7: Compounding Frequency	 Compounding frequency affects rate of growth of savings or debt \$100 after 1 year at 18% per year compounded annually ⇒ \$118.00 \$100 after 1 year at 18% per year compounded monthly ⇒ \$119.56
7.1 Nominal and Effective Interest	Lingua Franca (Language of the Trade) ❖ Consider CA of \$100 after one year ❖ "18% per year compounded yearly" ➤ Means 18% per year ➤ Compound once per yr @ 18% ➤ CA = \$118.00 = 100(F P, 18%, 1-0) ❖ "18% per year compounded monthly" ➤ Means 1½% per month ➤ Compound once per month @ 1.5% ➤ CA = \$119.56 = 100(F P, 1.5%, 12-0)
 Nominal and Effective Interest rates equal the percentage growth in a CA over a stated period of time "18% per year compounded monthly" 19.56% = (119.56 − 100) / 100 Effective or actual interest rate or yield is 19.56% per year Only use of 18% is to compute 1.5 % per mo Nominal (in name only) rate is 18% per yr 	 Observation ♣ Do not have to compound for an entire year for effective <i>rate</i> to be 19.56% per year ▶ Four minute miler runs at a rate of 15 mph, even if does not run for an entire hour ♣ Annual Percentage Rate or APR is an approximate effective rate ▶ Disclosure legally required ▶ Disclosed rate can be very inaccurate

Rate Per Compounding Period Formula

- Rate per compounding period
 - r = nominal rate over a long period (year)
 - P = number of compounding periods (months) in the long period
 - $> i_P = r/P \subset$
- "18% per year compounded monthly"
 - > 1.5% (18%/12) is rate per compounding period
 - > True rate that can be used in factors
 - Time measured in compounding periods

Effective Interest Formulas

- Effective rate for long period (year)
 - \succ X = initial amount of savings or debt
 - > $X(1+i_P)^P$ = CA after P short periods (months) in 1 long period (year)
- Long period % growth or effective interest

$$i_e = [X(1+i_P)^P - X]/X$$

= $(1+i_P)^P - 1 = (1+r/P)^P - 1 \Leftarrow$

❖ i_e known and i_P unknown

Observations

- Compound interest rates extrapolate exponentially, not linearly
- ❖ i_e = % growth per long period (year)
 - > Can be used in factors
 - When time measured in long periods
- $i_D = \%$ growth per compounding period (month)
 - > Can be used in factors
 - When time measured in comp periods
- Diagram and rate must be consistent!

Effect of Compounding Frequency for $i_N = 18\%$

Per	Р	i _P	i _e	
Yr	1	18.000%	$18.000\% = (1+0.18/1)^{1}-1$	
H-Yr	2	9.000%	$18.810\% = (1+0.18/2)^2 - 1$	
Qr	4	4.500%	$19.252\% = (1+0.18/4)^4 - 1$	
Мо	12	1.500%	$19.562\% = (1+0.18/12)^{12}-1$	
Wk	52	0.346%	$19.685\% = (1+0.18/52)^{52}-1$	
Day	365	0.049%	19.716%=(1+0.18/365) ³⁶⁵ -1	

Example 7.2 Using Rates in Factors

1,000

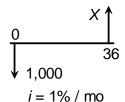
i = 1% / mo

- **❖** Borrow \$1,000
- 12% / yr compounded monthlyInterest is 1% per month
- ▶ Interest is 1% per mon
 ❖ Pay M / mo for 3 years
- ❖ Pay M / mo for 3 years

Both cash flow diagram and interest rate expressed in terms of months

Single Payment - Months

- **❖** Borrow \$1.000
 - ➤ 12% per year
 - ➤ Compounded monthly
 - ➤ Pay X in 3 years



If use 1% per month, then draw cash flow diagram in terms of months

$$X = $1,430.77 = 1,000 (F/P, 1\%, 36-0)$$

Single Payment - Years

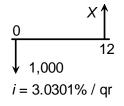
If draw diagram in terms of years, must use yearly interest rate

$$i_{yr} = (1 + 0.12 / 12)^{12} - 1$$
 $i = 12.683\% / yr$
= 12.683%

$$X = $1,430.77 = 1,000 (F/P, 12.683\%, 3-0)$$

Single Payment – Quarters

If draw diagram in terms of quarters, must use quarterly interest rate



$$i_{qr} = (1 + 0.12 / 12)^3 - 1$$

= 3.0301%

=
$$3.0301\%$$

 $X = $1,430.77 = 1,000 (F/P, 3.0301\%, 12-0)$

In general, ...

