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Abstract

Standardized likelihood ratio test (SLRT) for testing the equality of means of several log-normal

distributions is proposed. The properties of the SLRT and an available modified likelihood ratio test

(MLRT) and a generalized variable (GV) test are evaluated by Monte Carlo simulation and compared.

Evaluation studies indicate that the SLRT is accurate even for small samples, whereas the MLRT could be

quite liberal for some parameter values, and the GV test is in general conservative and less powerful than

the SLRT. Furthermore, a closed-form approximate confidence interval for the common mean of several

log-normal distributions is developed using the method of variance estimate recovery, and compared with

the generalized confidence interval with respect to coverage probabilities and precision. Simulation

studies indicate that the proposed confidence interval is accurate and better than the generalized

confidence interval in terms of coverage probabilities. The methods are illustrated using two examples.

Keywords
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1 Introduction

Log-normal distributions are routinely postulated in epidemiological and health related studies
where skewed distributions are more common.1–4 Especially in biomedical research, including
gene expression, many researchers showed that such skewed distributions can be accurately
modeled by log-normal distribution. For example, Lee5 showed that growth rates of soft tissue
metastases of breast cancer can be modeled by log-normal distribution; Bengtsson et al.6

observed that the transcript levels of five different genes in individual cells from mouse pancreatic
islets are log-normally distributed. Neti and Howell7 provided experimental evidence of log-normal
distribution of cellular radioactivity within a cell population. The main difference between normal
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and log-normal distribution is that in log-normal distribution random effects are multiplicative while
in normal distribution these effects are additive. A classical example of multiplicative random effects
in biological mechanisms is the bacteria in exponential growth (Limpert et al.8), where the numbers
of organisms in different colonies show log-normal distribution. It is therefore important to
accurately model biological data to account for biological variability. In fact, problems with
using the normal distribution instead of the log-normal in medicine and life sciences are well
addressed in many articles; for example, see Heath9 and Sorrentino.10

Exposure variables in industrial hygiene and epidemiology such as workplace pollution and
indoor radon gas concentrations are also commonly modeled by log-normal distributions. The
mean of the log-normal distribution is used to assess the exposure level or pollution level in an
environment, which necessitates estimation of a log-normal mean; see Rappaport and Selvin,11

Selvin and Rappaport,12 and Krishnamoorthy et al.13 Estimation of log-normal mean also arises
to assess health care costs (Griswold et al.14) and in pharmacokinetics data analysis (Shen et al.15).
Assuming log-normal distributions for hospital charges, Zhou et al.16 have proposed a likelihood
ratio test (LRT) for comparing two log-normal means; similarly, Krishnamoorthy and Mathew17

have provided a generalized variable (GV) approach to compare the means of carbon monoxide
emission levels at two different sites considering log-normal models. However, the problem of
comparing several log-normal means has not received much attention in the literature even
though such problems arise frequently, for example in medical diagnostic of diseases with similar
symptoms. Available LRT is applicable only for large samples, and tests for small samples are really
warranted. Our investigation of statistical methods for comparing means of several log-normal
distributions, and estimating the common mean of several log-normal populations is motivated
by the following examples.

1.1 An example for comparing several log-normal means

Retrospective data were collected (between January 1990 and December 2012) from 75 infants at
Louisiana State University Health Sciences Center (LSUHSC) who were less than three months of
age at the time of diagnosis with total anomalous pulmonary venous return (TAPVR) and
underwent a repair surgery. The pulmonary veins are the four blood vessels that return oxygen-
rich blood from the lungs to the left atrium of the heart. The TAPVR is a rare heart disease that is
present at birth in which none of the four veins that take blood from the lungs to the heart is
attached to the left atrium; instead all four pulmonary veins drain abnormally to the right atrium by
way of an abnormal connection. Infants with obstructed TAPVR are usually critically ill
immediately after birth and need emergency surgery to restore the normal blood flow from the
pulmonary veins to the left atrium. TAPVR is classified into four different types, based on how
and where the pulmonary veins drain to the heart: in the supracardiac type (SC), the pulmonary
veins drain into the right atrium through the superior vena cava. In the cardiac type (C), the
pulmonary veins can directly enter into the right side of the heart, into the right atrium, or
alternatively the pulmonary veins can drain into the coronary sinus. In the infracardiac type (IC),
the pulmonary veins drain into the right atrium through the liver veins and the inferior vena cava. In
the mixed type (M), the pulmonary veins split up and drain partially to more than one of these
options. The SC, C, IC and M occur approximately in 45%, 25%, 25%, 5% of patients with
TAPVR, respectively (Hirsch and Bove18). Specific surgical repair depends on the type of
anomalous connection, thus correct preoperative diagnosis and accurate description of the
drainage sites (anatomy types) are extremely important. A statistical problem of interest here is
to compare deep hypothermic circulatory arrest time (in minutes) of the four anatomical TAPVR
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subtypes among the patients who underwent surgical repair. The data on deep hypothermic
circulatory arrest time for these 75 infants are given in Table 8. Among those 75 infants with
TAPVR, 24 infants were in type SC, 10 were in type C, four were in type M, and 37 were in type
IC. Probability plots (Minitab 14; not reported here) for these four data sets indicated log-normality
assumption is tenable. The log-normal probability plot for the subtype M with four measurements
indicates that the log-normality assumption is barely tenable (p value¼ .109), and so we will not
include this group for comparison. The probability plot for the subtype M in prolonged
cardiopulmonary bypass time (data in Table 9) indicates that the log-normality assumption is
tenable (p value¼ .754). However, the test may not be accurate for such small samples.
Nevertheless, we assume log-normality, because some biomedical data follow the log-normal
distribution based on scientific justifications rather than statistical tests.

1.2 Common mean problem

Suppose that the null hypothesis of equality of log-normal means is rejected then some standard
multiple comparison methods such as the Bonferroni can be used to find the means that are
significantly different. On the other hand, if the null hypothesis of equality of log-normal means
is not rejected, then it may be of interest to estimate the unknown common mean. As noted by Tian
and Wu,19 there are situations where several log-normal populations may have the same mean, and
the problem of interest is to estimate or to test the common mean. An example for estimating the
common mean described in Tian and Wu19 is as follows. In the Alcohol Interaction Study in Men
(Bradstreet and Liss20), 23 healthy male subjects completed a five period crossover study. Each
subject was assigned randomly to one of the five treatments, namely, no treatment (control) or
one of four active treatments from the same drug class used to treat the same illness. A washout
period of one week separated the treatment periods. If the maximum serum ethanol level (Cmax) or
the area under the serum ethanol curve (AUC) from four active treatments can be considered as log-
normally distributed with common mean, it is of interest to make inference about the common mean
of the four active treatments.

For comparing the means of several log-normal distributions, Gill21 has proposed a modified
version of the likelihood ratio test (MLRT). However, this MLRT, as shown in the sequel, is not
defined for all samples. In fact, for both data sets in the example sections, the MLRT is undefined;
see Remark 1. As a consequence, the approximate Chi-square distribution of the MLRT is doubtful.
Li22 has proposed a test based on the GV approach which is a special case of the fiducial approach.
In general, the fiducial approach for a multiparameter case is not well explained. Fiducial
distributions for multiparameter problems are not necessarily unique and it is often unclear how
to proceed; see Section 2.6.5 of Welsh.23 Furthermore, our simulation studies in the sequel indicate
that the GV test could be very liberal or conservative, and its power could decrease with increasing
disparity among the means.

Keeping the two problems described earlier in mind, we have organized the rest of the article as
follows. In the following section, we describe the MLRT by Gill,21 the SLRT for equality of several
log-normal means, and the GV test. For the two-sample case, we also describe the test based on the
confidence interval (CI) given in Zou et al.24 The tests are compared with respects to type I error
rates and powers. In Section 3, we address the common mean problem, and outline two estimation
methods, one is based on the method of variance estimates recovery (MOVER), and another is
based on the GV approach. We also evaluated the estimation methods with respect to coverage
probabilities and precision using Monte Carlo simulation. The new proposed methods for both
problems are not only simple, but also (as indicated by our simulation studies) better than other

Krishnamoorthy and Oral 3

 by guest on November 27, 2015smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


existing methods. The methods are illustrated using the two examples described earlier. Some
concluding remarks are given in Section 4.

