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In this article, we propose statistical methods for setting upper limits on (i) the probability
that the mean exposure of an individual worker exceeds the occupational exposure limit (OEL)
and (ii) the probability that the exposure of a worker exceeds the OEL. The proposed method
for (i) is obtained using the generalized variable approach, and the one for (ii) is based on an
approximate method for constructing one-sided tolerance limits in the one-way random effects
model. Even though tolerance limits can be used to assess the proportion of exposure measure-
ments exceeding the OEL, the upper limits on these probabilities are more informative than
tolerance limits. The methods are conceptually as well as computationally simple. Two data sets
involving industrial exposure data are used to illustrate the methods.
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INTRODUCTION

Applications of the one-way random effects model

for assessing personal exposure level for a job group

have been well demonstrated in the industrial hygiene

literature for the past two decades. Many authors

have postulated this model for analysing exposure

data; among others, see Kromhout et al. (1993),

Rappaport et al. (1995) and Lyles et al. (1997a,b).

If multiple measurements exist for each worker, and

both between- and within-worker variability are

significant and need to be accounted for, then one

should use the random effects model. After postu-

lating the model, personal exposure levels can be

assessed based on (i) the probability that the mean

exposure of an individual worker exceeds the occu-

pational exposure limit (OEL) and (ii) the probability

that an individual exposure measurement exceeds the

OEL. At the outset, we need to acknowledge that

there is disagreement in the occupational hygiene

field about whether one should interpret the OEL

as a limit that the mean exposure should not

exceed, or a limit that some upper percentile of the

exposures should not exceed (Lyles et al., 1997b;

Letters to the Editor, 1998). Our goal here is to pre-

sent a methodology that will work in both cases.

Let q denote the probability that the mean exposure

of a worker exceeds the OEL. Consider testing the

hypotheses

H0 :q > A versus Ha :q < A, ð1Þ

where A is a specified probability, usually between

0.01 and 0.1. Notice that if the null hypothesis is

rejected, then we can conclude that the exceedance

probability is at most A. Using the one–one relation

between the cumulative probability and the quantile,

it can be shown that the above testing problem is

equivalent to testing if the (1 � A)th quantile of

the distribution of the mean exposures is less than

the OEL; brief details of this appear in the next sec-

tion. For example, if A = 0.1, then testing if q < 0:1
is equivalent to testing if the 90th percentile of

the mean exposure distribution is less than the OEL.

In this context, this testing problem is addressed

in Lyles et al. (1997a) for the case of balanced data,

and in Lyles et al. (1997b) for unbalanced data.

The problems that come up in this context are

somewhat complex as the parameter in the above
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hypotheses is a function of all the parameters in the

one-way random effects model: the mean, as well as

the two variance components. Lyles et al. (1997a,b)

proposed large sample tests (Wald, likelihood ratio

and score-type tests). These authors also suggested

suitable modifications to control the type I error prob-

ability of the tests. Krishnamoorthy and Mathew

(2002) proposed a test procedure based on the gen-

eralized variable approach for the case of balanced

data, and Krishnamoorthy and Guo (2005) extended

the results for unbalanced data. The generalized vari-

able test is simple to use and is applicable for small

samples.

Exposure level in a work environment can also

be assessed by testing the probability h that an

individual measurement exceeds the OEL. That is,

H0 :h > A versus Ha :h < A: ð2Þ
Note that h is the probability of an exposure

measurement exceeding the OEL. Again, as in the

preceding testing problem, testing equation (2) is

equivalent to testing about the (1 � A)th quantile

of the distribution of the exposure measurements,

and the quantile testing can be carried out by com-

paring an appropriate upper tolerance limit with

the OEL; see the next section for an explanation

of this. The problem of constructing one-sided

tolerance limits in a one-way random effects model

is also complex, and only approximate methods are

available, e.g. Mee and Owen (1983); Bhaumik and

Kulkarni (1991); Vangel (1992); and Krishnamoorthy

and Mathew (2004). Among these approximate meth-

ods, Krishnamoorthy and Mathew’s (2004) approach

seems to be simple as it does not require any special

table values or interpolation. These authors showed,

by extensive simulation studies, that their approach

is accurate as long as the intraclass correlation co-

efficient is not very small. In other words, their

approach produces accurate results as long as the

assumed one-way random model is well-fitted for

the exposure data.

Hypothesis testing about an exceedance probability

is useful to decide if the personal exposures for a job

group are acceptable; however, an upper bound on the

probability is more informative than the results based

on a significance test. For example, if a significance

test indicates that q < 0.10 at the level of 5%, then we

can conclude that the data provide evidence to indi-

cate that the exceedance probability is <10%; but this

is not the least upper bound, and the actual 95% upper

limit on q could be much <10% (see the example

section).

