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INTRODUCTION 
 
Applications of the one-way random effects model for assessing personal exposure level 
for a job group have been well demonstrated in the industrial hygiene literature for the 
past two decades. Many authors have postulated this model for analyzing exposure data; 
among others, see Kromhout, Symanski and Rappaport (1993), Rappaport, Lyles and 
Kupper (1995) and Lyles, Kupper and Rappaport (1997a,b). If multiple measurements 
exist for each worker, and both between- and within-worker variability are significant 
and need to be accounted for, then one should use the random effects model.  After 
postulating the model, personal exposure levels can be assessed based on (i) the 
probability that the mean exposure of an individual worker exceeds the occupational 
exposure limit (OEL) and (ii) the probability that an individual exposure measurement 
exceeds the OEL. At the outset, we need to acknowledge that there is disagreement in the 
occupational hygiene field about whether one should interpret the OEL as a limit that the 
mean exposure should not exceed, or a limit that some upper percentile of the exposures 
should not exceed (Lyles, Kupper and Rappaport (1997b; Letters to the Editor, 1998). 
Our goal here is to present a methodology that will work in both cases.  
 
Let θ  denote the probability that the mean exposure of a worker exceeds the OEL. 
Consider testing the hypotheses 
 

0 :   vs.  : ,aH A H Aθ θ≥ <                                                                                              (1)  
 
where A is a specified probability, usually between 0.01 and 0.1. Notice that if the null 
hypothesis is rejected, then we can conclude that the exceedance probability is at most A. 
Using the one-one relation between the cumulative probability and the quantile, it can be 
shown that the above testing problem is equivalent to testing if the (1 )A− th quantile of 
the distribution of the mean exposures is less than the OEL; brief details of this appear in 
the next section. For example, if A = 0.1, then testing if 0.1θ <  is equivalent to testing if 
the 90th percentile of the mean exposure distribution is less than the OEL. In the present 
context, this testing problem is addressed in Lyles, Kupper and Rappaport (1997a) for the 
case of balanced data, and in Lyles, Kupper and Rappaport (1997b) for unbalanced data. 
The problems that come up in this context are somewhat complex as the parameter in the 
above hypotheses is a function of all the parameters in the one-way random effects 
model: the mean, as well as the two variance components. Lyles, Kupper and Rappaport 
(1997a, b) proposed large sample tests (Wald, likelihood ratio and score-type tests). 
These authors also suggested suitable modifications to control the type I error probability 
of the tests. Krishnamoorthy and Mathew (2002) proposed a test procedure based on the 
generalized variable approach for the case of balanced data, and Krishnamoorthy and 
Guo (2005) extended the results for unbalanced data. The generalized variable test is 
simple to use and is applicable for small samples.  
 
Exposure level in a work environment can also be assessed by testing the probability η  
that an individual measurement exceeds the OEL. That is, 
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0 :   vs.  : .aH A H Aη η≥ <                                                                                                 (2) 
 
Note that η  is the probability of an exposure measurement exceeding the OEL. Again, as 
in the preceding testing problem, testing (2) is equivalent to testing about the (1 )A− th 
quantile of the distribution of the exposure measurements, and the quantile testing can be 
carried out by comparing an appropriate upper tolerance limit with the OEL; see the next 
section for an explanation of this. The problem of constructing one-sided tolerance limits 
in a one-way random effects model is also complex, and only approximate methods are 
available, e.g., Mee and Owen (1983);  Bhaumik and Kulkarni (1991); Vangel (1992); 
and Krishnamoorthy and Mathew (2004). Among these approximate methods, 
Krishnamoorthy and Mathew’s (2004) approach seems to be simple as it does not require 
any special table values or interpolation. These authors showed, by extensive simulation 
studies, that their approach is accurate as long as the intraclass correlation coefficient is 
not very small. In other words, their approach produces accurate results as long as the 
assumed one-way random model is well-fitted for the exposure data. 
 
Hypothesis testing about an exceedance probability is useful to decide if the personal 
exposures for a job group are acceptable; however, an upper bound on the probability is 
more informative than the results based on a significance test. For example, if a 
significance test indicates that 0.10θ <  at the level of 5%, then we can conclude that the 
data provide evidence to indicate that the exceedance probability is less than 10%; but 
this is not the least upper bound, and the actual 95% upper limit on θ  could be much less 
than 10% (see the example section). 
 
Hewett and Ganser (1997) have provided a method for estimating 90% confidence 
intervals around the point estimate of the exceedance probability when the exposure 
sample is assumed to be a simple random sample from a lognormal distribution. This is 
based on an established procedure for estimating confidence intervals around an estimate 
of the proportion of observations that fall in one tail of a normal distribution. The Z-value 
corresponding to the OEL is calculated first, followed by a look-up table or graph that 
allows the calculation of the 90% confidence intervals for a given sample size. It should 
be noted that Hewett and Ganser’s approach is applicable if the exposure measurements 
form a simple random sample from a lognormal distribution. This means that Hewett and 
Ganser’s approach is valid only when the between worker variance component is zero, a 
strict condition which may not be met in many instances. 
 
