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Abstract

This article is about testing the equality of several normal means when the variances are
unknown and arbitrary, i.e., the set up of the one-way ANOVA. Even though several tests
are available in the literature, none of them perform well in terms of type I error probability
under various sample size and parameter combinations. In fact, the type I errors can be
highly inflated for some of the commonly used tests; a serious issue that appears to have
been overlooked. We propose a parametric bootstrap (PB) approach and compare it with
three existing location-scale invariant tests – the Welch test, James test and the generalized
F (GF) test. The Type I error rates and powers of the tests are evaluated using Monte Carlo
simulation. Our studies show that the PB test is the best among the four tests with respect
to Type I error rates. The PB test performs very satisfactorily even for small samples while
the Welch test and the GF test exhibit poor Type I error properties when the sample sizes
are small and/or the number of means to be compared is moderate to large. The James test
performs better than the Welch test and the GF test. It is also noted that the same tests
can be used to test the significance of the random effect variance component in a one-way
random model under unequal error variances. Such models are widely used to analyze data
from inter-laboratory studies. The methods are illustrated using some examples.
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1. Introduction

There has been a continuous interest in the problem of comparing several normal means
when the variances are unknown and arbitrary. This problem, when only two normal means
are involved, is referred to as the Behrens-Fisher problem, and it has been well addressed
in the literature. Among the tests proposed for the Behrens-Fisher problem, Welch’s (1947)
approximate degrees of freedom solution is a popular one. Welch’s test is based on Student’s t
distribution with degrees of freedom (df) depending not only on the sample sizes but also the
sample variances. Nevertheless, this approach has been well accepted and commonly used in
practical applications because of its simplicity and accuracy. Indeed many introductory level
text books (e.g., Moore, 2003, p. 454) recommend the Welch test regardless of the variances
being equal or unequal. This is mainly because the conventional approach, regarding the
choice between the two-sample t test and the Welch test, is to test first the equality of
variances, and if the equality is tenable then use the t test, otherwise use the Welch test. Type
I error and power studies of this conventional approach by Moser, Stevens and Watts (1989)
showed that the preliminary test about variance homogeneity is superfluous and Welch’s
approximate test was satisfactory for all parameter configurations. Another criticism about
the conventional approach is the appropriateness of the usual variance ratio test; this test
is heavily dependent on the normality assumption, and nonnormality and unequal variances
cannot be separated with this test.

For the comparison of k normal means under unequal variances, there is no single-stage
procedure that performs satisfactorily for all sample sizes and parameter configurations.
Bishop and Dudewicz (1978) proposed an exact two-stage sampling procedure; however, this
procedure is not well accepted in practice as it is not practical to require additional large
samples in the second stage. The usual F test is based on the assumption of equal error
variances, and its performance is satisfactory if there is a moderate departure from this
assumption. However, the F test is liberal (Type I error rates are appreciably larger than
the nominal level) when the sample sizes are negatively correlated with the variances and
too conservative if they are positively correlated (Krutchkoff 1988 and Lee and Ahn 2003).
Several authors proposed asymptotic solutions when the error variances are unknown and
arbitrary. Among them, Welch’s (1951) test, which is a generalization of the solution to
the Behrens-Fisher problem, appears to be one of the first. Another early paper on the
problem is James (1951), who derived a second order approximation to the distribution of
a natural test statistic; the resulting test is referred to as James second-order test. Brown
and Forsythe (1974), Rice and Gaines (1989), Weerahandi (1995a), Chen and Chen (1998)
and Lee and Ahn (2003) proposed tests based on asymptotic or other approaches. Monte
Carlo comparison studies by Gamage and Weerahandi (1998), Gerami and Zahedian (2001)
and Lee and Ahn (2003) showed that, out of these and other tests, only Welch’s test and
Weerahandi’s (1995a) generalized F test emerged satisfactory provided the sample sizes are
moderate or large. Weerahandi (1995a) argued that his generalized F (GF) test is equivalent
to the test given by Rice and Gaines (1989). A review study by Coombs, Algina and Oltman
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(1996) pointed out that the James second-order test performs much better than the Welch
test and the Brown-Forsythe test for small samples.

We have observed in the literature that the asymptotic procedures and other tests are
evaluated for their validity for small k and/or moderate to large samples; some of the tests
perform satisfactorily in this case. Extensive numerical results reported in Dajani (2002)
show that none of the tests perform satisfactorily (in terms of type I error probability) when
k is large and the sample sizes are small−a situation of practical importance in the context
of the one-way random model, as explained below. In the following section, we describe the
Welch test, the James second-order test, the generalized F test due to Weerahandi (1995a),
and propose a parametric bootstrap (PB) test, for the one-way ANOVA model with fixed
effects and unequal error variances. We chose the Welch test, the GF test and the James
test as they are location-scale invariant, and perform better than other asymptotic tests for
moderate k and large sample sizes. For k = 2, an approximation to the distribution of the
PB pivot variable yields the Welch approximate df test. The methods are compared with
respect to Type I error rates and power using Monte Carlo simulation. Comparison studies
in Section 3 show that the PB test is the best among all the four tests.