Hewett and Ganser (1997) have provided a method

for estimating 90% confidence intervals around the

point estimate of the exceedance probability when the

exposure sample is assumed to be a simple random

sample from a lognormal distribution. This is based

on an established procedure for estimating confidence

intervals around an estimate of the proportion of

observations that fall in one tail of a normal distri-

bution. The Z-value corresponding to the OEL is cal-

culated first, followed by a look-up table or graph

that allows the calculation of the 90% confidence

intervals for a given sample size. It should be

noted that Hewett and Ganser’s approach is applic-

able if the exposure measurements form a simple

random sample from a lognormal distribution. This

means that Hewett and Ganser’s approach is valid

only when the between worker variance component

is zero, a strict condition which may not be met in

many instances.

The purpose of this paper is to bring to the attention

of industrial hygienists some simple methods that

can be used for constructing tolerance limits in

the one-way random effects model, and constructing

upper confidence limits for the exceedance proba-

bilities mentioned in the preceding paragraphs.

Although the method of Hewett and Ganser (1997)

does not consider between- and within-worker vari-

ability, the methods we consider do take into account

such variances, and our methods are also applicable

to small samples with balanced or unbalanced data.

As the concept of the generalized variable method

is relatively new, we first explain this approach with

applications to normal and lognormal parameters in

the following section. Then, we describe the one-way

random effects model in the context of this problem,

and then identify the probabilities of interest in

terms of the model parameters. We apply the general-

ized variable approach given in Krishnamoorthy

and Mathew (2004) and Krishnamoorthy and Guo

(2005) for constructing one-sided confidence limits

for q. A confidence interval procedure for h is

obtained by transforming the approximate tolerance

interval procedures given in Krishnamoorthy and

Mathew (2004). As the details of constructing gen-

eralized variables for various parameters in the one-

way random effects model, and that of constructing

tolerance limits, are given in the aforementioned

papers, we merely outline the basic methodology

in the following section. Finally, we illustrate the

interval estimation procedures for the exceedance

probabilities using two data sets given in Lyles

et al. (1997b).

THE GENERALIZED PIVOTAL QUANTITY (GPQ)

AND THE GENERALIZED TEST VARIABLE

The generalized P-value approach for hypothesis

testing has been introduced by Tsui and Weerahandi

(1989) and the generalized confidence interval by

Weerahandi (1993). The concepts of generalized

P-values and generalized confidence intervals have

turned out to be extremely fruitful for obtaining tests

and confidence intervals for complex problems where
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standard procedures are difficult to apply. In par-

ticular, the generalized variable approach is useful

to develop a generalized pivotal quantity (GPQ)

based on which inferential procedures for a para-

meter of interest can be easily obtained. The classical

pivotal quantity is a function of a random sample

and the parameter of interest, and its distribution

does not depend on any unknown parameters,

whereas the GPQ is a function of a random variable,

its observed value (the known measurements after a

sample has been drawn), the parameter of interest

and other parameters. The GPQ is constructed so

that, for a given sample, its distribution is free of

any unknown parameters. However, the frequentist

properties of generalized P-values and generalized

confidence intervals could depend on unknown para-

meters. For example, the actual coverage probability

of a generalized confidence interval could be differ-

ent from the assumed confidence level. However

based on numerical results, it has been noted that

for a wide variety of problems, generalized P-values

and generalized confidence intervals do meet the

usual requirements in terms of type I error probability

and coverage probability; see Krishnamoorthy and

Mathew (2003) for results concerning the lognormal

distribution, and see also the book by Weerahandi

(1995) for a variety of other applications. An attrac-

tive feature of many solutions based on generalized

P-values and generalized confidence intervals is

that the procedures are applicable to small sam-

ples, whereas conventional approaches based on,

for example, the likelihood method, do require large

samples. This will be clear, for example, from the

generalized variable solution for the lognormal

mean discussed later.

We shall first explain the generalized variable

inferential procedure as given in Krishnamoorthy

et al. (2006). Let X be a random variable whose

distribution depends on a scalar parameter of interest

q and a nuisance parameter (parameter that is not

of direct inferential interest) w. Let x denote the

observed value of X. That is, x represents the data

that has been collected. To obtain a generalized con-

fidence interval for q, we need a GPQ, denoted by

T1 X;x,q,wð Þ, that is a function of the random variable

X, the observed data x, and the parameters q and w,

and satisfying the following two conditions:

� Given x, the distribution of T1(X;x,q,w) is free

of the unknown parameters q and w;

� The value of T1(X;x,q,w) at X = x, namely,

T1(x;x,q,w) is equal to q. (3)

The percentiles of T1 X;x,q,wð Þ can then be used to

obtain confidence intervals for q. Such confidence

intervals are referred to as the generalized confi-

dence intervals. For example, if T1�a denotes the

100(1�a)th percentile of T1 X;x,q,wð Þ, then T1�a is

a generalized upper confidence limit for q. A lower

confidence limit, or two-sided confidence limits can

be similarly defined.