 
The purpose of this paper is to bring to the attention of industrial hygienists some simple 
methods that can be used for constructing tolerance limits in the one-way random effects 
model, and constructing upper confidence limits for the exceedance probabilities 
mentioned in the preceding paragraphs. While the method of Hewett and Ganser (1997) 
does not consider between- and within-worker variability, the methods we consider do 
take into account such variances, and our methods are also applicable to small samples 
with balanced or unbalanced data. As the concept of the generalized variable method is 
relatively new, we first explain this approach with applications to normal and lognormal 
parameters in the following section. Then we describe the one-way random effects model 
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in the context of the present problem, and then identify the probabilities of interest in 
terms of the model parameters. We apply the generalized variable approach given in 
Krishnamoorthy and Mathew (2004) and Krishnamoorthy and Guo (2005) for 
constructing one-sided confidence limits for θ . A confidence interval procedure for η  is 
obtained by transforming the approximate tolerance interval procedures given in 
Krishnamoorthy and Mathew (2004). Because the details of constructing generalized 
variables for various parameters in the one-way random effects model, and that of 
constructing tolerance limits, are given in the aforementioned papers, we merely outline 
the basic methodology in the following section.  Finally, we illustrate the interval 
estimation procedures for the exceedance probabilities using two data sets given in Lyles 
et al. (1997b). 
 
THE GENERALIZED PIVOTAL QUANTITY (GPQ)  AND THE GENERALIZED 

TEST VARIABLE 
 
The generalized p-value approach for hypothesis testing has been introduced by Tsui and 
Weerahandi (1989) and the generalized confidence interval by Weerahandi (1993). The 
concepts of generalized p-values and generalized confidence intervals have turned out to 
be extremely fruitful for obtaining tests and confidence intervals for complex problems 
where standard procedures are difficult to apply. In particular, the generalized variable 
approach is useful to develop a generalized pivotal quantity (GPQ) based on which 
inferential procedures for a parameter of interest can be easily obtained. The classical 
pivotal quantity is a function of a random sample and the parameter of interest, and its 
distribution does not depend on any unknown parameters, whereas the GPQ is a function 
of a random variable, its observed value (the known measurements after a sample has 
been drawn), the parameter of interest and other parameters. The GPQ is constructed so 
that, for a given sample, its distribution is free of any unknown parameters. However, the 
frequentist properties of generalized p-values and generalized confidence intervals could 
depend on unknown parameters. For example, the actual coverage probability of a 
generalized confidence interval could be different from the assumed confidence level. 
However, based on numerical results it has been noted that for a wide variety of 
problems, generalized p-values and generalized confidence intervals do meet the usual 
requirements in terms of type I error probability and coverage probability; see 
Krishnamoorthy and Mathew (2003) for results concerning the lognormal distribution, 
and see also the book by Weerahandi (1995) for a variety of other applications. An 
attractive feature of many solutions based on generalized p-values and generalized 
confidence intervals is that the procedures are applicable to small samples, whereas 
conventional approaches based on, for example, the likelihood method, do require large 
samples.  This will be clear, for example, from the generalized variable solution for the 
lognormal mean discussed later. 
 
We shall first explain the generalized variable inferential procedure as given in 
Krishnamoorthy et al. (2006). Let X be a random variable whose distribution depends on 
a scalar parameter of interest θ  and a nuisance parameter (parameter that is not of direct 
inferential interest) ω . Let x denote the observed value of X. That is, x represents the data 
that has been collected. To obtain a generalized confidence interval for θ , we need a 
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GPQ, denoted by 1( ; , , )T X x θ ω , that is a function of the random variable X, the observed 
data x, and the parameters θ  and  ω , and satisfying the following two conditions:  

i. Given x, the distribution of  1( ; , , )T X x θ ω  is free of the unknown parameters θ  
and ω ; 

ii. The value of 1( ; , , )T X x θ ω  at X =  x, namely, 1( ; , , )T x x θ ω  is equal to θ .           (3) 
 

The percentiles of 1( ; , , )T X x θ ω  can then be used to obtain confidence intervals for θ . 
Such confidence intervals are referred to as the generalized confidence intervals. For 
example, if 1T α−  denotes the 100 (1 )α− th percentile of 1( ; , , )T X x θ ω , then 1T α− is a 
generalized upper confidence limit for θ . A lower confidence limit, or two-sided 
confidence limits can be similarly defined. 
 
Now suppose we are interested in testing the hypotheses 
 

0 :   vs.  : ,aH A H Aθ θ≥ <                                                                                                 (4) 
 
where 0θ  is a specified quantity. Suppose we can define a generalized test variable 

2 ( ; , , )T X x θ ω  satisfying the following conditions: 
 

i. For a given x, the distribution of 2 ( ; , , )T X x θ ω  is free of the nuisance parameter  
ω ; 

ii. The value of 2 ( ; , , )T X x θ ω  at X = x, namely, 2 ( ; , , )T x x θ ω  is free of any unknown 
parameters; 

iii. For a given x and ω , the distribution of 2 ( ; , , )T X x θ ω  is stochastically monotone 
in θ  (i.e., stochastically increasing or decreasing in θ ).                                      (5) 

 
In general, for a given x and ω ,  we can take 2 1( ; , , ) ( ; , , )T X x T X xθ ω θ ω θ= − , which is 
stochastically decreasing in θ . In this case, the generalized p-value for testing (4) is 
given by  
 

( ) ( ) ( )
0 02 1 1 0sup ( ; , , ) 0 sup ( ; , , ) ( ; , , )H HP T X x P T X x P T X xθ ω θ ω θ θ ω θ≥ = ≥ = ≥ . 