- Effective interest rate for any period may be used, as long as same period used for cash flow diagram
 - > Eff rate also known as actual rate or yield

7.2 Loans and Unknown Interest Rates

Basics

- Stated rates for loans
 - > Sometimes nominal
 - Might be based on profits for lender without including administrative or risk related (e.g., insurance) costs
- Borrower usually interested in rate that includes all costs

Different Viewpoints

- ❖ "Borrow" \$1,000 and repay \$1,100 in 1 year
 - Immediately pay \$10 for loan processing costs and \$25 for a credit check
 - ➤ Lender might state rate as 10%
 - > Borrower actually receives

$$$965 = 1.000 - 10 - 25$$

> Rate from borrower's viewpoint

$$13.99\% = (1,100 - 965) / 965$$

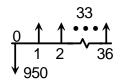
Caveat Emptor

- A prudent borrower
 - > Examines offerings of several lenders
 - > Seeks out all costs
 - > When possible, obtains written statements
 - Ignores stated rate and computes rate from his or her viewpoint that is based solely on cash flows

Example 7.3 Unknown Interest Rate

- **❖** "Borrow" \$1,000
 - Credit check and administrative costs are \$50 at time 0
 - > Note on \$1,000 is \$32 / mo for 36 mos
 - ➤ Loan insurance of \$1 per month required
- Cash flows

> Times 1 to 36



Borrower's Viewpoint

Use trial-and-error to solve the discounted amount equation for the unknown monthly interest rate, 1.262%:

$$$950 = 33 (P/A, i_m, 36-0)$$

$$\Rightarrow$$
 (P/A, i_m , 36-0) = 29.0606 = 950/33

- > Use formula and calculator's root solver
- > Search table and interpolate

$$i_m = 1.262\%$$

❖ Yearly rate from borrower's viewpoint $16.243\% = (1 + 0.01262)^{12} - 1$

Possible Lender's Viewpoint

If "borrow" \$1000 and "pay" \$32 / mo

$$1,000 = 32 (P/A, i_m, 36-0)$$

 $i_m = 0.786\%$

$$i_{N}$$
 = 9.429% = 12 × 0.786%

- ❖ Possible quote: 9.429% compounded monthly
- Really nothing gained by trying to determining how lender's quote computed

Example 7.4 Selecting the Best Loan

- ❖ Borrow \$1,000 as before
- This time, finance credit check and administrative costs of \$50 at 9.429% per year compounded monthly: \$1.60 / mo
- ❖ Note on \$1,000 is \$32 / mo for 36 months
- Insurance of \$1 / mo required

Solve for
$$i_m$$

 $1000 = 34.60(P | A, i_m, 36-0)$
 $(P | A, i_m, 36-0) = 28.9017$

 $i_m = 1.239\%$

Selecting the Best Loan – Step 2

❖ Yearly rate from borrower's viewpoint

$$15.923\% = (1 + 0.01239)^{12} - 1$$

- This loan "looks better" than former one, since its rate is 15.923% instead of 16.243%
- ❖ However, objective = max final balance
- Suppose borrower saves @ 0.5% / mo
- ❖ Current loan leaves extra \$50 (1,000 950) in savings at t = 0, but requires taking out extra \$1.60 (34.60 33) each month

Selecting the Best Loan - Step 3

❖ CA of saving \$50 at t = 0 and paying \$1.60 at t = 1, 2, ..., 36

$$-$3.10 = 50(F/P, 0.5\%, 36-0)$$

- 1.60 (F/A, 0.5%, 36-0)

- Savings are \$3.10 smaller after 36 months if take second loan
- Lower rate, but borrowing more
- Best rate usually good loan, but does not guarantee best balance
 - ➤ Effect of current investment on others not considered. More in later chapters. ©

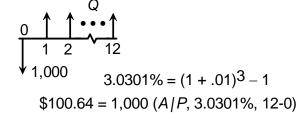
7.3 Multi-Period Series

Basics

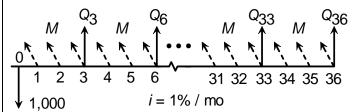
- Equal, regular cash flows
 - > Frequency a multiple of comp period
- Two methods for CAs and DAs
 - > Use effective interest rate
 - ➤ Convert flows to US w/ A|F or A|P