Section 4 is on the one-way random model with unequal error variances, and we address
the problem of testing the significance of the random effect variance component. In applica-
tions dealing with inter-laboratory studies, such a model is used to analyze the data. The
primary problem of interest here is inference concerning the common mean; see Rukhin and
Vangel (1998) and Vangel and Rukhin (1999) for more details and further references. How-
ever, it is of some interest to test the significance of the random effect variance component;
if there is strong evidence to conclude that this variance component is insignificant, the data
can be analyzed using the much simpler common mean model. It turns out that the tests
used in the fixed effects model can also be used to test the significance of the inter-laboratory
variance component in the case of the random effects model. This is noted in Section 4. The
methods are illustrated using some examples in Section 5. Some concluding remarks are
provided in Section 6.

Regarding the parametric bootstrap methodology that we have proposed here, note that
the bootstrap can obviously be carried out both parametrically and nonparametrically. How-
ever, the problems addressed in this paper are in a strict parametric setting, namely the one-
way fixed or random model with the usual normality assumptions, and heterogenous error
variances. Thus we have chosen to do the bootstrap parametrically. If the model assump-
tions are at least approximately correct, Lee (1994) concludes that parametric bootstrap
results may be more accurate than their nonparametric versions. Consequently, we have not
considered the nonparametric bootstrap in this work.
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2. Tests for the Fixed Effects Model

The one-way model under fixed effects correspond to k normal populations N(µi, σ
2
i ),

i = 1, 2, . . . , k. Let Xi1, . . . , Xini
be a random sample from N(µi, σ

2
i ), and let X̄i and S2

i

denote the sample mean and sample variance, respectively. That is,

X̄i =
1

ni

n∑

i=1

Xij and S2
i =

1

ni − 1

ni∑

j=1

(Xij − X̄i)
2, i = 1, . . . , k. (1)

Let X̄ = (X̄1, . . . , X̄k)
′, µ = (µ1, . . . , µk)

′, S = diag(S2
1/n1, . . . , S

2
k/nk) and

∆ = diag(σ2
1/n1, . . . , σ

2
nk

/nk). The hypotheses of interest are

H0 : µ1 = . . . = µk vs. Ha : µi 6= µj for some i 6= j, (2)

and we want to carry out a test using X̄ and S.

If σ2
i ’s are known, then a natural statistic for testing (2) is given by

TN(X̄1, . . . , X̄k; σ
2
1, . . . , σ

2
k) =

k∑

i=1

ni

σ2
i

[
X̄i −

∑k
i=1 niX̄i/σ

2
i∑k

i=1 ni/σ2
i

]2

(3)

=
k∑

i=1

ni

σ2
i

X̄
2

i −
[∑k

i=1 niX̄i/σ
2
i

]2

∑k
i=1 ni/σ2

i

= X̄
′
∆− 1

2


Ik − ∆− 1

211′∆− 1
2

1′∆−11


 ∆− 1

2 X̄,

where Ik is the identity matrix of order k and 1 is the k × 1 vector of ones. Since

∆− 1
2 X̄ ∼ Nk(∆

− 1
2 µ, Ik), and B =

(
I − ∆−

1
2 11′∆−

1
2

1′∆−11

)
is an idempotent matrix with rank

k − 1, we have
X̄

′
∆− 1

2 B∆− 1
2 X̄ ∼ χ2

k−1(µ
′∆− 1

2 B∆− 1
2 µ),

where χ2
m(δ) denotes a noncentral chisquare random variable with degrees of freedom m and

noncentrality parameter δ. (See Seber 1977, p. 37). The noncentrality parameter

µ′∆− 1
2 B∆− 1

2 µ =
k∑

i=1

ni

σ2
i

[
µi −

∑k
i=1 niµi/σ

2
i∑k

i=1 ni/σ2
i

]2

,

and is equal to zero when µ1 = . . . = µk. Let x̄ = (x̄1, . . . , x̄k) be the observed value of X̄.
Then, the test that rejects H0 in (2) whenever

TN(x̄1, . . . , x̄k; σ
2
1, . . . , σ

2
k) > χ2

k−1,α

is a size α test, where χ2
m,α is the upper αth quantile of a chi-square distribution with df =

m.
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In general, the population variances σ2
i ’s are unknown; in this case, a test statistic can

be obtained by replacing σ2
i in (3) by S2

i , i = 1, . . . , k, and is given by

TN(X̄1, . . . , X̄k; S
2
1 , . . . , S

2
k) =

k∑

i=1

ni

S2
i

X̄
2

i −
[∑k

i=1 niX̄i/S
2
i

]2

∑k
i=1 ni/S2

i

. (4)

In the following, we describe Welch’s test, James’ second-order test, the generalized F
test due to Weerahandi (1995a) and the PB test.

2.1 Welch’s test

Let wj = nj/S
2
j , j = 1, . . . , k. Welch (1951) showed that

W ∗ =
TN(X̄1, . . . , X̄k; S

2
1 , . . . , S

2
k)/(k − 1)

1 + 2(k−2)
k2−1

∑k
i=1

1
ni−1

(
1− wi∑

wj

)2 ∼ Fk−1,f approximately, (5)

where TN is given in (4) Fr,s denotes a random variable having an F−distribution with (r, s)
degrees of freedom, and

f =


 3

k2 − 1

k∑

i=1

1

ni − 1

(
1− wi∑

wj

)2


−1

.