2 Tests for equality of log-normal means

Let Yi1, . . . ,Yini be a sample from a log-normal distribution with parameters �i and �
2
i , i ¼ 1, . . . , k.

The mean of the ith log-normal distribution is expð�i þ :5�
2
i Þ, and the problem of interest is to test

the equality of the means; that is, to test

H0 : expð�1 þ :5�
2
1Þ ¼ . . . ¼ expð�k þ :5�

2
kÞ

LetXij ¼ lnðYijÞ, j ¼ 1, . . . , ni, i ¼ 1, . . . , k. Noting that Xi1, . . . ,Xini follow aNð�i, �
2
i Þ distribution,

the problem of testing above hypothesis simplifies to testing

H0 : �1 ¼ . . . ¼ �k vs: Ha : �i 6¼ �j for some i 6¼ j ð1Þ

where �i ¼ �i þ :5�
2
i , i ¼ 1, . . . , k, based on

Xi ¼
1

ni

Xni
j¼1

Xij and V2
i ¼

1

ni

Xni
j¼1

ðXij � XiÞ
2, i ¼ 1, . . . , k ð2Þ

Note that �̂i ¼ Xi and �̂
2
i ¼ V2

i are the maximum likelihood estimates (MLEs) of �i and �
2
i ,

respectively.
The log-likelihood function is given by

lnLð�1, . . . ,�k; �
2
1 , . . . , �2kÞ ¼ �

1

2

Xk
i¼1

ni lnð�
2
i Þ �

1

2

Xk
i¼1

niV
2
i þ niðXi � �iÞ

2

�2i
ð3Þ

The log-likelihood function under H0 : �1 ¼ . . . ¼ �k can be expressed as

lnLð�� :5�21 , . . . , �� :5�2k; �21, . . . , �2kÞ ¼ �
1

2

Xk
i¼1

ni lnð�
2
i Þ �

1

2

Xk
i¼1

niV
2
i þ niðXi � �þ :5�

2
i Þ

2

�2i
ð4Þ

where � is the common unknown parameter under H0 in equation (1). The values of ð�, �21 , . . . , �2kÞ
that maximize equation (4) are the constrained MLEs, and let us denote the constrained MLEs by
ð�̂c, �̂

2
1c, . . . , �̂2kcÞ.

As the test that we will propose in the sequel involves repeated calculation of the constrained
MLEs, details for calculating the constrained MLEs and an algorithm are given in Appendix 1.

Recall that the usual MLE of �i is �̂i ¼ Xi and that of �2i is �̂
2
i ¼ V2

i defined in equation (2). Then
the LRT statistic is expressed as

� ¼ 2 lnLð�̂1, . . . , �̂k; �̂
2
1, . . . , �̂2kÞ � lnLð�̂c � :5�̂

2
1c, . . . , �̂c � :5�̂

2
kc; �̂

2
1c, . . . , �̂2kcÞ

� �

¼
Xk
i¼1

ni

�̂2ic
½V2

i þ ðXi þ :5�̂
2
ic � �̂cÞ

2
� �

Xk
i¼1

ni ln
�̂2i
�̂2ic

� �
�
Xk
i¼1

ni ð5Þ
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For a given level of significance �, the LRT rejects the null hypothesis when �4�2k�1;1��, where
�2m;q denotes the 100q percentile of the Chi-square distribution with df¼m.

2.1 The modified likelihood ratio test

Following the general approach of Skovgaard,25 Gill21 has proposed the following correction to the
LRT statistic � in equation (5). To describe this test, let

� ¼ ð�1=�
2
1, . . . ,�k=�

2
k, 1=�

2
1, . . . , 1=�2kÞ

0

� ¼ ð�1, . . . ,�k, � :5n1ð�
2
1 þ �

2
1Þ, . . . , � :5nkð�

2
k þ �

2
kÞÞ
0

and

� ¼
diagf�2i =nigi¼1,...,k diagf��i�

2
i =nigi¼1,...,k

diagf��i�
2
i =nigi¼1,...,k diagfni�

2
i ð�

2
i þ :5�

2
i Þgi¼1,...,k

 !

Let t ¼ �x1, . . . , �xk, � :5S
�2
1 , . . . , � :5S�22

� �0
, where S�2i ¼

Pni
j¼1 X

2
ij, i ¼ 1, . . . , k. Let b� be the

estimate of � obtained by replacing the components of � by their usual MLEs, and e� be the
estimate obtained by replacing the components by the constrained MLEs under H0. Define b�,e�,
ande� similarly. Let

	 ¼
ffiffiffiffi
�
p ðt�e�Þ0e��1ðt�e�Þh i1=2

ðb� �e�Þ0ðt�e�Þ je�j
jb�j

 !1
2

ð6Þ

In terms of these quantities, the MLRT statistic is expressed as

�M ¼ � 1�
1

�
ln 	

� �2

ð7Þ

This test rejects H0 in equation (1) when �M 4�2k�1;1��:

Remark 1: It should be noted that the quantity 	 in equation (6) could be negative for some
samples, because the term Q ¼ ðb� �e�Þ0ðt�e�Þ in the denominator could be negative. For such
cases, the test statistic �M is not defined. For example, when ðn1, . . . , n4Þ ¼ ð24, 10, 4, 37Þ,
ð�1, . . . ,�4Þ ¼ ð4:6, 4:6, 4:8, 4:6Þ and ð�1, . . . , �4Þ ¼ ð:10, :10, :11, :25Þ, a Monte Carlo simulation
consisting of 100,000 runs indicated that Q could be negative 96.6% of times; for the same
sample sizes with different parameters ð�1, . . . ,�4Þ ¼ ð3:76, 3:47, 4:05, 3:80Þ and ð�1, . . . , �4Þ ¼
ð:11, :15, :06, :14Þ, Q is negative 89.7% of times. In fact, for the example data in Table 8, it can be
readily checked that ðb� �e�Þ0ðt�e�Þ ¼ �868:94 and for the data in Table 9, it is �239.32. Thus, the
MLRT is not applicable for both sets of data.
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2.2 The standardized likelihood ratio test

We now consider an alternative approach to improve the LRT. Let mð�Þ and SDð�Þ denote the
mean and standard deviation of �, respectively. We can standardize the � as

�S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk� 1Þ

p ��mð�Þ

SDð�Þ

� �
þ ðk� 1Þ ð8Þ

which has an approximate �2k�1 distribution. We refer to the test based on �S as the standardized
LRT (SLRT), and this SLRT rejects H0 when �S 4�2k�1;1�� or the p value Pð�2k�1 4�SÞ5�. In a
general setup, DiCiccio et al.26 have argued that such standardization improves the LRT, and the
SLRT is third-order accurate in the sense that the approximation to the �2k�1 distribution is Oðn�

3
2Þ.

Notice that in the present setup, �S is determined so that the mean and the variance of �S are the
same as those of the �2k�1 distribution, and so the �2k�1 approximation to the null distribution of �S

is expected to be accurate. Even though we do not know the order of accuracy, our simulation
results in Section 2.5 clearly indicate that the SLRT based on �S is practically exact even for small
samples. Expressions for mð�Þ and SDð�Þ are difficult to obtain, and so we shall estimate them using
simulated samples from Nð�̂c � :5�

2
1c, �̂

2
1cÞ, . . . ,Nð�̂c � :5�

2
kc, �̂

2
kcÞ as suggested by DiCiccio et al.26 for

a general case. We refer to the test based on equation (8) as the SLRT, and it can be carried out
using the following algorithm.

Algorithm 1: For a given set of k log-transformed samples, calculate ðXi,V
2
i Þ, i ¼ 1, . . . , k.

(1) Calculate the constrained MLEs �̂c and ð�̂
2
1c, . . . , �̂2kcÞ, and the LRT statistic � in equation (5).