Now suppose we are interested in testing the

hypotheses

H0 :q > A versus Ha :q < A, ð4Þ

where q0 is a specified quantity. Suppose we can

define a generalized test variable T2 X;x,q,wð Þ satis-

fying the following conditions:

i. For a given x, the distribution of T2(X;x,q,w) is

free of the nuisance parameter w;

ii. The value of T2(X;x,q,w) at X = x, namely,

T2(x;x,q,w) is free of any unknown parameters;

iii. For a given x and w, the distribution of

T2(X;x,q,w) is stochastically monotone in q i.e.

stochastically increasing or decreasing in q).

(5)

In general, for a given x and w, we can take

T2 X;x,q,wð Þ = T1 X;x,q,wð Þ � q, which is stochasti-

cally decreasing in q. In this case, the generalized

P-value for testing equation (4) is given by

supH0
P T2 X;x,q,wð Þ > 0ð Þ ¼ supH0

P T1 X;x,q,wð Þ > qð Þ
¼ P T1 X;x,q,wð Þ > q0ð Þ:

Because the distribution of T1 X;x,q,wð Þ is free of

any unknown parameters, the generalized P-value

at q0 can be obtained using a numerical method or

estimated using Monte Carlo simulation.

It should be noted that the generalized confidence

intervals are not guaranteed to have exact frequentist

coverage properties with respect to the distribution of

X, and the distribution of the generalized P-values

under a null hypothesis of interest may not be uniform

(0, 1). However, a number of simulation and numer-

ical studies suggest that the coverage probabilities are

very close to the nominal level, and the Type I error

rates are close to the nominal level of significance.

Hanning et al. (2006) showed that the generalized

variable procedures are asymptotically exact in

many situations.

In general, constructing a GPQ is a non-trivial

task. Knowledge about the distribution of some

basic statistics involved in the problem is necessary

to construct a bona fide GPQ. Assuming that the

readers are familiar with the distributional results

for sample statistics from a normal distribution, we

shall illustrate the procedures for finding a GPQ for

a normal mean.

A GPQ for a normal mean

Let X1, . . ., Xn be a random sample from a N(x,s2)

distribution. Define

�XX ¼ 1

n

Xn

i¼1

Xi and S2 ¼ 1

n � 1

Xn

i¼1

Xi � �XXð Þ2
,
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and let �xx,s2ð Þ be an observed value of �XX,S2ð Þ. As �XX and

S2 are sufficient statistics for the normal distribution,

we shall construct a GPQ based on them. A GPQ for

the mean is obtained, using a sequence of operations

and inverse operations, as given below.

Gx ¼ �xx �
�XX � x
s/

ffiffiffi
n

p sffiffiffi
n

p s

S

¼ �xx �
�XX � x
s/

ffiffiffi
n

p sffiffiffi
n

p 1

S/sð Þ ð6Þ

¼ �xx � Z

c2
n�1/ n � 1ð Þ

� �1
2

sffiffiffi
n

p ,

where Z ¼ �XX � x
s/
ffiffi
n

p � N 0,1ð Þ independently of S2

s2 � c2
n�1

n�1
.

Using the result that Z/ c2
m/m

� �1
2 follows a tm

distribution, we can write Gx ¼ �xx�tn�1
sffiffi
n

p or

Gx ¼ �xx þ tn�1
sffiffi
n

p , because tm is distributed sym-

metrically about zero. We shall now show that

Gx in equation (6) satisfies the requirements in equa-

tion (3). Using step 1 of equation (6), we see that

the value of Gx at �XX,Sð Þ ¼ �xx,sð Þ is x. Also, from

step 3 of equation (6), we see that, for a given �xx
and s, the distribution of Gx does not depend on

any unknown parameters. Therefore, Gx is a GPQ

for the mean x. It is easy to see that the lower a/2

quantile and the upper a/2 quantile of Gx form the

usual t interval for the mean. In other words, infer-

ences on x based on the GPQ in equation (6) and

the one based on the classical pivotal quantity
�XX � xð Þ/ S/

ffiffiffi
n

p
ð Þ are the same.

An appealing feature of the generalized variable

approach is that one can readily develop a GPQ for

a function of several parameters provided a GPQ for

each parameter is available. Specifically, if the pair

(Gq1
,Gq2

) forms GPQs for (q1,q2), then the GPQ

for a function f(q1,q2)is given by f(Gq1
,Gq2

). As will

be seen in the sequel, this particular feature of the

generalized variable approach enables us to construct

GPQs for various functions of the variance compo-

nents and the overall mean in a one-way random

effects model. As an example, we shall now construct

a GPQ for a log normal mean.

A GPQ for a lognormal mean

Let Y1, . . ., Yn be a sample from a lognormal

distribution with parameters x and s so that the

mean is exp(V), where V ¼ xþ s2

2
. As the mean is a

one–one function of V, it is enough to find a GPQ

for V. Let Xi ¼ ln Yið Þ, i ¼ 1, . . . , n. Then, the log-

transformed data X1, . . ., Xn can be regarded as a

sample from a normal distribution with mean x and

standard deviation s. Let �XX and S2 denote respec-

tively the mean and variance of the sample. As we

already developed a GPQ for x, we shall now develop

a GPQ, denoted by Gs2 , for s2 using the fact that

n � 1ð ÞS2/s2 has the chi-square distribution with

df = n � 1. Let s2 be an observed value of S2.