For a given level α, and an observed value w∗ of W ∗, this test rejects the H0 in (2) whenever
the p-value P (Fk−1,f2 > w∗) < α.

2.2 James’ test

James (1951) derived a second order approximation (that is, order of −2 in the df ni−1)
to the distribution of the statistic TN(X̄1, . . . , X̄k; S

2
1 , . . . , S

2
k). The critical value, which is a

function of S2
i ’s, based on the second order approximation can expressed as follows. Let

Q =
k∑

i=1

1

ni − 1

(
1− wi∑k

j=1 wj

)2

, cs =

(
χ2

k−1,α

)s

(k − 1)(k + 1) · · · (k + 2s− 3)
,

and

Rst =
k∑

i=1

1

(ni − 1)s

(
wi∑k

j=1 wj

)t

.

In terms of these quantities, the critical value

Jα = χ2
k−1,α +

1

2
(3c2 + c1)Q +

{
1

16
(3c2 + c1)

2

(
1− k − 3

χ2
k−1,α

)
Q2
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+
1

2
(3c2 + c1)

[
(8R23 − 10R22 + 4R21 − 6R2

12 + 8R12R11 − 4R2
11)

+ (2R23 − 4R22 + 2R21 − 2R2
12 + 4R12R11 − 2R2

11)(c1 − 1)

+
1

4
(−R2

12 + 4R12R11 − 2R12R10 − 4R2
11 + 4R11R10 −R2

10)(3c2 − 2c1 − 1)
]

+ (R23 − 3R22 + 3R21 −R20)(5c3 + 2c2 + c1)

+
3

16
(R2

12 − 4R23 + 6R22 − 4R21 + R20)(35c4 + 15c3 + 9c2 + 5c1)

+
1

16
(−2R22 + 4R21 −R20 + 2R12R10 − 4R11R10 + R2

10)(9c4 − 3c3 − 5c2 − c1)

+
1

4
(−R22 + R2

11)(27c4 + 3c3 + c2 + c1)

+
1

4
(R23 −R12R11)(45c4 + 9c3 + 7c2 + 3c1)

}
+ O((ni − 1)−3). (6)

This test rejects H0 in (2) when TN(x̄1, . . . , x̄k; s
2
1, . . . , s

2
k) > Jα, where TN(x̄1, . . . , x̄k; s

2
1, . . . , s

2
k)

is the observed value of TN(X̄1, . . . , X̄k; S
2
1 , . . . , S

2
k).

2.3 The Generalized F (GF) Test

We shall now describe Weerahandi’s (1995a) generalized F test. Let V 2
i = (ni − 1)S2

i

and v2
i be an observed value of V 2

i , i = 1, . . . , k. A generalized test variable is given by

GV =
TN(X̄1, . . . , X̄k; σ

2
1, . . . , σ

2
k)

TN(x̄1, . . . , x̄k; v2
1/U1, . . . , v2

k/Uk)
=

∑k
i=1

ni

σ2
i
X̄2

i −
[∑k

i=1
niX̄i/σ2

i

]2

∑k

i=1
ni/σ2

i

∑k
i=1

niUi

v2
i

x̄2
i −

[∑k

i=1

niUi
v2
i

x̄i

]2

∑k

i=1

niUi
v2
i

,

where U1, . . . , Uk are independent random variables with Ui ∼ χ2
ni−1, i = 1, . . . , k. Fur-

thermore, TN(X̄1, . . . , X̄k; σ
2
1, . . . , σ

2
k) ∼ χ2

k−1 independently of (U1, . . . , Uk). The “observed
value” of GV is defined as the value of GV at (X̄1, . . . , X̄k; V

2
1 , . . . , V 2

k ) = (x̄1, . . . , x̄k; v
2
1, . . . , v

2
k),

and this observed value is 1. Therefore, for a given (x̄1, . . . , x̄k; v
2
1, . . . , v

2
k), the generalized

p-value is given by

Pχ2
k−1

,U1,...,Uk

(
χ2

k−1

TN(x̄1, . . . , x̄k; v2
1/U1, . . . , v2

k/Uk)
> 1

)
. (7)

The GF test rejects the null hypothesis in (2) whenever the generalized p-value in (7) is less
than a given nominal level α. Notice that, for a given (x̄1, . . . , x̄k; v

2
1, . . . , v

2
k), the probability

in (7) does not depend on any unknown parameters, so it can be estimated using Monte
Carlo simulation or computed using the integral expression given in Weerahandi (1995a).
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For further details on the generalized p-value idea, along with a number of examples, we
refer to Weerahandi (1995b).

It should be noted that the software XPro (Dataxiom Software Inc., Los Angeles, Cali-
fornia, www.dataxiom.com) refers to the GF test as one of the exact parametric methods for
the ANOVA, because the generalized p-value can be computed exactly as mentioned above.
However, this generalized p-value does not always possess the properties of the usual p-value.
In general, the distribution of the generalized p-value may not be uniform(0, 1), and it may
depend on unknown parameters; see Weerahandi (1995b). Therefore, the generalized F test
is not exact in the classical sense and its properties should be evaluated using Monte Carlo
simulation.