(2) Generate a sample of size ni from the Nð�̂c � :5�̂
2
ic, �̂

2
icÞ, i ¼ 1, . . . , k.

(3) Calculate the SLRT statistic for the samples generated in the previous step.
(4) Repeat the steps 2 and 3 for a large number of times, say, 10,000.
(5) Find the mean and SD of these 10,000 simulated SLRT statistics, and standardize the � as in

equation (8).
(6) If the SLRT statistic is greater than �2k�1;1��, rejects the H0 in equation (1).

2.3 The GV approach

The GV approach is a special case of the fiducial method introduced by Fisher.27 To outline this
approach in the present context, consider testing H0 : � ¼ �0 vs. Ha : �4�0 based on X and S,
where X and S are, respectively, the mean and standard deviation of a random sample of size n from
a Nð�, �2Þ distribution. For an observed value ð �x, sÞ of ðX,SÞ, the p value is given by

P tn�1 4
�x� �0

s=
ffiffiffi
n
p

� �

For a given level of significance �, the ‘‘probable values’’ of � are the set of � determined by

� : P tn�1 4
�x� �

s=
ffiffiffi
n
p

� �
4�

	 

, or equivalently � : Pð �x� tn�1

sffiffiffi
n
p 5�Þ4�
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Thus, for a given ð �x, sÞ, the fiducial variable for the parameter � is given by

T� ¼ �x� tn�1
sffiffiffi
n
p

¼ �x�
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2n�1=ðn� 1Þ
q sffiffiffi

n
p

ð9Þ

where Z � Nð0, 1Þ independently of �2n�1. Similarly, it can be shown that the fiducial distribution for
�2 is

T�2 ¼
ðn� 1Þs2

�2n�1
ð10Þ

Weerahandi28,29 has provided a recipe to find such fiducial quantities in a general setup, and
referred to them as ‘‘generalized variable’’ or ‘‘generalized pivotal quantity (GPQ).’’ A GPQ for a
function of parameters can be obtained by substitution. For example, the GPQ for � ¼ �þ 1

2�
2 is

given by T� ¼ T� þ
1
2�

2. For more details in the present context, see Krishnamoorthy and Mathew.17

To describe the GV test for the equality of several log-normal means, let ðXi,S
2
i Þ denote the

(mean, variance) based on a random sample of ni observations from a Nð�i, �
2
i Þ distribution,

i ¼ 1, . . . , k. Here S2
i is the usual unbiased estimate of �2i with denominator ni � 1. Let ð �xi, siÞ be

an observed value of ðXi,SiÞ, i ¼ 1, . . . , k. The GPQ for �i follows from equations (9) and (10), and
is given by

T�i ¼ T�i
þ
1

2
T�2

i

¼ �xi �
Ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ni�1=ðni � 1Þ
q siffiffiffiffi

ni
p þ

1

2

ðni � 1Þs2i
�2ni�1

, i ¼ 1, . . . , k
ð11Þ

where Zi � Nð0, 1Þ, and Zis and �
2
ni�1

are mutually independent.
For the special case of k¼ 2, the GPQ for testing equation (15) is obtained by substitution, and is

given by

T�1��2 ¼ T�1 � T�2 ð12Þ

where T�i is defined in equation (11). The generalized p value for testing equation (15) is given by
PðT�1 � T�2 5 0Þ. It is clear from equation (11) that, for a given ð �x1, s1, �x2, s2Þ, the distribution of
T�1��2 does not depend on any unknown parameters, and so the generalized p value can be estimated
by Monte Carlo simulation.

For k � 3, there is no unique way of finding the GPQ, and we shall describe the approach by Li.22

Let

D� ¼ ðT�1 � T�k , . . . ,T�k�1 � T�kÞ ð13Þ
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Let b�T be an estimate of �T ¼ EðD�jx, sÞ, where x ¼ ð �x1, . . . , �xkÞ and s ¼ ðs1, . . . , skÞ. Let b�T be an
estimate of �T ¼ CovðD�jx, sÞ. For a given ðx, sÞ, the generalized p value is given by

P ðD� �b�TÞ
0c�T
�1ðD� �b�TÞ � b�0Tb��1T b�T

� �
The GV test rejects the null hypothesis in equation (1) if the generalized p value is less than the

nominal level �. Li22 has provided the following Algorithm 2 to estimate the generalized p value.

Algorithm 2: For a given ðn1, . . . , nkÞ, x and s:

(1) Generate U2
i � �

2
ni�1

and Zi � Nð0, 1Þ, i ¼ 1, . . . , k.
(2) Calculate D�.
(3) Repeat steps 1–2 for a large number of times, say, M.
(4) Calculate the mean and covariance of these M values of D�, and denote it by b�T, and calculate

the covariance matrix based on these M values of D�, and denote it by b�T:
(5) Compute b�0Tb��1T b�T.
(6) Compute Q� ¼ ðD� �b�TÞ

0b��1T ðD� �b�TÞ, for each of M generated values of D�.
(7) The percentage of the Q�s that are greater than b�0Tb��1T b�T is an estimate of the generalized

p value.

It should be noted that �T exists only when all sample sizes are 6 or more (see equation (2.6)
of Li22), and so for smaller samples it is possible to have nearly singular b�T. As a result,
implementation of the above algorithm could pose some problems for small sample sizes, because
in such cases the estimate b�T could be nearly singular, and not invertible. Indeed, we encountered
such computational problems in our simulation study in the sequel.

2.4 Two-sample case: one-sided tests

2.4.1 The SLRT

For one-sided tests of comparing two means, we can use the following statistic given by

Z ¼ signððX1 þ :5V
2
1Þ � ðX2 þ :5V

2
2ÞÞ

ffiffiffiffi
�
p

ð14Þ

where the LRT statistic � is given in equation (5) with k¼ 2. For testing

H0 : �1 � �2 vs Ha : �1 4 �2 ð15Þ

the SLRT rejects H0 at the level � when ðZ� m̂ðZÞÞ=cSDðZÞ4 z1��, where ðm̂ðZÞ, cSDðZÞÞ denotes the
estimated (mean, standard deviation) of Z, and zq denotes the 100q percentile of the standard
normal distribution.

2.4.2 Test based on MOVER CI

Zou and Donner30 and Zou et al.24,31 have proposed the MOVER, which is useful to find an
approximate CI for a linear combination of parameters based on CIs of the individual
parameters. Consider a linear combination

Pk
i¼1 ci�i of parameters �1, . . . , �g, where cis are known

constants. Let �̂1, . . . , �̂g be independent unbiased estimates of �1, . . . , �g. Further, let (li, ui) denote
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the 1� � CI for �i, i ¼ 1, . . . , g. The 1� � MOVER CI (L, U) for
Pg

i¼1 ci�i can be expressed as

L ¼
Xg
i¼1

ci�̂i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXg
i¼1

c2i �̂i � l�i

� �2s
, with l�i ¼

li if ci 4 0
ui if ci 5 0

	
ð16Þ

and

U ¼
Xg
i¼1

ci�̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXg
i¼1

c2i �̂i � u�i

� �2s
, with u�i ¼

ui if ci 4 0

li if ci 5 0

	
ð17Þ

Graybill and Wang32 first obtained the above CI for a linear combination of variance
components, and refer to their approach as the modified large sample method. Zou and
coauthors gave a Wald type argument so as to the above CI is valid for any parameters; see Zou
and Donner,30 Zou et al.24,31 These authors refer to the CIs of the above form as the MOVER CIs.

For the present problem, Zou et al.24 have proposed the following approximate CI for the ratio of
log-normal means based on the MOVER. To express the CI for �i ¼ �i þ �

2
i =2, let

ðL�i
,U�i
Þ ¼ Xi � z1��=2

Siffiffiffi
n
p

i

, i ¼ 1, 2 ð18Þ

where zq denotes the 100q percentile of the standard normal distribution, and let

ðL�2
i
,U�2

i
Þ ¼

ðni � 1ÞS2
i

�2ni�1;1��=2

,
ðni � 1ÞS2

i

�2ni�1;�=2

 !