Then, a GPQ is given by

Gs2 ¼ s2

S2
s2 ¼ s2

c2
n�1

n � 1

� � :
We see from the above expression that the value

of Gs2 at S2 = s2 is s2 and the distribution of Gs2

does not depend on any parameter when s2 is fixed.

Thus, Gs2 is a bona fide GPQ for s2. The GPQ

for V ¼ xþ s2

2
is given by Gx þ

Gs2

2

� �
, where Gx is

given in equation (6). Finally, a GPQ for the log-

normal mean is given by exp Gx þ
Gs2

2

� �
. For a

given �xx, s2ð Þ of �XX, S2ð Þ, the distribution of the

GPQ does not depend on any unknown parameters,

and so its percentiles can be estimated using Monte

Carlo simulation or by numerical integration. Speci-

fically, thea/2 and 1 �a/2 quantiles of the GPQ form

a 1 � a confidence interval for the lognormal mean.

Krishnamoorthy and Mathew (2003) showed that

the results based on the GPQ are comparable to

those based on the exact method due to Land (1973).

EXCEEDANCE PROBABILITIES, QUANTILES

AND TOLERANCE LIMITS

To explain the relationship between exceedance

probabilities and quantiles, and to describe the role

of tolerance intervals, let us consider a random

variable X that is distributed normally with mean m
and variance s2. For a specified limit k, consider

the exceedance probability P X > kð Þ. Note that

P X > kð Þ > A is equivalent to P X < kð Þ < 1 � A.

The latter inequality holds if and only if k is less

than or equal to the (1 � A)th quantile of X, namely,

m + z1–As, where z1�A is the (1 � A)th quantile of a

standard normal distribution. In other words, state-

ments concerning an exceedance probability translate

into statements concerning the quantiles. Thus, the

null hypothesis H0 :P X > kð Þ > A is equivalent to

H0 :mþ z1�As > k.

To see the role of tolerance intervals, let us first

recall the definition of an upper tolerance limit. Let �XX
and S2 denote the sample mean and sample variance

based on a sample of n observations from the normal

distribution. An upper tolerance limit for the normally

distributed random variable is a function of �XX and S2,

denoted by g �XX,S2ð Þ, and is constructed so that at least

a proportion p of the normal distribution is below

g �XX,S2ð Þ, with confidence, say, 1 � a. The proportion

p is also referred to as the content of the tolerance

interval. As we know that a proportion p of the normal

distribution is less than m + zps, the upper tolerance

limit g �XX,S2ð Þ is nothing but a 1 � a upper confidence

limit for m + zps. This is because proportion p of the

normal distribution is less than m + zps which is less

than or equal to g �XX,S2ð Þ with probability 1 � a.

Therefore, at least a proportion p of the normal
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distribution is below g �XX,S2ð Þ with confidence 1 � a.

Thus, testing

H0 :P X > kð Þ > A versus H0 :P X > kð Þ < A

is equivalent to testing

H0 :mþ z1�As > k versus H0 :mþ z1�As < k:

Notice that the null hypothesis will be rejected if

a 1 � a upper confidence limit for mþ z1�As (or

1 � A content—1 � a coverage upper tolerance

limit) is less than k. We refer to Guttman (1970)

for more details on tolerance intervals, along with

the expression for g( �XX,S2) given above.

For simplicity, we have presented the above results

for the normal distribution, where the observations in

the sample are all independent. However, the above

results also hold more generally. In fact, the present

article deals with observations that follow a one-way

random effects model, and are not independent. The

case of independent observations is already addressed

in Krishnamoorthy et al. (2006).

THE ONE-WAY RANDOM EFFECTS MODEL

To describe the problem, let us consider the frame-

work as given in Rappaport et al. (1995) and Lyles

et al. (1997a). Let Xij denote the jth shift-long expo-

sure measurement for the ith worker, j ¼ 1, . . . , ni

and i ¼ 1, . . . , k. Let us assume that Xij follows a

lognormal distribution so that Yij ¼ ln Xij

� �
follows

a normal distribution. Under the assumed one-way

random effects model, we can write

Yij ¼ mþ ti þ eij, j ¼ 1, . . . , ni; i ¼ 1, . . . , k,

ð7Þ

where m is the overall mean, ti represents the random

effect due to the ith worker, and eij is the random

deviation of the ith worker’s exposure around that

worker’s mean. Furthermore, ti and eij are mutually

independent with

ti � N 0,s2
t

� �
and eij � N 0,s2

e

� �
: ð8Þ

Notice that, conditionally given ti, Yij is normally

distributed with mean m + ti and variance se
2.