2.4 The PB test

The parametric bootstrap involves sampling from the estimated models. That is, samples
or sample statistics are generated from parametric models with the parameters replaced by
their estimates. Recall that under H0 : µ1 = ... = µk all X̄i’s have the same mean. As
the test statistic TN in (4) is location invariant, without loss of generality, we can take this
common mean to be zero. Using these facts, the parametric bootstrap pivot variable can be

developed as follows. Let X̄Bi ∼ N
(
0,

S2
i

ni

)
and S2

Bi ∼ S2
i χ

2
ni−1/(ni − 1), i = 1, . . . , k. Then

the PB pivot variable based on the test statistic (4) is given by

k∑

i=1

ni

S2
Bi

X̄
2

Bi −
[∑k

i=1 niX̄Bi/S
2
Bi

]2

∑k
i=1 ni/S2

Bi

. (8)

Noticing the fact that X̄Bi is distributed as Zi
Si√
ni

, where Zi is a standard normal random

variable, it can be easily verified that the PB pivot variable in (8) is distributed as

TNB(Zi, χ
2
ni−1; S

2
i ) =

k∑

i=1

Z2
i (ni − 1)

χ2
ni−1

−

[∑k
i=1

√
niZi(ni−1)

Siχ2
ni−1

]2

∑k
i=1

ni(ni−1)
S2

i χ2
ni−1

. (9)

For a given (s2
1, . . . , s

2
k) of (S2

1 , . . . , S
2
k) and level α, the PB test rejects H0 in (2) when

P
(
TNB(Zi, χ

2
ni−1; s

2
i ) > TN0

)
< α, (10)

where TN0 is an observed value of TN in (4). For fixed (s1, . . . , sk), the above probability
does not depend on any unknown parameters, and so it can be estimated using Monte Carlo
simulation given in Algorithm 1.

Algorithm 1

For a given (n1, ..., nk), (x̄1, ...x̄k) and (s2
1, ..., s

2
k):

compute TN in (4) and call it TN0
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For j = 1, m
generate Zi ∼ N(0, 1) and χ2

ni−1, i = 1, ..., k
compute TNB(Zi, χ

2
ni−1; s

2
i ) using (9)

if TNB(Zi, χ
2
ni−1; s

2
i ) > TN0, set Qj = 1

(end loop)

1
m

∑m
j=1 Qj is a Monte Carlo estimate of the p-value in (10).

Remark 1. In general, it is not easy to find a useful approximation to the distribution of the
PB variable in (9). However, for the case of k = 2, we can find a convenient approximation;
in this case, it is easy to see that the PB variable in (9) is distributed as

Z2

p1
χ2

n1−1

n1−1
+ p2

χ2
n2−1

n2−1

=
Z2

D(χ2
n1−1, χ

2
n2−1|S2

1 , S
2
2)

, (11)

where p1 = (S2
1/n1)/(S

2
1/n1 + S2

2/n2), p2 = 1− p1, Z is a standard normal random variable,
and

D(χ2
n1−1, χ

2
n2−1|S2

1 , S
2
2) = p1

χ2
n1−1

n1 − 1
+ p2

χ2
n2−1

n2 − 1
.

For a fixed (S2
1 , S

2
2), we note that D(χ2

n1−1, χ
2
n2−1|S2

1 , S
2
2) is a linear combination of the two

independent chisquares, namely, χ2
n1−1 and χ2

n2−1. Hence we approximate the distribution
of D(χ2

n1−1, χ
2
n2−1|S2

1 , S
2
2) by the distribution of χ2

d/d, using the moment matching method.
As the first moments of these two variables are the same (equal to one), we solve for d by
matching the variances, for fixed (S2

1 , S
2
2). Using the result that Var(χ2

m) = 2m, and solving
the equation Var(D(χ2

n1−1, χ
2
n2−1|S2

1 , S
2
2)) = Var(χ2

d/d) for d, we get

d =

(
S2

1

n1
+

S2
2

n2

)2

S4
1

n2
1(n1−1)

+
S4

2

n2
2(n2−1)

.

Notice that the d is the degrees of freedom given in the “approximate degrees of freedom
test” for the Behrens-Fisher problem by Welch (1947). Using the chi-square approximation
of D, we see that the PB variable in (11) follows an F1,d distribution, and so the PB test
rejects the H0 in (2) whenever

TN0 > F1,d,α,

where TN0 is an observed value of TN in (4), and Fm,n,α is the upper αth quantile of an Fm,n

distribution.

3. Type I Error and Power Properties

The Type I error rates of the ANOVA tests are estimated using Monte Carlo simulation.
As we already mentioned, the tests that we consider are location-scale invariant, and so
we can take, without loss of generality, that µ1 = . . . = µk = 0, σ2

1 = 1 and 0 < σ2
i < 1,
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i = 2, . . . , k, in our simulation studies. Thus the sample statistics x̄i and s2
i will be generated

independently as x̄i ∼ N(0, σ2
i /ni) and s2

i ∼ σ2χ2
ni−1/(ni − 1), with 0 < σ2

i < 1, i = 2, . . . , k.

