from year 3 to year 4. 

a) What is the compound amount at time 4 of deposits of $1,000 at times 1, 2, 3, and 

4? (4,593.92) 

b) If $5,000 is wanted as a compound amount at time 4, then how much must be de-

posited at times 1, 2, 3, and 4? (1,088.40) 

c) If withdrawals of $1,000 are wanted at times 1, 2, 3, and 4, then how much must 

be deposited at time 0? (3,315.56) 

d) If $5,000 is deposited at time 0, then how much can be withdrawn at times 1, 2, 3, 

and 4? (1,508.04) 

6.2 Interest rates are 7% until year 10 and 9% from year 10 to year 20. 

a) What is the compound amount at time 20 of deposits of $1,000 at times 6, 7, … 

16? (24,233.89) 

b) If $50,000 is wanted as a compound amount at time 20, then how much must be 

deposited at times 6, 7, … 16? (2,063.23) 

c) If withdrawals of $1,000 are wanted at times 6, 7, … 16, then how much must be 

deposited at time 0? (5,203.80) 

d) If $50,000 is deposited at time 0, then how much can be withdrawn at times 6, 7, 

… 16? (9,608.37) 

 

 