Therefore, the mean exposure mxi
for the ith worker

is given by

mxi
¼ E Xijjti

� �
¼ E exp Yij

� �
jti

� �
¼ exp mþ ti þ s2

e /2
� �

, ð9Þ

where E denotes the expectation. Also, it follows

from equations (7), (8) and (9) that unconditionally,

Yij � N m,s2
t þ s2

e

� �
and

ln mxi

� �
� N mþ s2

e /2,s2
t

� �
ð10Þ

Thus, the parameter q mentioned in equation (1) is

a probability that the random variable mxi (or ln(mxi))

exceeds the OEL (or ln(OEL)), and the parameter h in

equation (2) is a probability that the random variable

Xij (or Yij) exceeds the OEL (or ln(OEL)).

GPQS FOR THE OVERALL MEAN AND

VARIANCE COMPONENTS IN THE

ONE-WAY RANDOM MODEL

As the exceedance probabilities are functions of the

overall mean and the variance components, we shall

first provide GPQs for these individual parameters.

The methods of constructing generalized variables for

the mean and variance components, their validity, and

the statistical properties of the inferential procedures

based on them are well addressed in Krishnamoorthy

and Mathew (2002, 2004) and Krishnamoorthy and

Guo (2005). As we have already shown that the

present problem of exceedance probabilities has

one–one relation with that of constructing one-

sided tolerance limits, the frequentist coverage pro-

babilities should be similar to those for tolerance

limits considered in the aforementioned papers.

Specifically, the coverage probabilities of confidence

limits are close to the nominal confidence level as

long as the one-way random effects model is well

fitted for a given sample.

In the following, we shall provide necessary sum-

mary statistics and their distributional results that are

required to construct GPQs for m, st
2 and se

2. Let

~nn¼ 1

k

Xk

i¼1

n�1
i , �YYi: ¼

1

ni

Xni

j¼1

Yij,
��YY�YY ¼ 1

k

Xk

i¼1

�YYi:,

SSe ¼
Xk

i¼1

Xni

j¼1

Yij � �YYi:

� �2
and SS�yy ¼

Xk

i¼1

�YYi:� ��YY�YY
� �2

:

Note that SSe is the usual error sums of squares (or

within sums of squares). It is known that

��YY�YY �N m,
s2
t þ~nns2

e

k

� �
,

SSe

s2
e

� c2
N�k, and

SS�yy

s2
t þ~nns2

e

� c2
k�1 approximatelyð Þ, ð11Þ

and these three random variables are independent. The

former two distributions are exact, and the approxi-

mate chi-square distribution associated with
SS�yy

s2
t þ ~nns2

e
is

due to Thomas and Hultquist (1978). Because of this
approximate chi-square distribution, some of the
properties required for GPQ’s will hold only
approximately.

Let (��yy, sse, ss�yy) be an observed value of
��YY, SSe, SS�yy

� �
. That is, (��yy, sse, ss�yy) is the computed

value of ��YY, SSe, SS�yy

� �
based on a given data set.
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The generalized variable for the overall mean m can

be constructed as

Gm ¼ ��yy�yy þ

ffiffiffi
k

p
m� ��YY�YY
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ ~nns2

e

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ ~nns2

e

p
ffiffiffiffiffiffiffi
SS�yy

p ffiffiffiffiffiffi
ss�yy

p ffiffiffi
k

p

¼ ��yy�yy þ Zffiffiffiffiffiffiffiffiffi
c2

k�1

p ffiffiffiffiffiffi
ss�yy

p ffiffiffi
k

p , ð12Þ

where Z � N(0,1) independently of c2
k�1. To get the

second step, we have used the distributional proper-

ties in equation (11). In particular, we have used

the approximate chi-square distribution associated

with
SS�yy

s2
t þ ~nns2

e
. We note that the second step in equa-

tion (12) holds only as an approximation. Let us ver-

ify that Gm satisfies the conditions (i) and (ii) in

equation (3). From step 1 in equation (12), we see

that Gm is equal to m when ��YY ¼ ��yy and SS�yy ¼ ss�yy. Also,

we observe from step 2 of equation (12) that, for a

given��yy and ss�yy, the distribution of Gm does not depend

on any unknown parameters because the joint distri-

bution of Z, c2
k�1

� �
does not depend on any unknown

parameters.

We can construct the generalized variables for

the variance components similarly. For st, we

develop the generalized variable (noting that

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ ~nns2

e � ~nns2
e

p
) as

Gst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ ~nns2

e

SS�yy
ss�yy �

~nns2
e

SSe

sse

� �s
þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ss�yy

c2
k�1

� ~nnsse

c2
N�k

� �s
þ

,

where for any number x, xð Þþ ¼ maxf0,xg, and

N ¼
Pk

i¼1ni. To get the second step, we used

the result that
SS�yy

s2
t þ ~nns2

e
� c2

k�1 independently of
SSe

s2
e
� c2

N�k. It is easy to verify that Gst satisfies the

conditions in equation (3). For s2
e, we have Gs2

e
¼

s2
e

SSe
sse ¼ sse

c2
N�k

: Again, it is easy to see that Gs2
e

satisfies

the conditions in equation (3).

Finally, the generalized variable for any function

f m,s2
t ,s2

e

� �
can be obtained by replacing m, s2

t
and s2

e by their generalized variables.