 
Because the distribution of 1( ; , , )T X x θ ω  is free of any unknown parameters, the 
generalized p-value at 0θ  can be obtained by a numerical method or estimated using 
Monte Carlo simulation.  
 
It should be noted that the generalized confidence intervals are not guaranteed to have 
exact frequentist coverage properties with respect to the distribution of X, and the 
distribution of the generalized p-values under a null hypothesis of interest may not be 
uniform(0, 1).  However, a number of simulation and numerical studies suggest that the 
coverage probabilities are very close to the nominal level, and the Type I error rates are 
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close to the nominal level of significance. Recently, Hanning et al. (2006) showed that 
the generalized variable procedures are asymptotically exact in many situations. 
 
In general, constructing a GPQ is a non-trivial task. Knowledge about the distribution of 
some basic statistics involved in the problem is necessary to construct a bona fide GPQ. 
Assuming that the readers are familiar with the distributional results for sample statistics 
from a normal distribution, we shall illustrate the procedures for finding a GPQ for a 
normal mean. 
 
A GPQ for a Normal Mean 
 
Let 1,..., nX X  be a random sample from a N ( )2,ξ σ  distribution. Define 

( )22

1 1

1 1 and  ,
1

n n

i i
i i

X X S X X
n n= =

= = −
−∑ ∑  

and let ( )2,x s  be an observed value of  ( )2,X S .  As X  and 2S  are sufficient statistics 
for the normal distribution, we shall construct a GPQ based on them. A GPQ for the 
mean is obtained, using a sequence of operations and inverse operations, as given below. 
 

( )
1

2 2
1

/
1    

( / )/

    ,
/( 1)n

X sG x
Sn n

X sx
Sn n

Z sx
nn

ξ
ξ σ

σ
ξ

σσ

χ −

−
= −

−
= −

= −
−

                                                                                            (6) 

where  
22

1
2~ (0,1) independently of ~ ,

1/
nX SZ N

nn
χξ

σσ
−−

=
−

 and 2
mχ  denotes the chi-square 

random variable with degrees of freedom m. Using the result that 
1

2 2/( / )mZ mχ  follows a 

Student’s mt  distribution, we can write 1 1or ,n n
s sG x t G x t
n nξ ξ− −= − = +  because mt  

is distributed  symmetrically about zero. We shall now show that Gξ   in (6) satisfies the 

requirements in (3). Using step 1 of (6), we see that the value of Gξ  at ( ) ( ), ,X S x s=  is 

ξ .  Also, from step 3 of (6), we see that, for a given x  and s,  the distribution of  Gξ  
does not depend on any unknown parameters. Therefore, Gξ  is a GPQ for the mean ξ . It 
is easy to see that the lower / 2α  quantile and the upper / 2α  quantile of Gξ  form the 
usual t interval for the mean. In other words, inferences on ξ  based on the GPQ in (6) 

and the one based on the classical pivotal quantity ( ) ( )/ /X S nξ−  are the same. 

 



 7

An appealing feature of the generalized variable approach is that one can readily develop 
a GPQ for a function of several parameters provided a GPQ for each parameter is 
available. Specifically, if the pair (G

21
, θθ G ) forms  GPQs for ( 1 2,θ θ ), then the GPQ for a 

function ( )1 2,f θ θ  is given by ( )1 2
,f G Gθ θ .  As will be seen in the sequel, this particular 

feature of the generalized variable approach enables us to construct GPQs for various 
functions of the variance components and the overall mean in a one-way random effects 
model.  As an example, we shall now construct a GPQ for a log normal mean.  
 
A GPQ for a Lognormal Mean 
 
Let 1,..., nY Y  be a sample from a lognormal distribution with parameters ξ  and σ so that 

the mean is ( )exp ς , where 
2

2
σς ξ= + .  As the mean is a one-one function of ς , it is 

enough to find a GPQ for ς .  Let ln( ),  1,...,i iX Y i n= = . Then the log-transformed data 

1,..., nX X  can be regarded as a sample from a normal distribution with mean ξ  and 
standard deviation σ . Let 2 and X S  denote respectively the mean and variance of the 
sample. As we already developed a GPQ for ξ , we shall now develop a GPQ, denoted by 

2G
σ

, for 2σ  using  the fact that 2 2( 1) /n S σ−  has the chi-square distribution with df = 

1.n −  Let 2s be an observed value of  2S . Then a GPQ is given by 
 

2

2 2
2

2 2
1

.