The 1� � MOVER CI for �i is given by ðL�i ,U�i Þ, where

L�i ¼ Xi þ
1

2
S2
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � L�i

� �2
þ
1

4
S2
i � L�2

i

� �2r
ð19Þ

and

U�i ¼ Xi þ
1

2
S2
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi �U�i

� �2
þ
1

4
S2
i �U�2

i

� �2r
ð20Þ

We can use the CIs of the form (19) and (20) for �1 and �2, to find a MOVER CI for �1 � �2. Let
ðL�i ,U�iÞ be the 1� � MOVER CI for �i based on ð �Yi,SiÞ, i¼ 1, 2. Let

�̂i ¼ Xi þ
1

2
S2
i , i ¼ 1, 2

Then, the MOVER CI for �1 � �2 is given by (LD, UD), where

LD ¼ �̂1 � �̂2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�̂1 � L�1 Þ

2
þ ð�̂2 �U�2Þ

2
q
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and

UD ¼ �̂1 � �̂2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�̂1 �U�1Þ

2
þ ð�̂2 � L�2Þ

2
q

In terms of (LD, UD), the MOVER CI for the ratio of means is given by expðLDÞ, expðUDÞð Þ: For
more details on the MOVER, see Zou and Donner30 and Zou et al.31

A test based on the above CI rejects the null hypothesisH0 : �1 ¼ �2 whenever the CI for the ratio
of means does not include one.

2.5 Type I error rates and power studies

As noted earlier, the MLRT is not even defined for some samples. However, for some sample size
and parameter configurations, we found that the quantity ðb� �e�Þ0ðt�e�Þ in equation (6) is positive
for all simulated samples, and so we could evaluate the type I error rates. Using Monte Carlo
simulation consisting of 100,000 runs, we estimated type I error rates of the MLRT for the cases
of k¼ 3 and k¼ 5, and some sample sizes no less than 10, and reported them in Table 1. These type I
error rates clearly indicate that the MLRT proposed in Gill21 could be conservative for small values
of � (the unknown common parameter under H0 in equation (1)) or too liberal for large values of �.
In some cases, the type I error rate could be as large as .66 when the nominal level is .05 (see
Table 1). For these reasons, we shall not include this MLRT for further comparison studies.

To judge the improvement of the SLRT over the LRT based on the asymptotic chi-square
distribution, we estimated the percentiles of the SLRT statistic �S and those of the LRT statistic
� using Monte Carlo simulation consisting of 100,000 runs. Simulation estimates of the percentiles
were obtained for the case of k¼ 5 with the parameter values of �¼ 1 and 4, and for various values
of ð�21, . . . , �25Þ. These estimated percentiles along with the percentiles of the chi-square distribution
with 4 degrees of freedom are presented in Table 2. We see in Table 2 that the percentiles of the
SLRT statistic �S practically coincide with those of the �24 distribution. Thus, the chi-square
approximation to the SLRT statistic is quite accurate even for small samples. The �2

approximation to the LRT statistic � is not accurate even for moderately large samples. In
general, the estimated percentiles of the LRT statistic are greater than the corresponding �24
percentiles, which implies that the LRT based on the chi-square approximation could be liberal
when it is applied for small to moderate samples; see the type I error rates in parentheses. The
estimated error rates of the LRT indicate that the LRT is liberal even when all sample sizes are 40,

Table 1. Type I error rates of the MLRT.

k¼ 3 k¼ 5

Sample sizes Sample sizes

� ð�2
1 , �2

2 , �2
3Þ (10, 10, 10) (10, 15, 40) ð�2

1 , . . . , �2
5Þ (10, . . .,10)

1 (.5, 1, .5) .042 .042 (.5, 1, .5, .5, .5) .010

1 (2, 1, 3) .053 .051 (2, 1, 3, 1, 6) .014

2 (3, 1, 6) .080 .077 (3, 1, 6, 1, 5) .018

4 (2, 11, 3) .139 .146 (2, 11, 3, 2, 6) .026

10 (5, .5, 12) .309 .315 (5, .5, 12, .5, 2) .088

15 (12, 1, 5) .646 .660 (12, 1, 5, 1, 5) .148
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while the SLRT is very satisfactory for all sample sizes. We also evaluated the powers of the LRT
and SLRT (not reported here) for some sample size and parameter configurations. The powers of the
tests are quite similar for samples of sizes 50 or more. For small to moderate samples, the LRT is
slightly more powerful than the SLRT. This is because for small to moderate sample sizes, the LRT
has inflated type I error rates, as a result, it appears to be more powerful than the SLRT.

To judge the performance of the SLRT, MOVER test and the GV test, we performed various
simulation studies and estimated the type I error rates and powers of both tests for small to
moderate samples. The type I error rates of the SLRT are estimated as follows. We first
generated 10,000 samples each of size ni from a Nð�� :5�2i , �

2
i Þ, i ¼ 1, . . . , k: For each set of k

generated samples, the SLRT was carried out using Algorithm 1 with M¼ 1000. The percentage
of rejections is a Monte Carlo estimate of the type I error rates. The type I error rates of the GV test
is estimated similarly, and the type I error rates of the MOVER test are estimated using simulation
consisting of 10,000 runs.

The type I error rates of the SLRT, MOVER and the GV test are presented in Table 3 for the case
of k¼ 2. The type I error rates clearly indicate that the SLRT controls the error rates very close to
the nominal level .05. The MOVER test and the GV test appears to be conservative for small
samples, and they also perform satisfactorily for moderate samples. The estimated powers of the

Table 2. The 100p percentiles and (type I error rates) of the SLRT and LRT statistics.

�¼ 1

ðn1, . . . , n5Þ ð�2
1 , . . . , �2

5Þ

p

.90 .95

SLRT LRT SLRT LRT

(5, 4, 6, 5, 4) (0.5, 0.4, 2.0, 1.0, 4.0) 7.65(.100) 10.69(.229) 9.28(.048) 12.97(.143)

(4, 5, 7, 7, 5) (0.4, 0.5, 1.0, 2.0, 1.0) 7.78(.100) 10.15(.205) 9.44(.051) 12.31(.123)

(8, 9,10, 9,11) (0.4, 0.9, 2.0, 1.0, 4.0) 7.78(.100) 9.05(.153) 9.48(.051) 11.02(.086)

(12, 15, 12, 7, 4) (0.4, 2.0, 0.4, 3.0, 0.1) 7.81(.101) 9.24(.161) 9.51(.047) 11.25(.092)

(30, 30, 30, 30, 30) (0.4, 0.1, 4.0, 3.0, 2.0) 7.76(.099) 8.17(.116) 9.47(.050) 9.98(.060)

(20, 15, 30, 10, 40) (0.4, 2.0, 4.0, 3.0, 2.0) 7.75 (.100) 8.48(.129) 9.43(.050) 10.33(.068)

(30, 10, 10, 40, 10) (0.5, 2.0, 0.4, 3.0, 1.0) 7.77(.098) 8.70(.138) 9.48(.050) 10.62(.075)

(30, 35, 40, 30, 50) (0.4, 3.0, 2.0, 4.0, 1.0) 7.76(.100) 8.11(.113) 9.45(.049) 9.88(.058)

�¼ 4

(5, 4, 6, 5, 4) (0.5, 2.0, 3.0, 1.0, 0.1) 7.85(.101) 10.76(.231) 9.55(.047) 13.06(.143)

(4, 5, 7, 7, 5) (0.4, 2.0, 5.0, 1.0, 2.0) 7.73(.099) 10.20(.205) 9.40(.050) 12.38(.119)

(10, 15, 20, 10, 10) (4.0, 3.0, 4.0, 5.0, 2.0) 7.76(.102) 8.75(.141) 9.46(.049) 10.68(.077)

(12, 17, 20, 25, 14) (0.9, 4.0, 0.1, 4.0, 1.0) 7.77(.100) 8.55(.131) 9.49(.051) 10.44(.071)