Example 7.5 Monthly Rate, Quarterly Flows

- ❖ Borrow \$1,000 at 12% per yr comp monthly
- ❖ Determine quarterly payments for 3 years
- Effective interest approach
- Quarterly rate and quarterly time scale



Conversion to Uniform Series

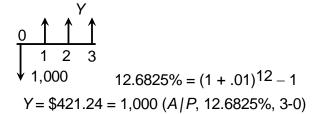


- ❖ If monthly payments @ 1% made to lender M = \$33.21 = 1,000(A/P, 1%, 36-0)
- Instead, pay CA of each quarter's three monthly flows

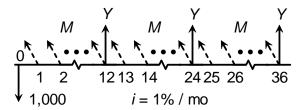
$$Q = Q_3 = \dots = Q_{36} = \$100.64 = 33.21(F/A, 1\%, 3)$$

Example 7.5 Monthly Rate and Yearly Flows

- ❖ Borrow \$1,000 at 12% per yr comp monthly
- Determine yearly payments for 3 years
- Effective interest approach
- Yearly rate and yearly time scale



Conversion to Uniform Series



- ❖ If monthly payments @ 1% made to lender M = \$33.21 = 1,000(A/P, 1%, 36-0)
- Instead, pay CA of each year's twelve monthly flows

$$Y = $421.24 = 33.21(F/A, 1\%, 12)$$

Observations

- ❖ Make interest rate and time scale consistent
- Same answer
 - Possible minor round-off differences
- Expected to know both ways
 - Using rates in tables
 - ➤ Not using rates in tables

7.4 Cash Flows Within Periods

Topics

- Two cases
 - Compounding occurs within the period
 - > No compounding within the period

Compounding Within the Period

- Example: yearly effective rate known, but compounding and cash flows occur monthly
- Compute rate for shorter period and solve problem on that basis

$$i_P = (1 + i_e)^{1/P} - 1$$

Yearly effective rate of 9.381% with monthly cash flows and compounding

$$i_m = 0.75\% = (1 + 0.09381)^{1/12} - 1$$

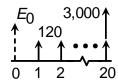
Draw cash flow diagram on a monthly basis and use 0.75%

No Compounding Within Period

- Example: rate and compounding are yearly
- Deposit at month 4 does not begin earning interest until start of next year
- Withdrawal at month 4 reduces balance at beginning of year on which interest is paid
- Clearly harms consumer if compounding is yearly, less harmful for more common daily compounding

Example 7.7 Bonds

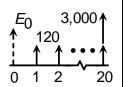
- Investor wants to earn 10% per year
- ❖ Bond: redemption value of \$3,000 in 10 years
 - Coupon rate is 8% payable semiannually
 - ➤ Most to pay for bond?
- "8% payable semi-annually" means 4% per half-year
 - \triangleright 20 coupons of \$120 = 4% × \$3,000



Bonds - Step 2

* Rate investor must earn semiannually to earn 10% per year

$$i_s$$
=4.881%=(1+0.10)^{1/2} - 1



 E_{60} 1

10,000

Maximum to pay is discounted amount at 4.881% per half-year

$$E_0 = 120(P/A, 4.881\%, 20-0) + 3,000(P/F, 4.881\%, 20-0)$$

$$E_0 = $2,667.32$$

Ex. 7.8 Not Compounding Within a Period

120.000

9% / yr

- Deposit sales of \$10,000 per month for 5 years
 - > Effective interest is 9% / vr with monthly compounding
- Determine CA as if no compounding within the year
 - Figure's \$120,000/yr ignores compounding \$718,165.27 = 120,000 (F/A, 9%, 5-0)

Recognizing Compounding

- Figure shows monthly flows
- Monthly rate is $i_m = (1 + 0.09)1/12 - 1$

$$747,328.69 = 10,000 (F/A, 0.7207\%, 60-0)$$

- Previous erroneous CA is 3.9% too small
 - > Erroneous CA becomes 6.3% too small if effectively yearly rate is 15%

Observations

- If errors of this magnitude can affect a decision, then use modern computational aids like spreadsheets to model as accurately as possible
 - Example problems and homework typically assume end-of-year flows for simplicity in illustrating concepts