1
n

sG s
S

n

σ

σ
χ −

= =
⎛ ⎞
⎜ ⎟−⎝ ⎠

 

We see from the above expression that the value of  2G
σ

 at 2 2S s=  is 2σ  and the 

distribution of  2G
σ

 does not depend on any parameter when 2s  is fixed. Thus, 2G
σ

 is a 

bona fide GPQ for 2σ . The GPQ for 
2

2
σς ξ= +  is given by 2

2
G

G σ
ξ + , where Gξ  is 

given in (6). Finally, a GPQ for the lognormal mean is given by 2exp
2

G
G σ

ξ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
. For a 

given ( )2,x s  of ( )2,X S , the distribution of the GPQ does not depend on any unknown 
parameters, and so its percentiles can be estimated by Monte Carlo simulation or by 
numerical integration. Specifically, the / 2α  and 1 / 2α−  quantiles of the GPQ  form a 
1 α−  confidence interval for the lognormal mean. Krishnamoorthy and Mathew (2003) 
showed that the results based on the GPQ are comparable to those based on the exact 
method due to Land (1973).  
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EXCEEDANCE PROBABILITIES, QUANTILES AND 
TOLERANCE LIMITS 

 
In order to explain the relationship between exceedance probabilities and quantiles, and 
to describe the role of tolerance intervals, let us consider a random variable X that is 
distributed normally with mean µ  and variance 2σ .  For a specified limit k, consider the 
exceedance probability ( )P X k> . Note that ( )P X k A> ≥  is equivalent to 

( ) 1P X k A≤ < − . The latter inequality holds if and only if k is less than or equal to the 
(1 )A− th quantile of X, namely, µ +z A−1 σ , where z A−1  is the (1 )A− th quantile of a 
standard normal distribution.  In other words, statements concerning an exceedance 
probability translate into statements concerning the quantiles.  Thus, the null hypothesis 

0 : ( )H P X k A> ≥  is equivalent to 0 1: AH z kµ σ−+ ≥ . 
 
In order to see the role of tolerance intervals, let us first recall the definition of an upper 
tolerance limit. Let X  and S 2 denote the sample mean and sample variance based on a 
sample of n observations from the normal distribution. An upper tolerance limit for the 
normally distributed random variable is a function of  X  and 2S , denoted by ( )2,g X S , 
and is constructed so that at least a proportion p of the normal distribution is below  
( )2,g X S , with  confidence, say, 1 α− .  The proportion p is also referred to as the 

content of the tolerance interval. Since we know that a proportion p of the normal 
distribution is less than pzµ σ+ , the upper tolerance limit ( )2,g X S  is nothing but a 

1 α−  upper confidence limit for  pzµ σ+ .  This is because proportion p of the normal 

distribution is less than pzµ σ+  which is less than or equal to ( )2,g X S  with probability 

1 α− . Therefore, at least a proportion p of the normal distribution is below ( )2,g X S  
with confidence 1 α− . Thus, testing  
 

0 0: ( )   vs.  : ( )H P X k A H P X k A> ≥ > <  
 
is equivalent to testing 
 

0 1 0 1:   vs.  : .A AH z k H z kµ σ µ σ− −+ ≥ + <  
 
Notice that the null hypothesis will be rejected if a 1 α−  upper confidence limit for 

1 Azµ σ−+  (or 1 A−  content - 1 α−  coverage upper tolerance limit) is less than k. We 
refer to Guttman (1970) for more details on tolerance intervals, along with the expression 
for g( X ,S 2 ) given above.  
 
For simplicity, we have presented the above results for the normal distribution, where the 
observations in the sample are all independent. However, the above results also hold 
more generally. In fact, the present article deals with observations that follow a one-way 
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random effects model, and are not independent.  The case of independent observations is 
already addressed in Krishnamoorthy, Mathew and Ramachandran (2006).  
 

THE ONE-WAY RANDOM EFFECTS MODEL 
 
To describe the problem, let us consider the framework as given in Rappaport et al. 
(1995) and  Lyles et al. (1997a). Let ijX  denote the jth shift-long exposure measurement 
for the ith worker, 1, , ij n= …  and 1, , .i k= …  Let us assume that ijX follows a lognormal 
distribution so that ln( )ij ijY X=  follows a normal distribution. Under the assumed one-
way random effects model, we can write 
 

,    1, , ;   1, , ,ij i ij iY j n i kµ τ ε= + + = =… …                                                                          (7) 
 
where µ  is the overall mean, iτ  represents the random effect due to the ith worker, and 
εij is the random deviation of the ith worker’s exposure around that worker’s mean. 
Furthermore, iτ  and ijε  are mutually independent with  
 

2 2(0, )   and   (0, ).i ij eN Nττ σ ε σ∼ ∼                                                                                   (8) 
 
Notice that, conditionally given iτ , ijY  is normally distributed with mean iµ τ+  and 

variance 2
eσ . Therefore, the mean exposure 

ixµ for the ith worker is given by 
 

2( | ) (exp( ) | ) exp( / 2),
ix ij i ij i i eE X E Yµ τ τ µ τ σ= = = + +                                                    (9) 

 
where E denotes the expectation. Also, it follows from (7), (8) and (9) that 
unconditionally,  
 

( ) ( )2 2 2 2~ ,  and ln( ) ~ / 2,
iij e x eY N Nτ τµ σ σ µ µ σ σ+ + .                          (10) 

 
Thus the parameter θ  mentioned in (1) is a probability that the random variable 

ixµ (or  
ln(

ixµ )) exceeds the OEL (or ln(OEL)), and the parameter η  in (2) is a probability that 
the random variable ijX (or ijY ) exceeds the OEL (or ln(OEL)).  