To estimate the Type I error rates of the Welch test, we used simulation consisting of
100,000 runs for each of the sample size and parameter configurations. That is, for a given
(n1, . . . , nk) and (σ2

1, . . . , σ
2
k), we generated 100,000 W ∗’s given in (5), and estimated the

Type I error rates by the proportion of times W ∗ exceeded Fk−1,f2,α, where Fa,b,α denotes
the upper αth quantile of an F distribution with degrees of freedoms a and b. Type I error
rates of the James test are also estimated similarly. To estimate the Type I error rates of
the GF and PB tests, we have used a two-step simulation. The Monte Carlo method used
for estimating the Type I error rates of the PB test is as follows. For a given sample size and
parameter configuration, we generated 2,500 observed vectors (x̄1, . . . , x̄k, s

2
1, . . . , s

2
k), and

the observed value TN0 in (10) was computed for each of the generated vectors. For each of
the generated TN0’s, we used 5,000 runs to estimate the p-value in (10). Finally, the Type I
error rate of the PB test was estimated by the proportion of the 2,500 p-values that are less
than the nominal level α. The Type I error rates of the GF test were similarly estimated.

In Table 1, we present the estimates of Type I error rates for k = 2, 3, 6, 10 and 20,
and sample sizes ranging from very small to moderate. We observe the following from the
numerical results in Table 1.

1. For k = 2, the Welch test, the James test and the PB test have similar Type I error
rates, except in some cases (n1 = n2 = 3), where the Welch test appears to be very
conservative. In the worst cases, the Type I error rates of both tests are around 0.06
when the nominal level is 0.05. The GF test seems to be very conservative for small
samples.

2. Type I error rates of the Welch test, the James test and the PB test are similar for the
k = 3 case. We again note that, even for small samples (n1 = 2, n2 = 3, n3 = 2) the
Type I error rates of these three tests never exceeded 0.065 whereas the Type I error
rates of the James test goes as high as 0.10 when the nominal level is 0.05.

3. We see from the reported Type I error rates for k = 6, 10 and 20 that the PB test is
the only test that controls the Type I errors satisfactorily. In particular, we see that
the Type I errors of the GF test can be as large as 0.28 when α = 0.05; this test, in
general, appears to be liberal for moderate values of k. The Type I errors of the Welch
test also exceed the nominal level considerably but not to the extent of the GF test.
The James test performs superior to the Welch test and the GF test, and it is the
second best among all four tests.

In Table 2, we provide the powers of the four tests for k = 3 and 10. We once again observe
from this table that the PB test, James’ test and Welch’s tests control the Type I errors
very well. All four tests exhibit similar power properties provided the Type I error rates are
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close to each other. In one case, where n1 = n2 = n3 = 10 and (σ2
1, σ

2
2, σ

2
3) = (1, .3, .9), the

James test appears to be less powerful than other tests. In some cases, the GF test appears
to be more powerful than other tests because of its inflated Type I error rates exceeding the
intended level 0.05.

4. Tests for the Random Effects Model

As already pointed out, the one-way random model with heteroscedastic error variances
is important in the modeling and analysis of inter-laboratory data. Let Xij denote the jth
measurement at the ith lab, j = 1, 2, . . . ., ni, i = 1, 2, . . . , k. The model is

Xij = µ + τi + eij,

where τi ∼ N(0, σ2
τ ), eij ∼ N(0, σ2

i ) are all independent random variables. The quantities
X̄i and S2

i defined earlier form a set of sufficient statistics, having the distributions

X̄i ∼ N

(
µ, σ2

τ +
σ2

i

ni

)
and S2

i ∼ σ2
i χ

2
ni−1/(ni − 1),

and all the random variables are independently distributed. The problem we shall address
is that of testing

H0 : σ2
τ = 0 vs. Ha : σ2

τ > 0.

If H0 is not rejected, we conclude that the lab effect is not significant.

We shall first note that the tests in Section 2, in the context of the fixed effects model,
are also appropriate for testing the significance of σ2

τ . For this, we shall use an observation
in Dajani and Mathew (2003), which states that any nonnegative definite quadratic form in
X̄ = (X̄1, X̄2, . . . ., X̄k)

′ has a distribution that is stochastically increasing in σ2
τ . It is easily

seen that the test statistics corresponding to the Welch test, generalized F test, as well the PB
test described in Section 2, are all positive definite quadratic forms in X̄, conditionally given
the S2

i ’s. In other words, conditionally given the S2
i ’s, these test statistics are stochastically

increasing in σ2
τ ; obviously, the same stochastic monotonicity holds unconditionally as well.

So, the same tests can be used to test H0 : σ2
τ = 0. Furthermore, the null distributions (and

hence the type I error probabilities of the corresponding tests) of the test statistics are the
same as under the fixed effects model. Thus the parametric bootstrap test continues to be
a satisfactory test in the random effects model as well.

5. Illustrative Examples

We shall illustrate the four tests using two examples. The summary statistics for the first
example are taken from Example 2 of Weerahandi (1995) so that we can compare our results
with those of Weerahandi, and understand the behavior of these tests for a small number
of groups. In the second example, we illustrate the tests using inter-laboratory data on the
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fiber content in apples obtained by nine laboratories; the summary statistics are taken from
Vangel and Rukhin (1999).