Note that since the chi-square distribution asso-

ciated with SS�yy is only approximate, conditions

(i) and (iii) in equation (5) will hold only approxi-

mately. However, the extensive numerical results

in Krishnamoorthy and Mathew (2004), and

Krishnamoorthy and Guo (2005) show that the gen-

eralized variable approach is quite satisfactory in the

unbalanced case. Though not pointed out in this arti-

cle, GPQ’s are not unique in the unbalanced case.

What we have provided is one solution that performs

satisfactorily.

AN UPPER LIMIT FOR q

Using the distributional result in equation (10), we

can express q as

q ¼ P mxi
> OEL

� �
¼ P ln mxi

� �
> ln OELð Þ

� �
¼ 1 �F

ln OELð Þ � m� s2
e /2

st

� �
, ð13Þ

where F(.) denotes the standard normal distribution

function. As already noted, testing hypotheses about

q is equivalent to testing about the (1 �A)th quantile

of the mean exposure distribution in equation (10),

and the quantile is given by mþ s2
e

2
þ z1�Ast, where

zp is the pth quantile of the standard normal distribu-

tion. In particular, the hypotheses in equation (1) are

equivalent to

H0 :mþ s2
e

2
þ z1�Ast > ln OELð Þ versus

Ha :mþ s2
e

2
þ z1�Ast < ln OELð Þ:

For example, if A = 0.10, then mþ s2
e

2
þ z1�Ast ¼ mþ

s2
e

2
þ 1:282st is the 90th percentile of the distribution

of ln(mxi
). If a 95% upper confidence limit for mþ

s2
e

2
þ z:90st is less than ln(OEL), then we can con-

clude that q < 0.10 at the level of significance 0.05.

Large sample solutions to the above testing prob-

lem are given in Lyles et al. (1997a,b). Tests based

on the generalized variable approach are given

in Krishnamoorthy and Mathew (2002) and

Krishnamoorthy and Guo (2005).

Notice that q in equation (13) is a function of

(m,se
2,st), and so we can write q as q(m,se

2,st). If

Gm, Gst
and Gse

2 are the generalized variables for

m, st and se
2, respectively, then a generalized variable

for q is given by

q Gm,Gst ,Gs2
e

� �
¼ 1 �F

ln OELð Þ � Gm � Gs2
e
/2

Gst

� �
,

ð14Þ

where

Gm ¼ ��yy�yy þ Zffiffiffiffiffiffiffiffiffi
c2

k�1

p ffiffiffiffiffiffi
ss�yy

k

r
,

Gst ¼
ffiffiffiffiffiffiffiffi
Gs2

t

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ss�yy

c2
k�1

� ~nnsse

c2
N�k

� �
þ

s
and

Gs2
e
¼ sse

c2
N�k

, ð15Þ

where N ¼
Pk

i¼1ni and xð Þþ¼ maxf0,xg. Notice that

the generalized variable Gst could be zero; however,

this does not cause any problem in computing

equation (14) because the argument of the normal

distribution function F when Gst ¼ 0 is either �1
or 1 depending on the sign of the numerator of the

6 of 10 K. Krishnamoorthy et al.



argument. In either case, the distribution function is

defined and F �1ð Þ ¼ 0 and F 1ð Þ ¼ 1:
We see from equation (15) that, for a given
��yy, sse, ss�yy
� �

, the distributions of Gm, Gst and

Gs2
e

do not depend on any unknown parameters;

so the distribution of q Gm, Gst , Gs2
e

� �
is also

free of unknown parameters. Even then, it is not

easy to find the joint sampling distribution of all

the independent random variables involved in

q Gm, Gst , Gs2
e

� �
. However, one can use Monte

Carlo simulation as given in the following algorithm

to estimate the percentiles of q Gm;Gst ;Gs2
e

� �
.

Algorithm 1

For a given data set, compute ~nn,��yy,sse and ss�yy
For i = 1, m

Generate Z � N 0,1ð Þ, c2
k�1 and c2

N�k

compute Gm,Gst and Gs2
e

using equation (11)

compute Q ¼ ln OELð Þ � Gst � Gs2
e
/2

if Gst ¼ 0 and Q < 0 then

set Ti ¼ 1

else if Gst ¼ 0 and Q > 0 then

set Ti = 0

else set Ti ¼ 1 �F Q
Gst

� �
[end do loop]

The 100(1–a)th percentile of Ti’s is a 1–a upper

limit for q. Based on our experience, we recommend

simulation consisting of at least 100 000 (i.e. the

value of m in Algorithm 1) runs to get consistent

results regardless of the initial seed used for random

number generation. The above algorithm can be

easily programmed in any programming language.

A SAS program for computing one-sided limits

for q is posted at http://www.ucs.louisiana.edu/

�kxk4695. Interested readers can download these

files from this website.

AN UPPER LIMIT FOR h

Notice that the probability that an individual expo-

sure measurement exceeds the OEL is given by h =
P(Xij > OEL). Since Yij ¼ ln Xij

� �
� N m,s2

t þ s2
e

� �
,

we have

h ¼ P Xij > OEL
� �

¼ P Yij > ln OELð Þ
� �

¼ 1 �F
ln OELð Þ � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
t þ s2

e

p
 !