(20, 21, 18, 17, 24) (0.6, 0.5, 1.0, 3.0, 2.0) 7.78(.098) 8.36(.124) 9.50(.050) 10.19(.066)

(30, 20, 10, 17, 30) (3.0, 2.0, 0.9, 0.1, 5.0) 7.77(.100) 8.45(.127) 9.49(.050) 10.32(.068)

(22, 21, 24, 23, 25) (3.0, 2.0, 5.0, 1.0, 1.0) 7.75(.101) 8.26(.120) 9.46(.051) 10.09(.064)

(30, 35, 40, 30, 35) (3.0, 0.2, 5.0, 4.0, 1.0) 7.80(.100) 8.14(.113) 9.53(.049) 9.94(.060)

(40, 43, 45, 40, 29) (0.9, 3.0, 2.0, 1.0, 3.0) 7.76(.099) 8.06(.111) 9.45(.050) 9.83(.057)

(40, 40, 40, 40, 40) (0.8, 3.0, 2.0, 3.0, 0.9) 7.73(.100) 8.04(.111) 9.42(.050) 9.79(.057)

(50, 50, 50, 50, 50) (3.0, 2.0, 5.0, 1.0, 9.0) 7.79(.102) 8.00(1.09) 9.50(.051) 9.76(.056)

�2
4,:90 ¼ 7:78 �2

4,:95 ¼ 9:49
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tests for one-sided hypotheses are given in Table 4. The powers in the first part of Table 4 are for
various values of �1 � �2 � 0 while �2i s are fixed at one. Comparison of the powers of these three
tests indicates that the SLRT is more powerful than the other two tests. The powers in the second
part of Table 4 are for various values of �1 � �2 while �1 and �2 are fixed at zero. We once again
notice that the powers of the SLRT are greater than those of the other two tests. Overall, the SLRT
may be preferred to the MOVER test and the GV test for small to moderate sample sizes.

To see the small sample behavior of the SLRT for the cases of k> 2, we estimated the type I error
rates of the SLRT for k¼ 3 and k¼ 5 and reported in Table 5. The estimated error rates clearly

Table 4. Powers of the tests for H0 : �1 � �2 vs. Ha : �1 4 �2.

k¼ 2

�2
1 ¼ �

2
2 ¼ 1

(10, 10) (10, 15) (15, 20)

�1 � �2 SLRT MOVER GV SLRT MOVER GV SLRT MOVER GV

0 .047 .037 .042 .048 .043 .046 .049 .049 .050

.4 .167 .147 .151 .187 .176 .184 .241 .220 .230

.8 .349 .331 .340 .453 .433 .433 .577 .556 .551

1.2 .573 .552 .560 .722 .704 .710 .844 .840 .838

1.6 .751 .733 .731 .895 .885 .881 .970 .960 .966

�1 ¼ �2 ¼ 0

0 .047 .053 .048 .052 .041 .044 .053 .046 .052

.4 .102 .085 .089 .115 .093 .101 .125 .116 .119

.8 .155 .141 .144 .192 .170 .180 .235 .215 .224

1.2 .233 .200 .205 .274 .242 .256 .336 .320 .319

1.6 .315 .278 .290 .345 .320 .330 .452 .421 .430

Table 3. Type I error rates of the tests for H0 : �1 ¼ �2 vs. Ha : �1 6¼ �2.

k¼ 2

(n1, n2) � ð�2
1 , �2

2Þ SLRT MOVER GV (n1, n2) � ð�2
1 , �2

2Þ SLRT MOVER GV

(4,4) 1 (.5, 1) .050 .030 .033 (10,10) 1 (.5, 1) .051 .041 .038

1 (2, 1) .046 .026 .036 1 (2, 1) .049 .040 .041

2 (3, 1) .052 .030 .036 2 (3, 1) .047 .041 .036

4 (2, 11) .052 .033 .050 4 (2, 11) .046 .044 .040

10 (5, .5) .049 .033 .046 10 (5, .5) .049 .046 .052

15 (12, 1) .050 .038 .040 15 (12, 1) .046 .045 .046

(7,8) 1 (.5, 1) .053 .039 .043 (20,25) 1 (.5, 1) .051 .047 .053

1 (2, 1) .047 .037 .044 1 (2, 1) .050 .045 .051

2 (3, 1) .045 .039 .039 2 (3, 1) .055 .046 .054

4 (2, 11 .052 .041 .043 4 (2, 11 .051 .047 .053

10 (5, .5) .049 .043 .042 10 (5, .5) .049 .048 .053

15 (12, 1) .047 .045 .045 15 (12, 1) .052 .048 .051
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indicate that the SLRT is very satisfactory even for samples of size 4. We evaluated the GV test for
sample size configurations as given in Table 2 of Li.22 For these sample sizes and k¼ 3, 4 and 6, type
I error rates of the GV test and the SLRT are given in Table 6. We once again observe from these
table values that the SLRT is very satisfactory in controlling type I error rates whereas the GV test is
conservative, as a consequence, the GV test is expected to be less powerful than the SLRT. To see

Table 5. Type I error rates of the SLRT.

k¼ 3

� ð�2
1 , �2

2 , �2
3Þ

Sample sizes

(4, 4, 4) (5, 4, 8) (10, 10, 10) (10, 15, 40)

1 (.5, 1, .5) .046 .051 .052 .051

1 (2, 1, 3) .045 .048 .049 .050

2 (3, 1, 6) .041 .049 .050 .054

4 (2, 11, 3) .047 .053 .051 .052

10 (5, .5, 12) .050 .049 .052 .051

15 (12, 1, 5) .048 .050 .050 .050

k¼ 5

� ð�2
1 ,. . . ,�2

5Þ Sample sizes

(4,. . ., 4) (5, 4, 8, 4, 10) (10,. . .,10) (10, 4, 7, 10, 5)

1 (.5, 1, .5, .5, .5) .045 .050 .048 .049

1 (2, 1, 3, 1, 6) .047 .050 .051 .050

2 (3, 1, 6, 1, 5) .047 .050 .052 .051

4 (2, 11, 3, 2, 6) .049 .051 .048 .047

10 (5, .5, 12, .5, 2) .050 .050 .044 .049

15 (12, 1, 5, 1, 5) .048 .048 .048 .053

Table 6. Type I errors of the SLRT and the GV test.

�¼ 4

k nis �2
i s SLRT GV

3 (4, 6, 20) (1, 2, 1) .052 .014

3 (4, 6, 20) (1, 1, 0.5) .048 .023

3 (4, 6, 20) (4, 2, .5) .052 .028

4 (9, 10, 12, 14) (2, 5, 1, 1) .047 .028

4 (10, 15, 15, 10) (.5, 3, 1, 4) .050 .041

4 (20, 20, 20, 20) (2, 3, 2, 1) .050 .031

6 (4, 5, 6, 6, 8, 10) (1, 2, 3, 1, 4, 4) .047 .032

6 (4, 5, 6, 6, 8, 10) (4, 4, 2, 1, 1, 1) .051 .028

6 (4, 5, 6, 6, 8, 10) (1.5, 1.5, 1.5, 1.5, 1.5, 1.5) .049 .017

6 (4, 8, 12, 24, 30, 40) (5, 4, 3, 2, 1, 1) .050 .039

6 (4, 8, 12, 24, 30, 40) (1, 1, 2, 3, 4, 5) .054 .036

6 (4, 8, 12, 24, 30, 40) (2, 2, 2, 2, 2, 2) .052 .036
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the gain in power by using the SLRT, we estimated the powers of the tests for some moderate sample
sizes and presented them in Table 7. Comparison of estimated powers clearly shows that the SLRT is
much more powerful than the GV test. Furthermore, the GV test has a peculiar power property; the
power is decreasing with increasing disparity among �is. For example, we see in Table 7 that the
power of the test at the sample sizes (10, 10, 10) and ð�1, �2, �3Þ ¼ ð1, 1:5, 2Þ is .503, and at (1, 2, 1) is
.250, while for the same cases the power of the SLRT increased from .598 to .804. Also, see the
powers of the GV test when sample sizes are (10, 10, 10) and ð�21 , �

2
2 , �

2
3Þ ¼ ð1, 1:5, 2Þ and (1, 2, 1).