 
GPQs FOR THE OVERALL MEAN AND VARIANCE COMPONENTS IN THE 

ONE-WAY RANDOM MODEL 
 
As the exceedance probabilities are functions of the overall mean and the variance 
components, we shall first provide GPQs for these individual parameters. The methods of 
constructing generalized variables for the mean and variance components, their validity, 
and the statistical properties of the inferential procedures based on them are well 
addressed in Krishnamoorthy and Mathew (2002, 2004) and Krishnamoorthy and Guo 
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(2005). As we have already shown that the present problem of exceedance probabilities 
has one-one relation with that of constructing one-sided tolerance limits, the frequentist 
coverage probabilities should be similar to those for tolerance limits considered in the 
aforementioned papers.  Specifically, the coverage probabilities of confidence limits are 
close to the nominal confidence level as long as the one-way random effects model is 
well fitted for a given sample. 
 
In the following, we shall provide necessary summary statistics and their distributional 
results that are required to construct GPQs for µ ,  2

τσ  and 2
eσ .  Let 

 

( ) ( )221
. . . .

1 1 1 1 1 1

1 1 1
,  ,  ,  and . 

i in nk k k k

i i ij i e ij i y i
i j i i j ii

n n Y Y Y Y SS Y Y SS Y Y
k n k

−

= = = = = =

= = = = − = −∑ ∑ ∑ ∑∑ ∑�
 

 
Note that SSe is the usual error sums of squares (or within sums of squares). It is known 
that 
 

2 2
2 2

12 2 2, ,   ,  and ~  (approximately),ye e
N k k

e e

SSn SSY N
k n

τ

τ

σ σµ χ χ
σ σ σ− −

⎛ ⎞+
⎜ ⎟ +⎝ ⎠

�
∼ ∼

�
                (11) 

 
and these three random variables are independent. The former two distributions are exact, 

and the approximate chi-square distribution associated with  2 2
y

e

SS
nτσ σ+ �

 is due to Thomas 

and Hultquist (1978). Because of this approximate chi-square distribution, some of the 
properties required for GPQ’s will hold only approximately. 
 
Let ( ), ,e yy ss ss  be an observed value of ( ), ,e yY SS SS . That is, ( ), ,e yy ss ss  is the 

computed value of ( ), ,e yY SS SS  based on a given data set. The generalized variable for 

the overall mean µ  can be constructed as 
 

( ) 2 2

2 2

2
1

    ,

ye

ye

y

k

k Y ssn
G y

SS kn

ssZy
k

τ
µ

τ

µ σ σ

σ σ

χ −

− +
= +

+

= +

�

�
                                                                           (12) 

 
where (0,1)Z N∼  independently of 2

1kχ − . To get the second step, we have used the 
distributional properties in (11). In particular, we have used the approximate chi-square 

distribution associated with 2 2
y

e

SS
nτσ σ+ �

. We note that the second step in (12) holds only as 
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an approximation. Let us verify that Gµ satisfies the conditions (i) and (ii) in (3). From 

step 1 in (12), we see that Gµ is equal to µ  when Y y=  and y ySS ss= . Also, we observe 
from step 2 of (12) that, for a given y  and yss , the distribution of Gµ  does not depend 

on any unknown parameters because the joint distribution of ( )2
1, kZ χ −  does not depend 

on any unknown parameters.  
 
We can construct the generalized variables for the variance components similarly. For  

τσ , we develop the generalized variable (noting that 2 2 2
e en nτ τσ σ σ σ= + −� � ) as 

 
2 2 2

2 2
1

     ,

e e
y e

y e

y e

k N k

n nG ss ss
SS SS

ss nss

τ

τ
σ

σ σ σ

χ χ

+

− − +

⎛ ⎞+
= −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

� �

�
 

 

where for any number x, ( ) max{0, }x x+ = , and 
1

.
k

i
i

N n
=

=∑  To get the second step, we 

used the result that 2
12 2

y
k

e

SS
nτ

χ
σ σ −+

∼
�

 independently of  2
2
e

N k
e

SS χ
σ −∼ . It is easy to verify 

that G
τσ

satisfies the conditions in (3).  For 2
eσ , we have 2

2

2 .
e

e e
e

e N k

ssG ss
SSσ

σ
χ −

= =  Again, it 

is easy to see that 2
e

G
σ

 satisfies the conditions in (3).  

 
Finally, the generalized variable for any function 2 2( , , )ef τµ σ σ  can be obtained by 
replacing 2 2,   and eτµ σ σ  by their generalized variables. 
 