Example 1. The data were generated by Weerahandi (1995) for comparing five treatments
A, B, C, D and E, corresponding to five normal distributions with the common mean 10
and variances as provided in Table 3. Thus the null hypothesis H0 : µ1 = . . . = µ5 is true
in this case. The sample sizes were chosen so that they are negatively correlated with the
variances – the situation where the usual F test produces inflated type I error probabilities.
The summary statistics in Table 3 of Weerahandi (1995) are reproduced here in our Table
3. We note that the values of si given in Table 3 of Weerahandi (1995) are computed using
s2

i =
∑ni

j=1(xij − x̄i)
2/ni which is the maximum likelihood estimate of σ2

i . The s2
i given in

our Table 3 is the value of the usual unbiased estimate of the σ2
i as defined in (1).

The p-values are computed for comparing three treatments at a time, four treatments
at a time, and finally for comparing all five treatments. Notice that we can not compute
the p-values for the James test, and so we reported the values of the test statistic and the
corresponding critical values J.05 in (6) (recall that the critical values depend on s2

i ’s). We
observe from Table 3 that the p-values of the PB test and Welch’s test are very close except
for the case where all the five treatments are compared. But the p-values of the GF test
are smaller than those of other two tests except for the case where the treatments A, B and
C are compared. All the tests made correct decision of accepting the equality of the means
which is true.

Example 2. This example is on an inter-laboratory study involving nine laboratories carried
out by the Nutrient Composition Laboratory of the US Department of Agriculture (Li and
Cardozo 1994). The objective was to validate a proposed simple nonenzymatic-gravimetric
method for determining total dietary fiber in some foods. Six samples (apple, apricots,
cabbage, carrots, onions and soy fiber) were sent in blind duplicates to the participating
laboratories. The data on fiber in apples were analyzed by Vangel and Rukhin (1999), and
the summary statistics are reproduced here in Table 4. We note that for this example, k = 9
and the number of measurements ni made by the ith laboratory is 2, i = 1, . . . , 9.

We applied all the four tests for testing equality of the laboratory means. The p-values of
the PB test and the generalized F test were computed using simulations consisting of 100,000
runs. For the purpose of demonstration, we computed the p-values for comparing the first
i laboratory means, i = 2, . . . , 9, and the results are presented in Table 4. We observe first
that the GF test produced the smallest p-values when k ≥ 4. This is consistent with the
simulation findings reported earlier that the GF test is too liberal for moderate k and small
samples. At 5% level, the PB test rejects the null hypothesis of equality of means for i = 8
and i = 9, the Welch test and the James test reject the null hypothesis for i = 7, 8 and 9,
and the GF test rejects the null hypothesis for i ≥ 5.



12

6. Concluding Remarks

The available tests for the one-way ANOVA model with heteroscedastic error variances
have serious type I error problems that have been overlooked; this has been pointed out by
Dajani (2002). In this article, we have suggested the parametric bootstrap (PB) approach in
order to arrive at a test procedure, and have compared the PB test with some of the existing
tests−the Welch test, the generalized F−test, and the James (1951) second order test. For
a range of choices of the sample size and parameter configurations, we have investigated
the performance of the above tests using Monte Carlo simulation. In terms of controlling
the Type I error rate, the overall conclusion is that the PB test is the only procedure that
performs satisfactorily, regardless of the sample sizes, values of the error variances, and the
number of means being compared. The James second order test is a close second. The tests
developed for the one-way fixed model with heteroscedastic error variances are also applica-
ble to the one-way random model with heteroscedastic error variances, when the problem is
that of testing the significance of the random effect variance component. We would like to
emphasize that care should be taken regarding the choice of the test, since the different tests
can produce different conclusions, in terms of accepting or rejecting the null hypothesis−a
point emphasized by Dajani (2002). One of our examples also demonstrate this point.
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Table 1
Monte Carlo estimates of type I error rates
k = 2, σ2

1 = 1
n = (3, 3) n = (5, 5) n = (8, 8) n = (4, 8)

σ2
2 PB GF W J PB GF W J PB GF W J PB GF W J

.01 .07 .04 .06 .07 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .06

.05 .06 .03 .06 .07 .06 .05 .05 .06 .05 .04 .05 .05 .05 .04 .06 .06

.10 .06 .02 .05 .06 .05 .04 .05 .05 .05 .04 .05 .05 .06 .04 .06 .06

.20 .05 .02 .05 .06 .05 .03 .05 .05 .05 .03 .05 .05 .06 .04 .06 .06

.30 .05 .01 .04 .05 .05 .03 .05 .05 .05 .04 .05 .05 .05 .04 .06 .06

.40 .04 .02 .04 .05 .05 .03 .05 .05 .05 .03 .05 .05 .06 .03 .06 .06

.50 .04 .01 .04 .05 .05 .03 .04 .05 .05 .03 .05 .05 .06 .03 .06 .06

.60 .04 .01 .04 .05 .04 .03 .05 .05 .05 .03 .05 .05 .06 .03 .06 .06

.70 .04 .01 .04 .05 .05 .02 .04 .05 .05 .03 .05 .05 .06 .04 .05 .06

.80 .04 .01 .04 .05 .05 .02 .04 .05 .05 .04 .05 .05 .05 .03 .05 .05

.90 .04 .01 .04 .05 .05 .03 .04 .05 .05 .04 .05 .05 .05 .03 .05 .05
1.00 .04 .01 .03 .04 .05 .02 .04 .05 .05 .04 .05 .05 .05 .03 .05 .05

k = 3, σ2
1 = 1

n = (5, 5, 5) n = (10, 10, 10) n = (4, 6, 20) n = (2, 3, 2)