This is an undesirable property for a test, because the power of a test should increase with increasing
disparity among the values of �s.

2.6 An example for comparing log-normal means

Let us now illustrate the methods in the preceding sections, using the example described in Section
1.1. Recall that there are four TAPVR subtypes, namely, SC¼ group 1, C¼ group 2, M¼ group 3
and IC¼ group 4. The data on deep hypothermic circulatory arrest time on these four groups are
given in Table 8. As noted in Section 1.1, the data in group 3 do not satisfy the log-normality
assumption, and so we compare only groups 1, 2 and 4. The sample sizes ðn1, n2, n4Þ ¼ ð24, 10, 37Þ,
the sample means and SDs of log-transformed data are ð �x1, �x2, �x4Þ ¼ (3.7675, 3.4654, 3.7944) and

Table 8. Deep hypothermic circulatory arrest time (in minutes) of four anatomical TAPVR subtypes; SC,

supracardiac; C, cardiac; M, mixed type; IC, infracardiac.

SC C M IC

38 48 46 36 28 60 45 37 38 39 39

41 46 47 31 26 53 39 41 42 52 42

36 43 45 35 58 52 38 49 33 41

41 40 43 36 60 37 42 50 45 45

46 60 39 37 41 45 41 59 47

44 39 38 38 45 45 43 50

39 43 41 30 50 50 44 51

51 48 43 26 38 60 46 60

Table 7. Powers of the SLRT and the GV test.

�2
i s¼ (.5,.5,.5) �2

i s¼ (1,1,1)

nis¼
(10, 10, 10) (20, 20, 20) (10, 10, 10) (20, 20, 20)

ð�1, �2, �2Þ SLRT GV SLRT GV SLRT GV SLRT GV

(1, 1, 1) .051 .028 .050 .033 .053 .022 .047 .038

(1, 1.5, 1) .275 .095 .535 .192 .136 .050 .240 .099

(1, 1.5, 2) .598 .503 .917 .899 .289 .161 .570 .495

(1, 2, 1) .804 .250 .989 .563 .430 .122 .773 .270

(1, 1.5, 2.5) .945 .940 .999 .986 .617 .501 .930 .936
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ðs1, s2, s4Þ ¼ ð:1123, :1474, :1411Þ. To apply the SLRT for equality of means, the constrained MLEs
were calculated as

�̂c ¼ 3:785 and ð�̂21c, �̂
2
2c, �̂

2
4cÞ ¼ ð:01237, :11844, :01271Þ

The LRT statistic was computed as � ¼ 16:36 with the estimated mean m̂ð�Þ ¼ 2:211 and the
estimated cSDð�Þ ¼ 2:210. The mean and SD were estimated using Algorithm 1 with M¼ 100, 000.
Noting that k¼ 3, the SLRT statistic equation (8) is

ffiffiffi
4
p
	

16:36� 2:21

2:21
þ 2 ¼ 14:80

The p value is P �22 4 14:80
� �

¼ :0006: The GV statistic b�0Tb��1T b�T ¼ 32:02 and the generalized p
value is .0002. Thus, both SLRT and the GV test reject the null hypothesis of equal group means at
any practical level of significance.

Prolonged cardiopulmonary bypass time (data are in Table 9) is also a known adverse outcome,
or a risk factor of mortality in the repair of TAPVR (Friesen et al.33). The data for the cardiac group
do not satisfy log-normal assumption; nevertheless, we shall include this group for comparison. The
statistics for the cardiopulmonary bypass time (in minutes) of the four anatomical TAPVR subtypes
are as follows: As in the previous example, let SC¼ group 1, C¼ group 2, M¼ group 3 and
IC¼ group 4. Then ðn1, n2, n3, n4Þ ¼ ð24, 10, 4, 37Þ, ð �x1, �x2, �x3, �x4Þ ¼ ð4:6154, 4:5789, 4:8433, 4:6373Þ
and ðs1, s2, s3, s4Þ ¼ ð:1027, :0966, :1140, :2547Þ. The constrained MLEs

ð�̂c, �̂
2
1c, . . . , �̂24cÞ ¼ ð4:623, :0101, :0103, :0574, :0623Þ

The LRT statistic is 11.006 with the estimated mean of 3.72 and the estimated SD of 3.06.
The SLRT statistic �S in equation (8) is 8.84 and the p value is Pð�23 4 8:84Þ ¼ :031: The GV test
yielded b�0Tb��1T b�T ¼ 4:75 and the generalized p value is .121. For this example, we see that the
SLRT rejects the null hypothesis of equal means at 5% level, whereas the GV test does not
reject. This is in agreement with our simulation studies which indicated that the GV test is less
powerful than the SLRT.

Table 9. Prolonged cardiopulmonary bypass time (in minutes) of four anatomical TAPVR subtypes; SC, supracardiac;

C, cardiac; M, mixed type; IC, infracardiac.

SC C M IC

98 110 99 98 110 125 95 90 88 127 98

100 126 100 100 100 145 68 86 95 168 110

115 110 101 88 130 79 110 98 73 138

103 100 97 78 110 68 90 105 85 127

98 119 96 97 70 99 125 115 123

91 98 93 100 90 138 105 188

88 81 100 103 79 98 98 131

119 90 105 104 78 145 105 162
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3 CIs for the common mean

Consider k log-normal populations with parameters ð�1, �1Þ, . . . , ð�k, �kÞ. Assume that the means of
these k populations are the same expð�Þ, where � ¼ ð�i þ :5�

2
i Þ, i ¼ 1, . . . , k. Tian and Wu19

proposed a GV approach for finding a CI for the common mean of several log-normal
distributions. We shall develop a simple closed-form approximate CI for the common mean
based on the MOVER, and also propose a modification to the GV test due to Tian and Wu.19

3.1 MOVER CI for the common mean

The MOVER CI for a linear combination of parameters �1, . . . , �k is described as follows. Let �̂i be
an unbiased estimate of �i, i ¼ 1, . . . , k. Assume that �̂1, . . . , �̂k are independent. Further, let (li, ui)
denote the 1� � CI for �i, i ¼ 1, . . . , k. The 1� � MOVER CI (L, U) for

Pk
i¼1 ci�i can be

expressed as

L ¼
Xk
i¼1

ci�̂i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

c2i �̂i � l�i

� �2vuut , with l�i ¼
li if ci 4 0

ui if ci 5 0

	
ð21Þ

and

U ¼
Xk
i¼1

ci�̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

c2i �̂i � u�i

� �2vuut , with u�i ¼
ui if ci 4 0

li if ci 5 0

	
ð22Þ

Notice that the above method can be used to obtain a CI for the common � by combining the
individual CIs for �i þ :5�

2
i based on Xi and S2

i . A closed-form CI for �i þ :5�
2
i can also be obtained

by combining the z-interval

Xi 
 tni�1;1��=2Si=
ffiffiffiffi
ni
p

for �i and the usual CI

ðni � 1ÞS2
i

�2ni�1;1��=2

,
ðni � 1ÞS2

i

�2ni�1;�=2

 !

for �2i , i ¼ 1, . . . , k (see Zou et al.31). Specifically, the MOVER CI for �i þ :5�
2
i is given by ðLi,UiÞ,

where

Li ¼ �̂i � Si

t2ni�1;1��=2

ni
þ
S2
i

4
1�

ni � 1

�2ni�1;1��=2

 !2
24 351=2

ð23Þ

and

Ui ¼ �̂i þ Si

t2ni�1;1��=2

ni
þ
S2
i

4
1�

ni � 1

�2ni�1;�=2

 !2
24 351=2

ð24Þ

where �̂i ¼ Xi þ :5S
2
i , i ¼ 1, . . . , k.
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A CI, say, (L, U) for the common parameter � can be obtained by combining these independent
CIs of � as

L ¼
Xk
i¼1

wi�̂i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

w2
i ð�̂i � LiÞ

2

vuut ð25Þ

and

U ¼
Xk
i¼1

wi�̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

w2
i ð�̂i �UiÞ

2

vuut ð26Þ

where wi ¼ ðni=S
2
i Þ=
Pk

j¼1 ðnj=S
2
j Þ: Notice that wis are chosen so that the weight for the CI based on

the ith sample is inversely proportional to the sample variance, and directly proportional to the ith
sample size. One could also choose wi as inversely proportional to an estimate of the variance of
�̂i ¼ Xi þ

S2
i

2 . Our choice of wis is not only simple, but also our preliminary simulation studies (not
reported here) indicated that the CI formed by equations (25) and (26) is better than the CI based on
other values of wis in terms of coverage probabilities. For these reasons, we chose to use the wis
defined above.