7.5 Continuous Compounding

Common Occurrence

- Some financial institutions offer continuous compounding
- Continuous reinvestment common in industry

Different Compounding Periods for $i_N = 18\%/Yr$

Compounding Periods		
Period	i _e	
Year	18.000%	
Half-Year	18.810%	
Quarter	19.252%	
Month	19.562%	
Week	19.685%	
Day	19.716%	

 Notice limiting behavior as compounding frequency increases

Nominal and Effective Rates

For a given nominal rate r, the rate per compounding period is

$$i_P = r/P$$

- Rate per period decreases as number of periods increase
- Eventually, a limiting condition occurs

$$i_e = \lim_{P \to \infty} (1 + r/P)^{P} - 1$$

 $i_e = e^r - 1$

- ➤ effective = e^{nominal} 1
- r and ie are both for the same time period

Illustration

❖ i_N = 18% / yr compounded continuously

$$\Rightarrow i_e = 19.722\% = e 0.18 - 1$$

- > 19.722% is effective yearly rate
- ➤ Use 19.722% in factors with yearly flows
- ❖ If only effective rate known, $i_e = e^r 1$ implies

$$r = ln(1 + i_{\Theta})$$

- > nominal = In(1 + effective)
- i_e = 19.722% / yr w/ continuous compounding

$$\Rightarrow i_N = 18\% = In(1 + 0.19722)$$

➤ 18% is nominal yearly rate

Nominal Rates Extrapolate Linearly

- Nominal rates ignore compounding
- Is 12% / yr compounded monthly the same rate as 3% / qr compounded monthly?
 - > Both mean exactly the same thing
 - 1% / mo with monthly compounding
- As long as nominal period larger than compounding period, meaning is same
- Continuous compounding not different
 - > Just has very short compounding periods
- 12% / yr compounded continuously same as 3% / qr compounded continuously

Then there's math

❖ If r is yearly nominal rate w/ cont compounding

$$\rightarrow$$
 $i_{Vr} = e^r - 1$

❖ If P periods per year, then

$$\rightarrow$$
 $i_P = (1 + i_{Vr})^{1/P} - 1$

$$\rightarrow$$
 $i_P = (1 + e^r - 1)^{1/P} - 1$

- \rightarrow $i_P = e^{r/P} 1$
- ❖ ip is true or effective rate per period
 - ➤ effective = enominal _ 1
 - r/P is nominal rate per period with continuous compounding

Linear Extrapolations

- ❖ 12% / yr compounded continuously same as
 - ➤ 6% / half yr compounded continuously
 - > 3% / gr compounded continuously
 - > 1% / mo compounded continuously
 - ➤ 24% biennially compounded continuously
- Nominal rates for periods longer than the compounding period extrapolate linearly
 - Any nominal rate for continuous compounding exptrapolates linearly
 - Continuous has shortest possible compounding periods

Synchronizing Flows and Effective Rates

- ❖ 18% per year compounded continuously
- For monthly flows, nominal rate is 1.5% (18%/12) per month compounded continuously
 im = 1.511% = e^{0.18/12} − 1
- Always compute effective rates so they and time periods of flows are consistent

Example 7.9 Rates for Different Periods

Effective Rates for $i_N = 0.12$ / Year			
Period	Nom	Rate per Period	
Month	0.12/12	i_m = 1.0050% = $e^{0.01} - 1$	
Quarter	0.12/4	$i_q = 3.0455\% = e^{0.03} - 1$	
Half yr	0.12/2	$i_h = 6.1837\% = e^{0.06} - 1$	
Year	0.12	$i_y = 12.7497\% = e^{0.12} - 1$	
Two yr	0.12x2	$i_b = 27.1249\% = e^{0.24} - 1$	

Factors

- Effective rates accurately measure rate of growth of savings or debt for each period, so they can be used in factors
 - ➤ 12% per year compounded continuously
 - Discounted amount of \$1000 occurring 8 months from now

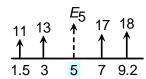
$$$923.12 = 1,000(P/F, 1.0050\%, 8-0)$$

Must evaluate factor using calculator

Cont Compounding Single Payment Factors

- ❖ e^r -1 is eff rate corresponding to nom rate r
- **♦** $(P|F, i_{e}, m) = (1 + er 1)^{-m} = e^{-rm}$ **>** Use e^{-rm} instead of (P|F, r = x%, m)
- ♦ $(F|P, i_e, m) = (1 + e^r 1)^m = e^{rm}$ > Use e^{rm} instead of (F|P, r = x%, m)
- r and m must be dimensionally consistent, such as both being yearly values or both being monthly values
- ❖ For other factors, use the effective rate ie in formulas