: ð16Þ

As Yij ¼ ln Xij

� �
� N m,s2

t þ s2
e

� �
, its (1 � A)th quan-

tile is given by mþ z1�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ s2

e

p
. Therefore, testing

H0 :h > A versus Ha :h < A is equivlent to testing

H0 :mþ z1�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ s2

e

q
> ln OELð Þ versus

Ha :mþ z1�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ s2

e

q
< ln OELð Þ: ð17Þ

The null hypothesis in equation (2) will be rejected

at the level a if a 1 � a upper confidence limit

for mþ z1�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ s2

e

p
is less than ln(OEL).

As noted earlier, the above hypotheses can be

tested by comparing an upper tolerance limit for

N(m,s2
t þ s2

e) with ln(OEL), where the content of

the tolerance interval is to be 1 � A, and the con-

fidence level is to be 1 � a. Towards this, we note

that Krishnamoorthy and Mathew (2004) provided

such an approximate upper tolerance limit, and is

given by

U Að Þ ¼ ��yy�yy þ tk�1,1�a dð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ss�yy

k k � 1ð Þ

r
, with

d ¼ z1�A k þ k k � 1ð Þ 1 � n~ð Þ
N � k

sse

ssy

Fk�1,N�k,a

� �1
2

,

ð18Þ

where tm,p(d) is the pth quantile of a noncentral t

distribution with df = m and noncentrality parameter

d, and Fk�1,N�k,a denotes the ath quantile of an F

distribution with degrees of freedoms k�1 and N�k.

A 1 � a upper confidence bound for h can be

obtained by identifying the set of values of A for

which the null hypothesis in equation (17) will be

accepted. Specifically, the maximum value of A for

which the null hypothesis in equation (17) is

accepted, or equivalently U(A) satisfying U Að Þ >
ln OELð Þ, is a 1 � a upper bound for h. Notice

that d in equation (18) is a decreasing function of

A while the other quantities are fixed, because z1�A

is decreasing with increasing A. Furthermore, for a

given m and p, it is known that tm,p(d) is an increasing

function of d. As a result, U(A) in equation (18) is

a decreasing function of A, and the maximum value

of A for which U Að Þ > ln OELð Þ is the solution of

the equation U Að Þ ¼ ln OELð Þ. Thus, a 1 � a upper

limit for h is the solution (with respect to A) of the

equation

U Að Þ ¼ ��yy�yy þ tk�1,1�a dð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ss�yy

k k � 1ð Þ

r
¼ ln OELð Þ: ð19Þ

Write

d ¼ z1�Ac,

where c ¼ k þ k k � 1ð Þ 1 � n~ð Þ
N � k

sse

ss�yy
Fk�1,N�k,a

� �1
2

:

ð20Þ

Then, from equation (19), we have

tk�1,1�a z1�Acð Þ ¼ ln OELð Þ � ��yy�yyð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k � 1ð Þ

ss�yy

s
: ð21Þ
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The above equation can be solved for A using avail-

able PC calculators as shown in the example section

below.

It should be noted that many other approaches are

available for computing an upper tolerance limit in

the one-way random model; see for example, Mee

and Owen (1983), Bhaumik and Kulkarni (1996), and

Liao et al. (2005). The first two references deal with

the balanced data situation only, whereas Liao et al.

(2005) also consider the unbalanced situation. We

have chosen to use the results in Krishnamoorthy

and Mathew (2004) since their approximate upper

tolerance limit has an explicit expression, and

hence is easy to compute. Overall, their approxima-

tion is quite accurate, as noted in Krishnamoorthy and

Mathew (2004).

EXAMPLES

We shall now illustrate the methods of the preced-

ing sections using two sets of shift-long exposure data

reported in Tables D2 and D3 of Lyles et al. (1997b).

The data in Tables D2 and D3 represent nickel dust

exposure measurements on a sample of maintenance

mechanics from a smelter, and on a sample of main-

tenance mechanics from a mill, respectively. The data

were collected from samples of workers from a nickel

producing facility. For these data sets, we computed

the values of ��yy�yy, ñ, ssy� and sse as given in Tables 1

and 2. An upper limit q can be computed by plug-

ging these values in the generalized variables in

equation (14) and then using Algorithm 1. To com-

pute the 95% upper limits for q, we used Algorithm 1

with m = 100 000.

The results for the group of maintenance mechanics

from a smelter are given in Table 1. Here, we see that

the 95% upper limit for q is 0.0004. That is, <0.04%

of mean exposures exceed the OEL.