Remark 2: Zou et al.24 used the z-interval Xi 
 z1��=2Si=
ffiffiffiffi
ni
p

for �i for estimating a log-normal
mean using the MOVER. MOVER CIs based on such z-intervals work satisfactorily for finding a CI
for a log-normal mean or for the difference between two log-normal means as shown in Section 2.4.
However, for the present problem, our preliminary studies indicated that the CI for the common
parameter �þ :5�2 based on z-intervals is slightly liberal, and the coverage probability could be
appreciably lower than the nominal level. So we propose t intervals for �i instead of the z-intervals.
Henceforth we refer to the CI for the common parameter � on the basis of z-intervals for �i as the
MOVER-z CI, and the one on the basis of t intervals for �i as the MOVER-t CI.

3.2 GV approach

We shall now describe the GV approach for finding CIs for the common mean of several log-
normal distributions. Let RðiÞ� ¼ expðT�i Þ, where T�i is the GPQ for � ¼ �i þ :5�

2
i given in

equation (11). Let

T�i
¼ �xi �

Zi

Ui=
ffiffiffiffiffiffiffiffiffiffiffiffi
ni � 1
p

siffiffiffiffi
ni
p and T�2

i
¼

s2i
U2

i =ðni � 1Þ
, i ¼ 1, . . . , , k ð27Þ

Furthermore, let Rwi
¼ T�2

i
1þ T�2

i
=2

� �
exp 2T�i

þ T�2
i

� �h i�1
: In terms of these quantities, the

GPQ for the common mean is expressed as

Texpð�Þ ¼

Pk
i¼1 Rwi

RðiÞ�Pk
i¼1 Rwi

ð28Þ
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The above GPQ was developed by Tian and Wu.19 Our preliminary simulation studies on the
coverage probabilities of the CIs based on Texpð�Þ indicated that the CIs could be very liberal for
some parameter and sample size configurations. As an alternative, we propose the following GPQ
for � from which a CI for the common mean expð�Þ can be readily obtained. The alternative GPQ
for � is given by

T�� ¼
Xk
i¼1

wiT�i ð29Þ

where T�is are given in equation (11), and wi ¼ ðni=s
2
i Þ=ð

Pk
j¼1 nj=s

2
j Þ, j ¼ 1, . . . , k. Note that for a

given ð �x1, . . . , �xk, s
2
1, . . . , s2kÞ, the distribution of T�� does not depend on any unknown parameters,

and so its percentiles can be estimated using Monte Carlo simulation. The lower and upper 100�
percentiles form a 100ð1� 2�Þ% CI for the common parameter �.

3.3 Coverage studies for the common mean

The properties of the CIs for the common mean of several log-normal distributions can be judged
from those of the CIs for the common �. To judge the coverage properties and precisions of the CIs
for the common parameter �, we estimated their coverage probabilities and expected widths using
Monte Carlo simulation. The coverage probabilities of the MOVER CIs are estimated by simulation
consisting of 100,000 runs. The coverage probabilities of the generalized CIs are estimated as
follows. We first generated 2500 independent samples of size ni from a Nð�� :5�2i , �

2
i Þ

distribution, i ¼ 1, . . . , k, with some assumed parameters. For each set of generated samples, we
computed the generalized CI using simulation consisting of 5000 runs. The percentage of CIs that
include the assumed common mean is a Monte Carlo estimate of the coverage probability.

For the two-sample case, we estimated the coverage probabilities and expected widths of the CIs by
the GV method, MOVER-t (MOV-t) and MOVER-z (MOV-z) for some parameter configurations
considered in Table 1 of Tian and Wu.19 The estimated coverage probabilities along with the expected
widths are given in Table 10. Examination of coverage probabilities clearly indicate that the MOVER-
t CIs are very satisfactory in controlling coverage probabilities very close to the nominal level .95. The
GV CIs and MOVER-z CIs are also satisfactory except that they could be liberal in some situations.

Table 10. Coverage probabilities and (expected widths) of 95% CIs for the common mean; k¼ 2.

�1=�2 �

Sample sizes

n1 ¼ n2 ¼ 5 n1 ¼ n2 ¼ 10 n1 ¼ 10,n2 ¼ 15

GV MOV-t MOV-z GV MOV-t MOV-z GV MOV-t MOV-z

.05/.03 0.3 .94(1.79) .95(1.75) .91(1.53) .94(0.85) .95(0.87) .93(0.79) .94(0.73) .95(0.75) .93(0.69)

0.5 .93(2.81) .96(2.77) .93(2.49) .93(1.26) .96(1.30) .94(1.21) .94(1.08) .95(1.11) .94(1.04)

0.8 .93(4.42) .96(4.23) .94(3.91) .93(1.88) .96(1.91) .94(1.80) .94(1.57) .95(1.61) .94(1.54)

1.0 .92(5.46) .96(5.19) .94(4.83) .94(2.26) .96(2.30) .94(2.19) .94(1.90) .95(1.94) .95(1.85)

1.2 .94(6.70) .96(6.13) .94(5.75) .94(2.63) .96(2.69) .95(2.57) .94(2.20) .95(2.26) .95(2.17)

1.5 .94(7.91) .96(7.54) .94(7.11) .95(3.21) .96(3.26) .95(3.14) .94(2.70) .95(2.73) .95(2.64)

2.0 .94(10.69) .96(9.86) .94(9.40) .94(4.15) .96(4.21) .95(4.08) .94(3.50) .95(3.51) .95(3.41)
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We also note that expected widths of the MOVER CIs are quite comparable with those of generalized
CIs when their coverage probabilities are the same. Comparison for the case of ðn1, n2Þ ¼ ð5, 5Þ, the
MOVER-t CIs have better coverage probabilities with smaller expected widths than the generalized
CIs. The MOVER-z CIs are also simple to compute, but their coverage probabilities could go as low
as .91 when the nominal level is .95. Estimated coverage probabilities and expected widths of CIs are
reported in Table 11 for cases of k¼ 3 and 5. We once again observe from the table values that the
MOVER-t CIs outperform the generalized CIs in terms coverage probabilities and precision. The
MOVER-z CIs could be liberal, and in some cases their coverage probabilities could go as low as .84
when the nominal level is .95; see the result for the case of ðn1, . . . , n5Þ ¼ ð5, . . . , 5Þ and �¼ 12. Notice
that we reported coverage probabilities for small to moderate samples, because for large samples all
three CIs perform similarly. Overall we see that the MOVER-t CIs are accurate, simple to compute
and better than the other two CIs in terms of coverage probabilities.