Note that since the chi-square distribution associated with ySS is only approximate, 
conditions (i) and (iii) in (5) will hold only approximately. However, the extensive 
numerical results in Krishnamoorthy and Mathew (2004), and Krishnamoorthy and Guo 
(2005) show that the generalized variable approach is quite satisfactory in the unbalanced 
case. Though not pointed out in this article,  GPQ’s are not unique in the unbalanced 
case. What we have provided is one solution that  performs satisfactorily.  
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AN UPPER LIMIT FOR θ  
  
Using the distributional result in (10), we can express θ  as 
 

( ) ( )
2ln(OEL) / 2OEL ln( ) ln(OEL) 1 ,

i i

e
x xP P

τ

µ σθ µ µ
σ

⎛ ⎞− −
= > = > = −Φ⎜ ⎟

⎝ ⎠
                  (13) 

where (.)Φ  denotes the standard normal distribution function. As already noted, testing 
hypotheses about θ  is equivalent to testing about the (1 )A− th quantile of the mean 

exposure distribution in (10), and the quantile is given by 
2

12
e

Az τ
σµ σ−+ + , where pz is 

the pth quantile of the standard normal distribution.  In particular, the hypotheses in (1) 
are equivalent to 
 

2 2

0 1 1: ln(OEL)   vs.   : ln(OEL).
2 2

e e
A a AH z H zτ τ

σ σµ σ µ σ− −+ + ≥ + + <                           

 

For example, if A = 0.10, then 
2 2

1 1.282
2 2

e e
Az τ τ

σ σµ σ µ σ−+ + = + +  is the 90th percentile 

of the distribution of ln( )
ixµ . If a 95% upper confidence limit for 

2

.902
e z τ

σµ σ+ +  is less 

than ln(OEL), then we can conclude that 0.10θ <  at the level of significance 0.05. Large 
sample solutions to the above testing problem are given in Lyles et al. (1997a, b). Tests 
based on the generalized variable approach are given in Krishnamoorthy and Mathew 
(2002) and Krishnamoorthy and Guo (2005). 
 
Notice that θ  in (13) is a function of 2( , , )e τµ σ σ , and so we can write θ  as  2( , , )e τθ µ σ σ . 
If ,  G G

τµ σ and 2
e

G
σ

 are the generalized variables for 2,   and eτµ σ σ  respectively, then a 

generalized variable for θ  is given by 
 

( ) 2

2

ln(OEL) / 2
, , 1 ,e

e

G G
G G G

Gτ

τ

µ σ
µ σ σ

σ

θ
− −⎛ ⎞

= −Φ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                         (14) 

where 
 

2 22 2 22
11

,     and  ,
e

y y e e

k N k N kk

ss ss nss ssZG y G G G
k τ τ

µ σ σ σχ χ χχ − − −+−

⎛ ⎞
= + = = − =⎜ ⎟

⎝ ⎠

�
                  (15) 

 
where 

1

k
ii

N n
=

= ∑  and ( ) max{0, }x x+ = .  Notice that the generalized variable G
τσ

could 
be zero; however, this does not cause any problem in computing (14) because the 
argument of  the normal distribution function Φwhen 0G

τσ
=  is either 
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 or −∞ ∞ depending on the sign of the numerator of the argument. In either case, the 
distribution function is defined and ( ) 0 and ( ) 1.Φ −∞ = Φ ∞ =  
 
We see from (15) that, for a given ( ), ,e yy ss ss , the distributions of ,  G G

τµ σ  and  2
e

G
σ

 do 

not depend on any unknown parameters; so the distribution of  ( )2, ,
e

G G G
τµ σ σ

θ  is also 

free of unknown parameters. Even then, it is not easy to find the joint sampling 
distribution of all the independent random variables involved in ( )2, ,

e
G G G

τµ σ σ
θ . 

However, one can use Monte Carlo simulation as given in the following algorithm to 
estimate the percentiles of  ( )2, ,

e
G G G

τµ σ σ
θ . 

 
Algorithm 1 
 
For a given data set, compute , ,  and e yn y ss ss�   
 
For i = 1, m 
Generate 2 2

1(0,1),    and  k N kZ N χ χ− −∼  
compute ,  G G

τµ σ  and  2
e

G
σ

 using (11) 

compute 2ln(OEL) / 2
e

Q G G
τσ σ

= − −  

if 0 and 0 thenG Q
τσ
= <  

       set 1iT =  
else if 0 and 0 thenG Q

τσ
= >  

       set 0iT =  

else set 1i
QT

G
τσ

⎛ ⎞
= −Φ⎜ ⎟⎜ ⎟

⎝ ⎠
 

[end do loop] 
 
The 100 (1 )α− th percentile of iT ’s is a 1 α− upper limit for θ . Based on our experience, 
we recommend simulation consisting of at least 100,000 (i.e., the value of m in Algorithm 
1) runs to get consistent results regardless of the initial seed used for random number 
generation. The above algorithm can be easily programmed in any programming 
language. A SAS program for computing one-sided limits for θ  is posted at 
http://www.ucs.louisiana.edu/~kxk4695. Interested readers can download 
these files from this website. 
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AN UPPER LIMIT FOR η  
 
Notice that the probability that an individual exposure measurement exceeds the OEL is  
given by ( OEL)ijP Xη = > . Since 2 2ln( ) ( , )ij ij eY X N τµ σ σ= +∼ , we have 