(σ2
2, σ

2
3) PB GF W J PB GF W J PB GF W J PB GF W J

(1,1) .05 .03 .05 .05 .05 .05 .05 .05 .05 .03 .06 .05 .03 .05 .04 .06
(1,.5) .04 .04 .05 .05 .04 .04 .05 .05 .05 .02 .06 .06 .03 .06 .04 .06
(1,.1) .05 .05 .05 .06 .05 .06 .05 .05 .06 .04 .06 .06 .04 .07 .05 .08
(.5,.5) .05 .04 .05 .05 .05 .04 .05 .05 .06 .02 .06 .06 .04 .05 .04 .06
(.5,.7) .04 .04 .05 .05 .05 .04 .05 .05 .06 .02 .06 .06 .04 .05 .04 .06
(.1,.1) .05 .04 .05 .05 .05 .04 .05 .05 .06 .04 .06 .06 .05 .06 .06 .09
(.1,.9) .05 .05 .05 .06 .05 .06 .05 .05 .06 .05 .06 .06 .05 .04 .06 .10
(.5,.9) .05 .04 .05 .05 .05 .05 .05 .05 .06 .03 .06 .06 .03 .05 .04 .06
(.3,.9) .04 .04 .05 .05 .05 .05 .05 .05 .06 .03 .06 .06 .04 .05 .04 .07
(.3,.6) .05 .04 .05 .05 .05 .05 .05 .05 .05 .03 .06 .06 .04 .05 .04 .07
(.1,.3) .05 .04 .05 .05 .05 .04 .05 .05 .06 .05 .06 .06 .04 .06 .06 .09

(.05,.05) .04 .04 .05 .05 .05 .04 .05 .05 .06 .04 .06 .06 .06 .06 .07 .10
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Table 1 (continued).
k = 6 and σ2

1 = 1

a b c d

(σ2
2, . . . , σ

2
6) PB GF W J PB GF W J PB GF W J PB GF W J

(1,1,1,1,1) .05 .08 .06 .05 .05 .07 .06 .05 .04 .08 .08 .06 .05 .08 .07 .06
(.1,.1,.5,.5,.5) .05 .09 .07 .06 .05 .07 .05 .05 .05 .09 .08 .06 .05 .08 .07 .06
(.1,.2,.3,.4,.5) .05 .09 .06 .06 .05 .06 .05 .05 .05 .09 .08 .06 .05 .07 .07 .06
(.1,1.1,1,1) .05 .08 .07 .06 .05 .06 .06 .05 .05 .11 .08 .07 .06 .08 .07 .06

(.2,.4,.4,.2, .1) .05 .08 .06 .06 .05 .06 .06 .05 .05 .10 .09 .07 .05 .07 .08 .06
(.5,.5,.5,.5,1) .05 .08 .06 .06 .05 .06 .06 .05 .05 .10 .08 .07 .06 .09 .07 .06
(.3,.9,.4,.7,.1) .05 .09 .07 .06 .05 .08 .06 .05 .05 .11 .09 .07 .05 .08 .07 .06

(.01,.01,.06,.1,.1) .05 .10 .07 .06 .05 .07 .06 .05 .05 .09 .09 .07 .05 .07 .07 .06
a. n = (5, . . . , 5); b. n = (10, . . . , 10); c. n= (3, 3, 4, 5, 6, 6); d. n= (4, 8, 12, 24, 30, 40)

k = 10 and σ2
1 = 1
e f g h

(σ2
2, . . . , σ

2
10) PB GF W J PB GF W J PB GF W J PB GF W J

(1,1,1,1, .05 .15 .08 .06 .05 .08 .05 .05 .04 .18 .11 .08 .05 .10 .09 .06
1, 1,1,1,1)
(.1,.2,.3,.4, .04 .13 .09 .06 .05 .07 .06 .05 .04 .17 .11 .07 .05 .09 .08 .06

.5,.6,.7,.8,.9)
(.1,.1,.2,.2, .05 .14 .08 .06 .05 .08 .05 .05 .05 .18 .11 .08 .05 .11 .09 .06

.3,.3,.4,.4,.5)
(.1,.1,.1,.1, .05 .14 .08 .06 .05 .08 .05 .05 .04 .17 .12 .08 .05 .11 .09 .07

.1,.2,.2,.2,.2)
(.1,1,.1,1, .04 .14 .09 .06 .05 .07 .06 .05 .04 .17 .13 .09 .05 .12 .10 .06

.1,1,.1,1,.1)
(.3,.3,.3,.6, .05 .14 .08 .06 .05 .07 .05 .05 .05 .16 .11 .07 .05 .10 .09 .07

.6,.6,.9,.9,.9)
(.1,.1,.1,.1, .04 .13 .08 .06 .05 .07 .05 .05 .04 .18 .12 .08 .06 .11 .09 .07

.1,.1,.1,.1,.1)
e. n = (5, . . . , 5); f. n = (15, . . . , 15);
g. n= (3, 3, 3, 4, 4, 4, 5, 5, 5, 5); h. n= (4, 4, 4, 12, 12, 12, 15, 15, 15, 15)
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k = 20, σ2
1 = 1 and n1 = ... = n20 = 5