Table 11. Coverage probabilities of 95% CIs for the common mean.

k¼ 3 and k¼ 5

nis � �2
i s GV MOVER-t MOVER-z

(5, 5, 5) 1 (1, 2, 1) .93(2.86) .95(2.62) .93(2.38)

(5, 5, 5) 1.5 (.5, .3, .2) .93(0.90) .94(0.88) .89(0.73)

(5, 5, 5) 2 (5, .5, .3) .92(1.54) .95(2.18) .91(1.27)

(5, 5, 5) 4 (.5, 4, 3) .94(2.98) .95(2.77) .93(2.52)

(5, 4, 7) 1 (1, 2, 1) .94(2.74) .96(2.57) .93(2.35)

(5, 4, 7) 1.5 (.5, .3, .2) .91(0.86) .94(0.84) .90(0.71)

(5, 4, 7) 2 (5, .5, .3) .93(1.44) .95(1.37) .92(1.21)

(5, 4, 7) 4 (.5, 4, 3) .94(3.09) .95(2.86) .93(2.63)

(5, 4, 30) 1 (1, 2, 1) .94(1.29) .95(1.25) .94(1.18)

(5, 4, 30) 1.5 (.5, .3, .2) .94(0.40) .94(0.40) .92(0.36)

(5, 4, 30) 2 (5, .5, .3) .94(0.56) .95(0.56) .93(0.52)

(5, 4, 30) 4 (.5, 4, 3) .94(2.07) .95(1.98) .94(1.85)

(5, 5, 5, 5, 5) 1 (2, .3, 5, .1, 2) .92(0.86) .93(0.79) .89(0.67)

(5, 5, 5, 5, 5) 2 (.4, .2, 1, 1, 1) .90(1.02) .93(0.93) .89(0.80)

(5, 5, 5, 5, 5) 3 (3, 2, 1, 1, .1) .92(0.96) .93(0.88) .90(0.76)

(5, 5, 5, 5, 5) 5 (3, 2, 8, 12, 1) .94(4.40) .95(3.63) .93(3.39)

(5, 5, 5, 5, 5) 12 (.4, .2, .1, .1, .1) .89(0.39) .94(0.38) .84(0.30)

(15, 15, 15, 15, 15) 1 (2, .3, 5, .1, 2) .94(0.31) .95(0.32) .93(0.30)

(15, 15, 15, 15, 15) 2 (.4, .2, 1, 1, 1) .94(0.38) .95(0.38) .93(0.36)

(15, 15, 15, 15, 15) 3 (3, 2, 1, 1, .1) .93(0.34) .95(0.35) .93(0.32)

(15, 15, 15, 15, 15) 5 (3, 2, 8, 12, 1) .95(1.25) .94(1.26) .94(1.22)

(15, 15, 15, 15, 15) 12 (.4, .2, .1, .1, .1) .94(0.19) .94(0.18) .92(0.17)

(20, 20, 20, 20, 20) 1 (2, .3, 5, .1, 2) .94(0.26) .95(0.27) .93(0.25)

(20, 20, 20, 20, 20) 2 (.4, .2, 1, 1, 1) .94(0.32) .95(0.32) .94(0.31)

(20, 20, 20, 20, 20) 3 (3, 2, 1, 1, .1) .95(0.29) .95(0.29) .94(0.28)

(20, 20, 20, 20, 20) 5 (3, 2, 8, 12, 1) .94(1.03) .95(1.04) .94(1.01)

(20, 20, 20, 20, 20) 12 (.4, .2, .1, .1, .1) .94(0.15) .94(0.15) .93(0.14)
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3.4 An example for estimating the common mean

As noted in Section 1.2, we shall illustrate the methods using the example given in Tian and Wu.19

The data set contains pharmacokinetics data from alcohol interaction study in men (Bradstreet and
Liss20). For illustrative purpose, we use the measurements* on maximum concentration (Cmax) and
compare the active treatment groups considered in Tian and Wu.19 The group sizes are equal with
n1 ¼ n2 ¼ n3 ¼ 22. The sample mean �xi (sample variance s2i ) of the log-transformed data are 2.601
(0.24), 2.596 (0.20) and 2.599 (0.17) for the three groups. It is desired to test

H0 : �1 þ :5�
2
1 ¼ �2 þ :5�

2
2 ¼ �3 þ :5�

2
3 vs: Ha : H0 is not true ,

at the level .05.
The LRT statistic is computed as � ¼ :0652 with the estimated mean m̂ð�Þ ¼ 2:117 and the

estimated cSDð�Þ ¼ 2:104. The mean and SD were estimated based on 100,000 simulated samples
each of size 22 from Nð�̂c � :5�̂

2
1c, �̂

2
1cÞ, Nð�̂c � :5�̂

2
1c, �̂

2
2cÞ and Nð�̂c � :5�̂

2
3cÞ distributions. The SLRT

statistic equation (8) is ffiffiffi
4
p
	
:0652� 2:117

2:104
þ 2 ¼ :0497

The p value is P �22 4 :0497
� �

¼ :975: Thus, the equality of the group means is tenable.
Since the group means are not significantly different, it maybe desired to the find the common

mean of these three groups. The MOVER-t CIs for the population means of Cmax are (12.16, 19.52),
(12.10,18.54), and (12.16, 17.94) for groups 1, 2 and 3, respectively. Using the proposed approach,
the MOVER-t CI for the common mean is (13.22, 16.90), and the generalized CI is (13.37, 17.05).
We estimated the generalized CI by Tian and Wu19 by simulation consisting of 100,000 runs as
(13.17, 16.63). As noted earlier, the generalized CI by Tian and Wu19 is in general liberal, and so it
produced the shortest CI among these three methods.

4 Conclusion

We have proposed a SLRT, and evaluated all available tests for the equality of several log-
normal means. Our investigation showed that the MLRT is not appropriate for applications,
because it is not even defined for some samples, and also it may have inflated type I error rates for
some cases. Our simulation comparison indicates that the SLRT seems to be the best in terms of power
and in controlling type I error rates around the nominal level. Even though the proposed SLRT
involves simulation to estimate the mean and standard deviation of the LRT statistic, it can be
easily implemented in a programming language such as R, MATLAB, SAS or Fortran. Interested
readers can contact the first author for R codes. It should be noted that there are alternative
modifications to the LRT available in the literature. Wu et al.35 used one such modified approach
to find a CI for the mean of a log-normal distribution. This modified version does not involve
simulation, but it seems to be very difficult to extend it for comparing two or more log-normal means.

We have also investigated the problem of estimating the common mean of several log-
normal populations, and proposed a closed-form approximate CI for the common mean. This
closed-form CI is not only better than the GV CI, but also is easy to compute, and does not
involve simulation.

*The data are from Bradstreet and Liss20 and available at: www.math.iup.edu/�tshort/Bradstreet.
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Appendix 1

Calculation of the constrained MLEs for testing the equality
of lognormal means

To find the constrained MLEs of ð�, �21 , . . . , �2kÞ, we note that the partial derivative of the likelihood
function (4) with respect to 
i ¼ �

2
i yields

@lc
@
i
¼ �

ni
2
i
þ
niðV

2
i þ ðXi � �Þ

2
Þ

2
2i
�
ni
8
, i ¼ 1, . . . , k

@lc
@�
¼
Xk
i¼1

niðXi � �Þ


i
þ
1

2

Xk
i¼1

ni ð30Þ

Equating the first partial derivative to zero, and solving for 
i, we find

�2i ¼ �2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

i þ ðXi � �Þ
2

q
, i ¼ 1, . . . , k ð31Þ

Equating the second partial derivative to zero, and solving for � gives

� ¼

Pk
i¼1 ðni=
iÞðXi þ :5
iÞPk

i¼1 ni=
i
ð32Þ

The above system of equations can be solved iteratively using following algorithm.

Algorithm 3:

(1) Set �̂2i,old ¼ V2
i , i ¼ 1, . . . , k

(2) Set �̂old ¼
Pk
i¼1

ni=�
2
i,oldPk

j¼1
nj=�2j,old

 !
Xi þ :5�

2
i,old

� �

(3) �̂2i,new ¼ �2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

i þ ðXi � �̂oldÞ
2

q
, i ¼ 1, . . . , k

(4) �̂new ¼
Pk
i¼1

ni=�
2
i,newPk

j¼1
nj=�2j,new

 !
Xi þ :5�

2
i,new

� �
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(5) If j�̂new � �̂oldj5 error tolerance, stop.
(6) Else set �̂old ¼ �̂new
(7) Repeat the steps 3–6, until error tolerance is achieved.

The above algorithm converges within 30 iterations in most cases, and in some cases convergence
may take more than 100 iterations.
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