To compute the 95% upper limit for h, we need

to compute the value of c in equation (20). Using

the statistics in Table 1, and F22,11,.05 = 0.4428, we

computed

c ¼ k þ k k � 1ð Þ 1 � ~nnð Þ
N � k

sse

ss�yy
Fk�1,N�k,a

� �1
2

¼ 23 þ 23 22ð Þ 1 � 0:855ð Þ
34 � 23

2:699

16:081
:4428ð Þ

� �1
2

¼ 4:9112:

Thus, we have from equation (21) that

tk�1,1�a z1�Acð Þ ¼ t22,:95 z1�A 4:9112ð Þð Þ

¼ 3:863

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 22ð Þ
16:081

r
¼ 20:6595: ð22Þ

Using the online calculator (http://calculators.stat.

ucla.edu/cdf/), we computed z1�A 4:9112ð Þ ¼ 15:1994

or z1�A ¼ 3:0948: The last equation implies that

1 � A ¼ F 3:0948ð Þ or A = 0.0010. Thus, a 95%

upper limit for h is 0.001. This means that <0.1%

of exposure measurements exceed the OEL. To

compute a 99% upper limit, we have to use

F22,11,.01 = 0.3141. Using this value, we computed

c as 4.8323. Then solving the equation

t22,:99 z1�A 4:8323ð Þð Þ ¼ 20:6595, we get z1�A ¼
13:1995/4:8323 ¼ 2:7315: This yields a 99% upper

limit for h as 0.0032.

Note: The online calculator mentioned above or

the StatCalc 2.0 by Krishnamoorthy (2006) posted

at http://www.ucs.louisiana.edu/�kxk4695 com-

putes the missing value satisfying the equation

P tm dð Þ < xð Þ ¼ q when the other three values are

given. In our case, d is the missing value. To solve

equation (22), we use m = 22, x = 20.6595 and

q = 0.95. Using these values, we get d =

z1�A(4.9112) = 15.1994.

In Table 2, we present the results for the expo-

sure data collected from a group of maintenance

mechanics from a mill. The 95% (99%) upper limit

Table 1. Upper limits for q = P mxi
> OEL

� �
and for h ¼ P Xij > OELÞ

�
based on nickel exposure data in Table D2 of Lyles et al.

(1997b); k = 23 and N = 34; OEL = 1 mg/m3

��yy�yy ñ ss�yy sse Upper limit for q Upper limit for h
95% 99% 95% 99%

�3.683 0.855 16.081 2.699 0.0004 0.0020 0.0010 0.0032

Table 2. Upper limits for q ¼ P mxi > OELð Þ and for h = P(Xij > OEL) based on nickel exposure data in Table D3 of Lyles et al.
(1997b); k = 20 and N = 28; OEL = 1 mg/m3

��yy�yy ñ ss�yy sse Upper limit for q Upper limit for h
95% 99% 95% 99%

�4.087 0.854 19.681 9.801 0.0002 0.0045 0.0028 0.0084
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for q is 0.0002 (0.0045). We also computed 95%

(99%) upper limit for h as 0.0028 (0.0084).

Remark: We would like to point out that the

above data were used by Lyles et al. (1997b)

and Krishnamoorthy and Guo (2005) for testing

H0 :q > A versus H0 :q < A. Lyles et al. used a

large-sample method, and Krishnamoorthy and Guo

used a generalized variable approach. If A = 0.1, then

both approaches showed that q < A, at significance

level 0.05, for both sets of data. However, if A = 0.05,

then to conclude whether or not q < A, one has to carry

out the test procedures again at significance level

0.05. On the other hand, in our present setup, the

computed 95% upper limits for q enable us to

conclude q < 0.05 for both problems at level 0.05.

This is certainly an advantage of setting one-sided

limits for q.

CONCLUDING REMARKS

The use of a model that includes a random effect is

a convenient and practically useful approach to cap-

ture the heterogeneity among the exposed group. In

this article, we concentrated on a situation where the

one-way random effects model is appropriate for the

log-transformed exposure data. Problems of interest

for the purpose of exposure monitoring now reduce to

inference problems concerning the unknown para-

meters of the model: the overall mean and the two

variance components. As opposed to standard appli-

cations of the one-way random effects model, where

the problems of interest deal with the individual para-

meters, exposure monitoring applications require

inference on parametric functions that involve all

the unknown parameters. Novel approaches are

required to deal with such problems, especially

since small sample procedures are desired. Here,

we have investigated the generalized inference idea

to come up with confidence intervals and tests for two

parametric functions of interest: the probability that

the mean exposure of an individual worker exceeds

the OEL, and the probability that the exposure of a

worker exceeds the OEL. The latter parametric func-

tion also comes up in connection with the computa-

tion of tolerance intervals. We have also illustrated

our methodology by applying them for the analysis of

actual exposure data.

For the problems mentioned in this article, large

sample confidence bounds could be easily obtained

using standard methods; see Lyles et al. (1997a)

for details. However, the numerical results in

Krishnamoorthy and Mathew (2002) show that the

generalized variable approach has a definite edge

in terms of maintaining the type I error probability

of the tests, and coverage probability of the confi-

dence intervals. As should be clear from the com-

putational algorithm mentioned in this article, the

generalized variable approach is quite easy to

implement. Furthermore, the fact that they are also

applicable to small samples make them attractive

options for analysing exposure data.
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