( ) ( )
2 2

ln(OEL)OEL ln(OEL) 1 .ij ij

e

P X P Y
τ

µη
σ σ

⎛ ⎞−⎜ ⎟= > = > = −Φ
⎜ ⎟+⎝ ⎠

                                 (16) 

 
As 2 2ln( ) ( , )ij ij eY X N τµ σ σ= +∼ , its (1 )A− th quantile is given by 2 2

1 A ez τµ σ σ−+ + . 

Therefore, testing 0 :    vs.   :aH A H Aη η≥ <  is equivalent to testing  
 

2 2 2 2
0 1 1: ln(OEL)   vs.   : ln(OEL).A e a A eH z H zτ τµ σ σ µ σ σ− −+ + ≥ + + <                    (17) 

 
The null hypothesis in (2) will be rejected at the level α if a 1 α−  upper confidence limit 
for 2 2

1 A ez τµ σ σ−+ +  is less than ln(OEL).  
 
As noted earlier, the above hypotheses can be tested by comparing an upper tolerance 
limit for N( 22, eσσµ τ + ) with ln(OEL), where the content of the tolerance interval is to 
be1 A− , and the confidence level is to be 1 α− . Towards this, we note that 
Krishnamoorthy and Mathew (2004) provided such an approximate upper tolerance limit, 
and is given by 

1
2

1,1 1 1, ,
( 1)(1 )( ) ( ) ,   with  ,

( 1)
y e

k A k N k
y

ss ssk k nU A y t z k F
k k N k ssα αδ δ− − − − −

⎛ ⎞− −
= + = +⎜ ⎟⎜ ⎟− −⎝ ⎠

�
     (18) 

where , ( )m pt δ  is the pth quantile of a noncentral t distribution with df = m and 
noncentrality parameter δ , and 1, ,k N kF α− − denotes the α th quantile of an F distribution 
with degrees of freedoms 1k − and N k− .  
 
A 1 α−  upper confidence bound for η  can be obtained by identifying the set of values of 
A for which the null hypothesis in (17) will be accepted. Specifically, the maximum value 
of A for which the null hypothesis in (17) is accepted, or equivalently U(A) satisfying  

( ) ln(OEL)U A ≥ , is a 1 α−  upper bound for η . Notice that δ  in (18) is a decreasing 
function of A while the other quantities are fixed, because 1 Az −  is decreasing with 
increasing A. Furthermore, for a given m and p, it is known that , ( )m pt δ  is an increasing 
function of δ .  As a result, U(A) in (18) is a decreasing function of A, and the maximum 
value of A for which ( ) ln(OEL)U A ≥  is the solution of the equation ( ) ln(OEL)U A = . 
Thus, a 1 α− upper limit for η  is the solution (with respect to A) of the equation 
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1,1( ) ( ) ln(OEL)
( 1)

y
k

ss
U A y t

k kα δ− −= + =
−

.        (19) 

Write   
 

1
2

1 1, ,
( 1)(1 ),   where .e

A k N k
y

ssk k nz c c k F
N k ss αδ − − −

⎛ ⎞− −
= = +⎜ ⎟⎜ ⎟−⎝ ⎠

�
                                             (20) 

 
Then, from (19), we have 
 

1,1 1
( 1)( ) (ln( ) ) .k A

y

k kt z c OEL y
ssα− − −
−

= −                                                                          (21) 

 
The above equation can be solved for A by using available PC calculators as shown in the 
example section below. 
 
It should be noted that many other approaches are available for computing an upper 
tolerance limit in the one-way random model; see for example, Mee and Owen (1983), 
Bhaumik and Kulkarni (1996),  and Liao, Lin and Iyer (2005). The first two references 
deal with the balanced data situation only, whereas Liao, Lin and Iyer (2005) also 
consider the unbalanced situation.  We have chosen to use the results in Krishnamoorthy 
and Mathew (2004) since their approximate upper tolerance limit has an explicit 
expression, and hence is easy to compute. Overall, their approximation is quite accurate, 
as noted in Krishnamoorthy and Mathew (2004).  
 

EXAMPLES 
 
We shall now illustrate the methods of the preceding sections using two sets of shift-long 
exposure data reported in Tables D2 and D3 of Lyles et al. (1997b). The data in Tables 
D2 and D3 represent nickel dust exposure measurements on a sample of maintenance 
mechanics from a smelter, and on a sample of maintenance mechanics from a mill, 
respectively. The data were collected from samples of workers from a nickel producing 
facility. For these data sets, we computed the values of y , n� , yss  and ess  as given in 
Tables 1 and 2. An upper limit for θ  can be computed by plugging these values in the 
generalized variables in (14) and then using Algorithm 1. To compute the 95% upper 
limits for θ , we used Algorithm 1 with m = 100,000. 
 