Ex 7.10 Cont Comp Single Payment Factors



- ❖ Interest is 12% / yr compounded continuously
- Cash flows are monthly
 - > Time measurement must be consistent
 - ➤ Monthly nominal rate is 1% = 12% / 12

$$E_5 = 11e^{0.01(5-1.5)} + 13e^{0.01(5-3)} + 17e^{-0.01(7-5)} + 18e^{-0.01(9.2-5)}$$

= \$58.58

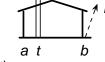
7.6 Continuous Cash Flows

Common Occurrence

- Occur frequently in practice
 - ➤ ATM machines, on-line credit card gasoline purchases
 - Industrial maintenance costs during a year

Compound Amount

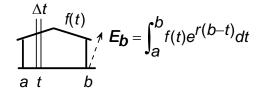
- ❖ Funds flow rate f(t), \$10,000 / yr
- ❖ Flow in $\Delta t \approx f(t)\Delta t$
- ❖ Flow in day is 10,000(1/365)
 ☼ Dimensional consistency
 - Dimensional consistency



- CA of small flow is $f(t)\Delta te^{r(b-t)}$
 - \triangleright t, f(t), r, a, and b dimensionally consistent
- Sum all compound amounts between a and b

$$E_b = \int_a^b f(t) e^{r(b-t)} dt$$

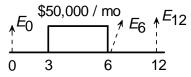
Constant Funds Flow



- - Most common case is f(t) = K, such as \$10,000 per year
 - ➤ Above integral simplifies to

$$E_b = K \frac{e^{r(b-a)}-1}{r}$$

Example 7.11 Constant Funds Flow Function



- On-line credit card purchase of gasoline
- Interest is 6% / yr, compounded continuously
- Revenues are \$50,000 / mo from mo 3 to 6
- CA at times 6 and 12? DA at time 0?
- ❖ Time scale
 - \rightarrow Months: nominal rate / mo = 0.5% = 6% / 12
 - > Years: nominal rate / yr = 6% and change times to 0.25 (3), 0.5 (6), and 1.0 (12)

Step 2 $r = 0.5\% / \text{mo} \qquad \begin{array}{c} E_0 & 550,000 / \text{mo} \\ \hline & & \\ \hline & &$

$$E_6 = $151,130.65 = 50,000 \frac{e^{0.005(6-3)} - 1}{0.005}$$

$$E_0 = $146,664.06 = E_6 e^{-0.005(6-0)}$$

$$E_{12} = $155,733.26 = E_6 e^{0.005(12-6)}$$

Example 7.12 Discrete Approximations

- Sometimes treat continuous flows as if they occurred at end of period
 - ➤ Continuous flow of \$365,000 per year
 - $i_{\rm e} = 10\% / {\rm yr}$ with continuous compounding
- CA at end of year?
 - ➤ Nom rate / yr with continuous compounding

$$r = 9.531\% = In(1.10)$$

$$CA = $382,960.14 = 365,000 \frac{e^{0.09531(1-0)} - 1}{0.09531}$$

Effect of Treating as If End-of-Year Flows

Discrete Approximations			
Period	CA	% Error	
Actual	\$382,960.14	0.000%	
Day	382,910.15	0.013	
Week	382,592.65	0.096	
Month	381,374.37	0.414	
Quarter	378,254.04	1.229	
Half-Yr	373,697.05	2.419	
Year	365,000.00	4.690	

Absolute Percent Errors

- Daily flows
 - > \$/Day = \$1,000 = 365,000 / 365
 - $i_d = 0.02612\% = e^{0.09531/365} 1$
 - > \$382,910.15 =1,000(F|A,0.02612%,365-0)
 - $0.013\% = \frac{|382,910.15 382,960.14|}{382,960.14}$

Observations

- Errors get worse for higher interest rates
- In general, fairly little error with monthly flows
 - > Assume end-of-year flows for most of course
 - ➤ Make basic points more quickly
 - > Reduce homework time
- At work, determine acceptable level of error