(σ2
2, . . . , σ

2
20) PB GF W J

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) .05 .26 .13 .07
(.1,.1,.2,.2,.3,.3,.4,.4,.5,.5,.6,.6,.7,.7,.8,.8,.9,.9,1) .05 .28 .12 .08
(.1,.2,.3,.4,.5,.1,.2,.3,.4,.5,.1,.2,.3,.4,.5,.1,.2,.3,.4) .05 .28 .13 .08
(.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1,.1) .05 .27 .13 .08
(.2,.2,.2,.2,.4,.4,.4,.4,.6,.6,.6,.6,.8,.8,.8,.8,1,1,1) .04 .28 .13 .08

(.9,.8,.7,.6,.5,.4,.3,.2,.1,.9,.8,.7,.6,.5,.4,.3,.2,.1,1,) .05 .28 .13 .08
(.01,.01,.01,.05,.05,.05,.1,.1,.1,.5,.5,.5,.6,.6,.6,.8,.8,.8,.8) .05 .28 .14 .08

PB – Parametric Bootstrap; GF – Generalized F test; W – Welch’s test; J – James’ test
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Table 2
Powers of the tests
k = 3, σ2

1 = 1 and µ1 = 0

n = (10, 10, 10)
(µ2, µ3)

(σ2
2, σ

2
3) Tests (0, 0) (0, .2) (0, .5) (0, .7) (.5, 1) (0, 1) (1.5,1)

(.3,.9) PB .05 .08 .25 .52 .45 .76 .94
GF .04 .08 .24 .51 .43 .75 .93
W .05 .08 .25 .51 .45 .76 .94
J .05 .07 .21 .37 .46 .67 .93

(.1,.5) PB .05 .10 .36 .64 .59 .91 .98
GF .05 .10 .35 .63 .60 .91 .98
W .05 .09 .36 .63 .59 .92 .98
J .05 .09 .36 .63 .58 .91 .98

n = (10, 5, 15)
(.3,.9) PB .05 .08 .22 .42 .51 .73 .86

GF .05 .07 .21 .41 .52 .73 .84
W .05 .08 .23 .42 .51 .74 .86
J .05 .07 .23 .42 .51 .74 .86

(.1,.5) PB .05 .10 .41 .73 .69 .96 .95
GF .05 .09 .39 .71 .67 .95 .94
W .05 .10 .42 .71 .68 .96 .95
J .05 .10 .42 .71 .68 .96 .95
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Table 2 (continued)
k = 10 and (µ1, ..., µ8) = 0,

n = (15, 15, 15, 20, 20, 20, 25, 25, 25, 25)
(µ9, µ10)

σ2 Tests (0, 0) (0, .2) (0, .5) (0, .7) (.5, 1) (0, 1) (1.5,1)
a PB .05 .08 .33 .63 .98 .93 1

GF .06 .11 .37 .67 .98 .94 1
W .05 .08 .33 .62 .98 .94 1
J .05 .08 .33 .62 .98 .93 1

b PB .05 .09 .41 .77 .98 1 1
GF .08 .12 .46 .81 .98 1 1
W .05 .09 .43 .77 .98 1 1
J .05 .09 .43 .76 .98 .98 1

n = (15,17,19,21,23,25,27,29,31,33)
a PB .05 .08 .41 .77 1 .99 1

GF .08 .11 .47 .81 1 .99 1
W .05 .09 .43 .78 1 .99 1
J .05 .09 .43 .77 1 .99 1

b PB .05 .12 .54 .89 1 1 1
GF .06 .15 .59 .90 1 1 1
W .05 .11 .56 .89 1 1 1
J .05 .11 .56 .89 1 1 1

a. (σ2
1, ..., σ

2
10) = (1, .1, .2, .3, .4, .5, .6, .7, .8, .9); b. (σ2

1, ..., σ
2
10) = (1, .1, .1, .1, .3, .3, .3, .7, .7, .7)

Table 3
Summary statistics and p-values of the tests for comparison of different
sets of treatments
Treat- σ2

i ni x̄i s2
i Treatments James

ments compared PB GF W TN J.05

A 1 16 10.03 1.24 A, B, C .380 .376 .378 2.18 7.91
B 4 12 9.57 3.97 A, C, E .232 .184 .229 4.23 11.64
C 9 8 8.70 6.92 A, C, D, E .252 .163 .239 6.07 15.12
D 16 6 7.92 13.39 A, B, D, E .326 .270 .320 4.71 14.49
E 16 4 12.96 15.41 A, B, C, D, E .326 .239 .310 6.36 16.97
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Table 4
Dietary fibers in apples and p-values of the tests

p-values∗ James

Laboratory x̄i si PB GF W TN J.05

1 12.460 .028 —- —- —-
2 13.035 .233 .154 .196 .173 12.00 29.39
3 12.440 .325 .310 .289 .268 12.02 55.90
4 12.870 .071 .147 .079 .085 67.67 71.26
5 13.420 .339 .189 .038 .078 81.66 92.53
6 12.080 .325 .243 .026 .080 85.40 112.3
7 13.180 .099 .182 .008 .035 167.8 127.6
8 14.335 .064 .037 .000 .001 1497 139.6
9 12.230 .212 .044 .000 .001 1512 156.4
∗ p-values in the ith row are for comparing

the first i laboratory means