The results for the group of maintenance mechanics from a smelter are given in Table 1. 
Here, we see that the 95% upper limit for θ  is 0.0004. That is, less than .04% of mean 
exposures exceed the OEL.  
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Table 1.  Upper limits for ( )OEL

ixPθ µ= >  and for ( )OELijP Xη = >  based on nickel 

exposure data in Table D2 of Lyles et al. (1997b); k = 23 and N = 34; OEL = 1 mg/ m3 
 
                                                                           upper limit for θ       upper limit for η  
    y              n�                yss              ess              95%        99%            95%        99% 
-3.683        0.855          16.081        2.699          .0004       .0020         .0010         .0032 
 
To compute the 95% upper limit forη , we need to compute the value of c in (20). Using 
the statistics in Table 1, and 22,11,.05 0.4428F = , we computed  

1 1
2 2

1, ,
( 1)(1 ) 23(22)(1 0.855) 2.69923 (.4428) 4.9112.

34 23 16.081
e

k N k
y

ssk k nc k F
N k ss α− −

⎛ ⎞− − −⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

�

 
Thus, we have from (21) that 
 

1,1 1 22,.95 1
23(22)( ) ( (4.9112)) 3.863 20.6595.
16.081k A At z c t zα− − − −= = =                (22) 

 
Using the online calculator (http://calculators.stat.ucla.edu/cdf/), we 
computed 1 1(4.9112) 15.1994  or  3.0948.A Az z− −= =  The last equation implies that 
1 (3.0948)A− = Φ  or A = 0.0010. Thus, a 95% upper limit for η  is 0.001. This means 
that less than 0.1% of exposure measurements exceed the OEL. To compute a 99% upper 
limit, we have to use 22,11,.01 0.3141F = . Using this value, we computed c as 4.8323. 
Then solving the equation 22,.99 1( (4.8323)) 20.6595At z − = , we get 

1 13.1995 / 4.8323 2.7315.Az − = =  This yields a 99% upper limit for η  as .0032. 
 
Note: The online calculator mentioned above or the StatCalc 2.0 by Krishnamoorthy 
(2006) posted at http://www.ucs.louisiana.edu/~kxk4695 computes the 
missing value satisfying the equation ( ( ) )mP t x qδ ≤ =  when the other three values are 
given. In our case, δ is the missing value. To solve (22), we use m = 22, x = 20.6595 and 
q = 0.95. Using these values, we get 1 (4.9112) 15.1994.Azδ −= =  
 
In Table 2 we present the results for the exposure data collected from a group of 
maintenance mechanics from a mill.  The 95% (99%) upper limit for θ  is 0.0002 (.0045).  
We also computed 95% (99%) upper limit for η  as .0028 (.0084). 
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Table 2.  Upper limits for ( )OEL
ixPθ µ= >  and for ( )OELijP Xη = >  based on nickel 

exposure data in Table D3 of Lyles et al. (1997b); k = 20, and N = 28; OEL = 1 mg/ m3 
                                                                           upper limit for θ       upper limit for η  
    y              n�                yss              ess              95%           99%         95%         99% 
-4.087        0.854           19.681        9.801         .0002         .0045         .0028       .0084 
 
Remark.  We would like to point out that the above data were used by Lyles et al. 
(1997b) and Krishnamoorthy and Guo (2005) for testing 0 0:   vs.  :H A H Aθ θ≥ < . 
Lyles et al. used a large-sample method, and Krishnamoorthy and Guo used a generalized 
variable approach. If A = 0.1, then both approaches showed that Aθ < , at significance 
level 0.05, for both sets of data. However, if A = 0.05, then in order to conclude whether 
or not Aθ < , one has to carry out the test procedures again at significance level 0.05.  On 
the other hand, in our present setup, the computed 95% upper limits for θ  enable us to 
conclude whether or not 0.05θ <  for both problems at level 0.05. This is certainly an 
advantage of setting one-sided limits for θ .  

 
CONCLUDING REMARKS 

 
The use of a model that includes a random effect is a convenient and practically useful 
approach in order to capture the heterogeneity among the exposed group. In this article, 
we concentrated on a situation where the one-way random effects model is appropriate 
for the log-transformed exposure data.  Problems of interest for the purpose of exposure 
monitoring now reduce to inference problems concerning the unknown parameters of the 
model: the overall mean and the two variance components. As opposed to standard 
applications of the one-way random effects model, where the problems of interest deal 
with the individual parameters, exposure monitoring applications require inference on 
parametric functions that involve all the unknown parameters. Novel approaches are 
required to deal with such problems, especially since small sample procedures are 
desired. Here we have investigated the generalized inference idea to come up with 
confidence intervals and tests for two parametric functions of interest:  the probability 
that the mean exposure of an individual worker exceeds the occupational exposure limit 
(OEL), and the probability that the exposure of a worker exceeds the OEL.  The latter 
parametric function also comes up in connection with the computation of tolerance 
intervals. We have also illustrated our methodology by applying them for the analysis of 
actual exposure data. 
 
For the problems mentioned in this article, large sample confidence bounds could be 
easily obtained using standard methods; see Lyles, Kupper and Rappaport (1997a) for 
details. However, the numerical results in Krishnamoorthy and Mathew (2002) show that 
the generalized variable approach has a definite edge in terms of maintaining the type I 
error probability of the tests, and coverage probability of the confidence intervals. As 
should be clear from the computational algorithm mentioned in this article, the 
generalized variable approach is quite easy to implement. Furthermore, the fact that they 
are also applicable to small samples make them attractive options for analyzing exposure 
data.    
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